Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Aug 2024
Next issue: Nov 2024
Avg review time: 55 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,989,932 unique visits
1,159,751 downloads
Since November 1, 2009



Robots online now
Qwantbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  








LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  2/2014 - 9

Post-error Correction in Automatic Speech Recognition Using Discourse Information

KANG, S. See more information about KANG, S. on SCOPUS See more information about KANG, S. on IEEExplore See more information about KANG, S. on Web of Science, KIM, J.-H. See more information about  KIM, J.-H. on SCOPUS See more information about  KIM, J.-H. on SCOPUS See more information about KIM, J.-H. on Web of Science, SEO, J. See more information about SEO, J. on SCOPUS See more information about SEO, J. on SCOPUS See more information about SEO, J. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (654 KB) | Citation | Downloads: 1,138 | Views: 4,115

Author keywords
post correction, speech recognition, re-ranking model, analysis of user intention, spoken language understanding, spoken dialog system

References keywords
speech(11), recognition(10), language(8), spoken(5), information(5), systems(4), science(4), linguistics(4), computational(4), association(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2014-05-31
Volume 14, Issue 2, Year 2014, On page(s): 53 - 56
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2014.02009
Web of Science Accession Number: 000340868100009
SCOPUS ID: 84901838708

Abstract
Quick view
Full text preview
Overcoming speech recognition errors in the field of human-computer interaction is important in ensuring a consistent user experience. This paper proposes a semantic-oriented post-processing approach for the correction of errors in speech recognition. The novelty of the model proposed here is that it re-ranks the n-best hypothesis of speech recognition based on the user's intention, which is analyzed from previous discourse information, while conventional automatic speech recognition systems focus only on acoustic and language model scores for the current sentence. The proposed model successfully reduces the word error rate and semantic error rate by 3.65% and 8.61%, respectively.


References | Cited By  «-- Click to see who has cited this paper

[1] S. Kaki, E. Sumita, H. Iida, "A Method for Correcting Errors in Speech Recognition Using the Statistical Features of Character Co-occurrence," in Proc. of Association for Computational Linguistics, pp. 653-657, 1998.
[CrossRef]


[2] R. Lopez-Cozar, Z. Callejas, "ASR Post-Correction for Spoken Dialogue Systems based on Semantic, Syntactic, Lexical and Contextual Information," Speech Communication, vol. 50, no. 8-9, pp. 745-766, 2008.
[CrossRef] [Web of Science Times Cited 12] [SCOPUS Times Cited 17]


[3] J. Allen, B. W. Miller, E. K. Ringger, T. Sikorski, "A Robust System for Natural Spoken Dialog," in Proc. of Association for Computational Linguistics, pp. 62-70, 1996.
[CrossRef]


[4] E. Ringger, J. Allen, "A Fertility Channel Model for Post Correction of Continuous Speech Recognition," in Proc. of International Conference on Spoken Language Processing, pp. 897-900, 1996.
[CrossRef]


[5] M. Jeong, G. G. Lee, "Improving Speech Recognition and Understanding using Error-Corrective Reranking," ACM Transactions on Asian Language Information Processing, vol. 7, pp. 2:1-2:26, 2008.
[CrossRef] [SCOPUS Times Cited 4]


[6] T. Hazen, T. Burianek, J. Polifroni, S. Seneff, "Recognition confidence scoring for use in speech understanding systems," Computer Speech and Language, vol. 16, no. 1, pp. 49-67, 2002.
[CrossRef] [Web of Science Times Cited 65] [SCOPUS Times Cited 100]


[7] T. Baumann, M. Atterer, D. Schlangen, "Assessing and improving the performance of speech recognition for incremental systems," in Proc. Of Association for Computational Linguistics, pp. 380-388, 2009.
[CrossRef] [SCOPUS Times Cited 36]


[8] C. Clavel, G. Adda, Cailliau, M. Garnier-Rizet, A. Cavet, G. Chapuis, S. Courcinous, C. Danesi, A. Daquo, M. Deldossi, S. Guillemin-Lanne, M. Seizou, P. Suignard, "Spontaneous speech and opinion detection: mining call-centre transcripts," Language Resources and Evaluation, 2013.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 15]


[9] J. Vilaneau, J. Y. Antoine, "Deeper Spoken Language Understanding for Man-machine Dialogue on Broader Application Domains: A Logical Alternative to Concept Spotting," in Proc. of Workshop on Semantic Representation of Spoken Language, pp. 50-57, 2009.
[CrossRef]


[10] H. Lee, H. Kim, J. Seo, "Efficient Domain Action Classification using Neural Networks," Lecture Note in Computer Science, vol. 4233, pp. 150-158, 2006.
[CrossRef] [SCOPUS Times Cited 2]


[11] H. Kim, "A Dialogue-based NLIDB System in a Schedule Management Domain: About the Method to Find User's Intentions," in Proc. of conference on Current Trends in Theory and Practice of Computer Science, pp. 869-877, 2007.
[CrossRef] [SCOPUS Times Cited 7]


[12] D. Kim, H. Lee, C. Seon, H. Kim, and J. Seo, "Speakers' Intention Prediction Using Statistics of Multi-level Features in a Schedule Management Domain," in Proc. of Association for Computational Linguistics on Human Language Technologies, pp. 229-232, 2008.
[CrossRef] [SCOPUS Times Cited 2]


[13] H. Kim, C. Seon, J. Seo, "Review of Korean speech act classification: machine learning methods," Journal of Computing Science and Engineering, vol. 5, no 4, pp. 288-293, 2011.
[CrossRef]


[14] V. Vapnik, The Nature of Statistical Learning Theory. Springer Verlag, 1995.
[CrossRef]


[15] L. Bottou, C. Cortes, J. Denker, H. Drucker, I. Guyon, L. Jackel, Y. LeCun, U. Muller, E. Sackinger, P. Simard, and V. Vapnik, "Comparison of Classifier Methods: A Case Study in Handwritten Digit Recognition", in Proc. of International Conference on Pattern Recognition, vol. 2, pp. 77-82, 1994.
[CrossRef]


[16] S. Kang, H. Kim, J. Seo, "A Reliable Multidomain Model for Speech Act Classification," Pattern Recognition Letters, vol. 31, no 1, pp. 71-74, 2010.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 9]


[17] C. Seon, H. Kim, J. Seo, "Efficient Appointment Information Extraction from Messages in Mobile Devices with Limited Hardware Resources," Pattern Recognition Letters, vol. 32, no 2, pp. 127-133, 2011.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 4]


[18] R. Nallapati, "Discriminative Models for Information Retrieval," in Proc. of SIGIR, pp. 64-71, 2004.
[CrossRef] [SCOPUS Times Cited 226]


[19] K. Lee, M. Chung, "Morpheme-Based Modeling of Pronunciation Variation for Large Vocabulary Continuous Speech Recognition in Korean," IEICE Transaction on Information and Systems, vol. E90-D, no. 7, pp. 1063-1072, 2004.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 12]


[20] M. Lee, D. Han, "Ubiscript: A Script Language for Ubiquitous Environment," Journal of Computing Science and Engineering, vol. 5, no 2, pp. 141-149, 2011
[CrossRef]




References Weight

Web of Science® Citations for all references: 109 TCR
SCOPUS® Citations for all references: 434 TCR

Web of Science® Average Citations per reference: 5 ACR
SCOPUS® Average Citations per reference: 21 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-11-21 18:53 in 136 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy