2/2017 - 6 |
Analysis of Steady-State Error in Torque Current Component Control of PMSM DriveBRANDSTETTER, P. , NEBORAK, I. , KUCHAR, M. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (2,635 KB) | Citation | Downloads: 1,071 | Views: 1,241 |
Author keywords
AC motors, electric current control, machine vector control, permanent magnet motors, variable speed drives
References keywords
control(17), permanent(13), magnet(13), electronics(13), synchronous(12), industrial(10), torque(9), pmsm(9), motor(9), sensor(7)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2017-05-31
Volume 17, Issue 2, Year 2017, On page(s): 39 - 46
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.02006
Web of Science Accession Number: 000405378100006
SCOPUS ID: 85020062974
Abstract
The paper presents dynamic properties of a vector controlled permanent magnet synchronous motor drive supplied by a voltage source inverter. The paper deals with a control loop for the torque producing stator current. There is shown fundamental mathematical description for the vector control structure of the permanent magnet synchronous motor drive with respect to the current control for d-axis and q-axis of the rotor rotating coordinate system. The derivations of steady-state deviation for schemes with and without decoupling circuits are described for q-axis. The properties of both schemes are verified by MATLAB-SIMULINK program considering a lower and a higher value of inertia and by experimental measurements in our laboratory. The simulation and experimental results are presented and discussed at the end of the paper. |
References | | | Cited By «-- Click to see who has cited this paper |
[1] F. J. Gieras and M. Wing, Permanent magnet motor technology: Design and applications. Third Edition, CRC Press, 2010.
[2] N. Bernard, F. Martin, and M. E. H. Zaïm, "Design methodology of a permanent magnet synchronous machine for a screwdriver application," IEEE Transactions on Energy Conversion, vol. 27, no. 3, pp. 624-633, Sept. 2012. [CrossRef] [Web of Science Times Cited 32] [SCOPUS Times Cited 37] [3] J. Soleimani, M.B. Bafghi, and M. Shojaeepoor, "IPM synchronous motor for traction applications: performance analysis considering hysteresis loop characteristics variation," International Review of Electrical Engineering - IREE, vol.7, no.1, pp. 3297-3303, 2012. [4] C. H. Lin, "Hybrid recurrent wavelet neural network control of PMSM servo-drive system for electric scooter," International Journal of Control Automation and Systems, vol. 12, no. 1, pp. 177-187, 2014. [CrossRef] [Web of Science Times Cited 40] [SCOPUS Times Cited 43] [5] T. Tudorache and M. Popescu, "Optimal Design Solutions for Permanent Magnet Synchronous Machines," Advances in Electrical and Computer Engineering, vol.11, no. 4, pp. 77-82, 2011. [CrossRef] [Full Text] [Web of Science Times Cited 27] [SCOPUS Times Cited 31] [6] J. Vittek, V. Vavrus, P. Bris, and L. Gorel, "Forced dynamics control of the elastic joint drive with single rotor position sensor," Automatika, vol. 54, no. 3, pp. 337-347, 2013. [CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 13] [7] Y. A. R. I. Mohamed, and T. K. Lee, "Adaptive self-tuning MTPA vector controller for IPMSM drive system," IEEE Transactions on Energy Conversion, vol. 21, no. 3, pp. 636-644, Sept. 2006. [CrossRef] [Web of Science Times Cited 195] [SCOPUS Times Cited 245] [8] M. Moujahed, H. Ben Azza, M. Jemli, and M. Boussak, "Speed estimation by using EKF techniques for sensor-less DTC of PMSM with load torque observer," International Review of Electrical Engineering - IREE, vol. 9, no. 2, pp. 270-279, 2014. [9] P. Chlebis, P. Vaculik, P. Moravcik, and Z. Pfof, "Direct torque control methods for three-level voltage inverter," in Proc. 10th Int. Scientific Conf. on Electric Power Engineering 2009, Kouty nad Desnou, Czech Republic, 2009, pp. 352-356. [10] T. D. Do, H. H. Choi, and J. W. Jung, "Nonlinear Optimal DTC Design and Stability Analysis for Interior Permanent Magnet Synchronous Motor Drives," IEEE/ASME Transactions on Mechatronics, vol. 20, no. 6, pp. 2716-2725, Dec. 2015. [CrossRef] [Web of Science Times Cited 42] [SCOPUS Times Cited 47] [11] C. Calleja, A. Lopez-de-Heredia, H. Gaztanaga, L. Aldasoro, and T. Nieva, "Validation of a Modified Direct-Self-Control Strategy for PMSM in Railway-Traction Applications," IEEE Transactions on Industrial Electronics, vol. 63, no. 8, pp. 5143-5155, Aug. 2016. [CrossRef] [Web of Science Times Cited 60] [SCOPUS Times Cited 80] [12] F. Niu, K. Li, and Y. Wang, "Direct torque control for permanent-magnet synchronous machines based on duty ratio modulation," IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6160-6170, Oct. 2015. [CrossRef] [Web of Science Times Cited 112] [SCOPUS Times Cited 134] [13] M. Gecic, M. Kapetina, and D. Marcetic, "Energy Efficient Control of High Speed IPMSM Drives - A Generalized PSO Approach," Advances in Electrical and Computer Engineering, vol.16, no. 1, pp. 27-34, 2016. [CrossRef] [Full Text] [Web of Science Times Cited 5] [SCOPUS Times Cited 6] [14] G. Haines and N. Ertugrul, "Wide Speed Range Sensorless Operation of Brushless Permanent-Magnet Motor Using Flux Linkage Increment," IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp. 4052-4060, July 2016. [CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 34] [15] M. Seilmeier and B. Piepenbreier, "Sensorless control of PMSM for the whole speed range using two-degree-of-freedom current control and hf test current injection for low-speed range," IEEE Transactions on Power Electronics, vol. 30, no. 8, pp. 4394-4403, 2015. [CrossRef] [Web of Science Times Cited 91] [SCOPUS Times Cited 105] [16] G. F. H. Beng, X. Zhang, and D. M. Vilathgamuwa, "Sensor Fault-Resilient Control of Interior Permanent-Magnet Synchronous Motor Drives," IEEE/ASME Transactions on Mechatronics, vol. 20, no. 2, pp. 855-864, April 2015. [CrossRef] [Web of Science Times Cited 50] [SCOPUS Times Cited 56] [17] J. Kim, I. Jeong, K. Nam, J. Yang, and T. Hwang, "Sensorless control of PMSM in a high-speed region considering iron loss," IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6151-6159, Oct. 2015. [CrossRef] [Web of Science Times Cited 85] [SCOPUS Times Cited 96] [18] D. Vosmik and Z. Peroutka, "Sensorless control of permanent magnet synchronous motor employing extended Kalman filter in combination with hf injection method," in Proc. 14th European Conf. on Power Electronics and Applications, Birmingham, England, 2011, pp. 1-10. [19] G. Luo, R. Zhang, Z. Chen, W. Tu, S. Zhang, and R. Kennel, "A Novel Nonlinear Modeling Method for Permanent-Magnet Synchronous Motors," IEEE Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6490-6498, Oct. 2016. [CrossRef] [Web of Science Times Cited 50] [SCOPUS Times Cited 64] [20] S. Lee, Y. S. Jeong, Y. J. Kim, and S. Y. Jung, "Novel analysis and design methodology of interior permanent-magnet synchronous motor using newly adopted synthetic flux linkage," IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 3806-3814, Sept. 2011. [CrossRef] [Web of Science Times Cited 40] [SCOPUS Times Cited 45] [21] S. Li, L. Harnefors, M. Iwasaki, "Modeling, Analysis, and Advanced Control in Motion Control Systems-Part II," IEEE Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6371-6374, Oct. 2016. [CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 3] [22] J. S. Lee and R. D. Lorenz, "Robustness Analysis of Deadbeat-Direct Torque and Flux Control for IPMSM Drives," IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 2775-2784, May 2016. [CrossRef] [Web of Science Times Cited 50] [SCOPUS Times Cited 56] [23] J. A. Guemes, A. M. Iraolagoitia, J. I. Del Hoyo, and P. Fernández, "Torque analysis in permanent-magnet synchronous motors: A comparative study," IEEE Transactions on Energy Conversion, vol. 26, no. 1, pp. 55-63, March 2011. [CrossRef] [Web of Science Times Cited 110] [SCOPUS Times Cited 154] [24] M. Frivaldsky, P. Drgona, and P. Spanik, "Experimental analysis and optimization of key parameters of ZVS mode and its application in the proposed LLC converter designed for distributed power system application," International Journal of Electrical Power & Energy Systems, Vol. 47, pp. 448-456, May 2013. [CrossRef] [Web of Science Times Cited 20] [SCOPUS Times Cited 39] [25] T. Tudorache, I. Trifu, C. Ghita, and V. Bostan, "Improved mathematical model of PMSM taking into account cogging torque oscillations," Advances in Electrical and Computer Engineering, vol.12, no. 3, pp. 59-64, 2012. [CrossRef] [Full Text] [Web of Science Times Cited 16] [SCOPUS Times Cited 18] [26] C. K. Lin, T. H. Liu, J. T. Yu, L. C. Fu, and C. F. Hsiao, "Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique," IEEE Transactions on Industrial Electronics, vol. 61, no. 2, pp. 667-681, Feb. 2014. [CrossRef] [Web of Science Times Cited 263] [SCOPUS Times Cited 342] [27] F. I. Bakhsh, M. Khursheed, S. Ahmad, and A. Iqbal, "A novel technique for the design of controller of a vector-controlled permanent magnet synchronous motor drive," in Proc. 2011 Annual IEEE India Conference - INDICON, Hyderabad, India, 2011, pp. 1-6. [CrossRef] [SCOPUS Times Cited 9] [28] J. Kim, I. Jeong, K. Lee, and K. Nam, "Fluctuating current control method for a PMSM along constant torque contours," IEEE Transactions on Power Electronics, vol. 29, no.11, pp. 6064-6073, Nov. 2014. [CrossRef] [Web of Science Times Cited 19] [SCOPUS Times Cited 20] [29] T. Tudorache, M. Modreanu, "Design Solutions for Reducing the Cogging Torque of PMSM," Advances in Electrical and Computer Engineering, vol.13, no. 3, pp. 59-64, 2013. [CrossRef] [Full Text] [Web of Science Times Cited 11] [SCOPUS Times Cited 10] [30] M. H. Vafaie, B. Mirzaeian Dehkordi, P. Moallem, and A. Kiyoumarsi, "Minimizing Torque and Flux Ripples and Improving Dynamic Response of PMSM Using a Voltage Vector With Optimal Parameters," IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3876-3888, June 2016. [CrossRef] [Web of Science Times Cited 69] [SCOPUS Times Cited 83] Web of Science® Citations for all references: 1,426 TCR SCOPUS® Citations for all references: 1,770 TCR Web of Science® Average Citations per reference: 46 ACR SCOPUS® Average Citations per reference: 57 ACR TCR = Total Citations for References / ACR = Average Citations per Reference We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more Citations for references updated on 2024-11-16 17:46 in 169 seconds. Note1: Web of Science® is a registered trademark of Clarivate Analytics. Note2: SCOPUS® is a registered trademark of Elsevier B.V. Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site. |
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.