3/2012 - 15 | View TOC | « Previous Article | Next Article » |
Nonlinear Adaptive NeuroFuzzy Wavelet Based Damping Control Paradigm for SSSCBADAR, R. , KHAN, L. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (810 KB) | Citation | Downloads: 1,138 | Views: 5,324 |
Author keywords
SSSC, SMIB power system, power system stability, adaptive neurofuzzy control, wavelet neural network
References keywords
power(15), series(12), fuzzy(11), control(9), wavelet(8), controller(8), panda(7), neural(7), damping(7), compensator(7)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2012-08-31
Volume 12, Issue 3, Year 2012, On page(s): 97 - 104
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2012.03015
Web of Science Accession Number: 000308290500015
SCOPUS ID: 84865851562
Abstract
Static Synchronous Series Compensator (SSSC) is a series compensating Flexible AC Transmission System (FACTS) controller with primary objective of power flow control on a line by injecting a voltage in series with transmission line. However, it can efficiently be used for improving the system stability by using a supplementary damping control system. In this work, Adaptive Neurofuzzy Wavelet Control (ANFWC) paradigm for SSSC supplementary damping control system has been proposed and successfully applied to a Single Machine Infinite Bus (SMIB) power system. Gradient descent based back propagation algorithm, being simple with sufficient efficiency, has been used to update the controller parameters. The robustness of the proposed control strategy has been validated using nonlinear time domain simulations for different faults and various operating conditions of power system. Finally, the results have been compared with Conventional Adaptive Takagi-Sugino Controller (CATC) on the basis of different performance indices. |
References | | | Cited By «-- Click to see who has cited this paper |
[1] N. G. Hingorani and L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, IEEE, New York, 2000.
[2] M. El-Mousri, A. M. Sharaf and K. El-Arroudi, "Optimal control schemes for SSSC for dynamic series compensation," Elect. Power Syst. Research, vol. 78, no. 4, pp. 646-656, April. 2008. [CrossRef] [Web of Science Times Cited 27] [SCOPUS Times Cited 43] [3] W. Qiao and R. G. Harley, "Indirect adaptive external neurocontrol for a series capacitive reactance compensator based on a voltage source PWM converter in damping power oscillations," IEEE Trans. Industrial Electronics, vol. 54, no. 1, pp. 77-85, Feb. 2007. [CrossRef] [Web of Science Times Cited 23] [SCOPUS Times Cited 28] [4] W. Qiao and R. G. Harley, "An indirect adaptive external neurocontroller for series capacitive reactance compensator in damping power oscillations", in Proc. 13th International Conference on Intelligent Systems Application to Power Systems, Washington DC, USA, Nov. 6-10, 2005, pp. 234-239. [CrossRef] [SCOPUS Times Cited 3] [5] W. Qiao, R. G. Harley and Ganesh K. Venayagamoorthy, "Neural-Network-based intelligent control for improving dynamic performance of FACTS devices", in 2007 iREP symposium- Bulk Power System Dynamics and Control - VII, Revitalizing Operational Reliability, Charleston, SC, USA, August pp. 19-24, 2007. [CrossRef] [SCOPUS Times Cited 7] [6] S. Panda, N. P. Padhy, R. N. Patel, "Power-system stability improvement by PSO optimized SSSC-based damping controller," Elect. Power Comp. Syst., vol. 36, pp. 468-490, 2008. [CrossRef] [Web of Science Times Cited 58] [SCOPUS Times Cited 90] [7] S. Panda, S. C. Swain, P. K. Rautray, R. K. Malik, G. Panda, "Design and analysis of SSSC-based damping controller," Simul. Model. Pract. Theor., vol. 18, pp. 1199-1213, 2010. [CrossRef] [Web of Science Times Cited 57] [SCOPUS Times Cited 81] [8] S. Panda, "Modeling, simulation and optimal tuning of SSSC based controller in a multi-machine power system", World Jr. Model. and Simul., vol. 6, no. 2, pp. 110-121, 2010. [9] S. C. Swain, A. K. Balirsingh, S. Mahapatra and S. Panda, "Design of static synchronous series compensator based damping controller employing real coded genetic algorithm", Intr. Jr Elect. Electronic Engg., vol. 5, no. 3, pp. 180-188, 2011. [10] S. C. Swain, A. K. Balirsingh, S. Mahapatra and S. Panda, "New external neuro-controller for series capacitive reactance compensator in a power network", IEEE Trans. Power. Syst., vol. 9, no. 3, pp. 1462-1472, 2004. [CrossRef] [Web of Science Times Cited 24] [SCOPUS Times Cited 33] [11] L. S. Kumar and A. Gosh, "Modeling and control design of a static synchronous series compensator," IEEE Trans. Power Deliv., vol. 14, no. 4, pp. 1448-1453, Oct. 1999. [CrossRef] [Web of Science Times Cited 50] [SCOPUS Times Cited 81] [12] Wang, H. F., "Static synchronous series compensator to damp power system oscillations," Elect. Power Syst. Res., vol. 54, pp. 113-119, 2000. [CrossRef] [Web of Science Times Cited 64] [SCOPUS Times Cited 98] [13] L. Gu, X. Zhou, M. Liu and H. Shi, "Nonlinear adaptive controller design of SSSC for damping inter-area oscillation," WSEAS Trans. Circu. Syst., vol. 9, no. 4, pp. 228-237, April. 2010. [14] V. Topalov, G. L. Cascella, V. Giordano, F. Cupertino, and O. Kaynak, "Sliding mode neuro-adaptive control of electrical drives," IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 671-679, Feb. 2007. [CrossRef] [Web of Science Times Cited 55] [SCOPUS Times Cited 72] [15] L. Khan and K. L. Lo, "Hybrid micro-GA based FLCs for TCSC and UPFC in a multi-machine environment," Intr. Jr. Electr. Power Syst. Research, vol. 76, no. 9-10, pp. 832-843, Jun. 2006. [CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 34] [16] M. J. Er and Y. Gao, "Robust adaptive control of robot manipulators using generalized fuzzy neural networks," IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 620-628, Jun. 2003. [CrossRef] [Web of Science Times Cited 85] [SCOPUS Times Cited 120] [17] L. Khan, S. Anjum and R. Badar, "Standard fuzzy model identification using gradient methods," World Appl. Sci. Jr., vol. 8, no. 1, pp. 1-9, 2010. [18] R. H. Abiyev and O. Kaynak, "Fuzzy wavelet neural networks for identification and control of dynamic plants- A novel structure and a comprehensive study," IEEE Trans. Indus. Elect., vol.55, no.8, pp. 3133-3140, 2008. [CrossRef] [Web of Science Times Cited 209] [SCOPUS Times Cited 257] [19] C. K. Lin and S. D. Wang, "Fuzzy modeling using wavelet transform," Electron. Lett., vol. 32, no. 24, pp. 2255-2256, Nov. 1996. [CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 16] [20] M. Thuillard, "Fuzzy logic in the wavelet framework," in Proc. Toolmet, Oulu, Finland, Apr. 13-14, 2000. [21] M. Thuillard, Wavelets in Softcomputing. Singapore: World Scientific, 2001. [CrossRef] [22] Q.J. Guo, H.-B. Yu, and A.-D. Xu, "Wavelet fuzzy network for fault diagnosis," in Proc. Int. Conf. Commun. Circuits Syst., 2005, pp. 993-998. [CrossRef] [23] Y. Lin and F.-Y. Wang, "Predicting chaotic time-series using adaptive wavelet-fuzzy inference system," in Proc. IEEE Intell. Veh. Symp., 2005, pp. 888-893. [CrossRef] [SCOPUS Times Cited 14] [24] D. W. C. Ho, P.-A. Zhang, and J. Xu, "Fuzzy wavelet networks for function learning," IEEE Trans. Fuzzy Syst., vol. 9, no. 1, pp. 200-211, Feb. 2001. [CrossRef] [Web of Science Times Cited 231] [SCOPUS Times Cited 272] [25] R. H. Abiyev, "Controller based of fuzzy wavelet neural network for control of technological processes," in Proc. IEEE Int. CISMA, Giardini Naxos, Italy, 2005, pp. 215-219. [CrossRef] [SCOPUS Times Cited 25] [26] R. H. Abiyev, "Time series prediction using fuzzy wavelet neural network model," in Lecture Notes in Computer Sciences, vol. 4132. Berlin, Germany: Springer-Verlag, 2006, pp. 191-200. [CrossRef] [SCOPUS Times Cited 17] [27] A. Kazemi, A. Badri and S. Jadid, "Investigation of two vector control based methods for static synchronous series compensator," IJEEE, vol. 1, no. 4, pp. 1-6, 2005. [28] J. W. Park, R. G. Harley and G. K. Venayagamoorthy, "Power system optimization and coordination of damping controls by series FACTS devices," in Inaugural IEEE PES Conference and Exhibition, Durban, South Africa, July 11-15, 2005, pp. 293-298. [CrossRef] [29] M. Torii and M. T. Hagan, "Stability of steepest descent with momentum for quadratic functions", IEEE Trans. Neural Nets., vol. 13, no. 3, pp. 752-756, May 2002. [CrossRef] [Web of Science Times Cited 37] [SCOPUS Times Cited 45] [30] S. Panda, "Robust coordinated design of excitation and STATCOM-based controller using genetic algorithm", Int. Jr. Innov. Comp. and Appl., vol. 1, no. 4, pp. 244-251, 2008. [CrossRef] [SCOPUS Times Cited 9] [31] E. G. Romera, M. A. Jaramillo and D. C. Fernandez, "Monthly electric energy demand forecasting with neural networks and Fourier series", Energy Conv. Mang., vol. 49, pp. 3135-3142, 2008. [CrossRef] [Web of Science Times Cited 91] [SCOPUS Times Cited 113] Web of Science® Citations for all references: 1,051 TCR SCOPUS® Citations for all references: 1,458 TCR Web of Science® Average Citations per reference: 34 ACR SCOPUS® Average Citations per reference: 47 ACR TCR = Total Citations for References / ACR = Average Citations per Reference We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more Citations for references updated on 2024-11-15 23:20 in 163 seconds. Note1: Web of Science® is a registered trademark of Clarivate Analytics. Note2: SCOPUS® is a registered trademark of Elsevier B.V. Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site. |
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.