2/2017 - 13 |
Three-Dimensional Spatial-Spectral Filtering Based Feature Extraction for Hyperspectral Image ClassificationAKYUREK, H. A. , KOCER, B. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (1,582 KB) | Citation | Downloads: 1,275 | Views: 3,698 |
Author keywords
adaptive algorithms, feature extraction, gaussian noise, hyperspectral imaging, image classification
References keywords
image(26), hyperspectral(24), sensing(22), remote(22), classification(22), geoscience(13), images(10), tgrs(9), analysis(9), preserving(7)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2017-05-31
Volume 17, Issue 2, Year 2017, On page(s): 95 - 102
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.02013
Web of Science Accession Number: 000405378100013
SCOPUS ID: 85020078642
Abstract
Hyperspectral pixels which have high spectral resolution are used to predict decomposition of material types on area of obtained image. Due to its multidimensional form, hyperspectral image classification is a challenging task. Hyperspectral images are also affected by radiometric noise. In order to improve the classification accuracy, many researchers are focusing on the improvement of filtering, feature extraction and classification methods. In the context of hyperspectral image classification, spatial information is as important as spectral information. In this study, a three-dimensional spatial-spectral filtering based feature extraction method is presented. It consists of three main steps. The first is a pre-processing step which include spatial-spectral information filtering in three-dimensional space. The second comprises extract functional features of filtered data. The last one is combining extracted features by serial feature fusion strategy and using to classify hyperspectral image pixels. Experiments were conducted on two popular public hyperspectral remote sensing image, 1%, 5%, 10% and 15% of samples of each classes used as training set, the remaining is used as test set. The proposed method compared with well-known methods. Experimental results show that the proposed method achieved outstanding performance than compared methods in hyperspectral image classification task. |
References | | | Cited By |
Web of Science® Times Cited: 0
View record in Web of Science® [View]
View Related Records® [View]
Updated today
SCOPUS® Times Cited: 1
View record in SCOPUS® [Free preview]
View citations in SCOPUS® [Free preview]
[1] A fuzzy rule based effective feature selection approach for augmented reality, Rajendra Thilahar, C., Sivaramakrishnan, R., Journal of Intelligent & Fuzzy Systems, ISSN 1064-1246, Issue 4, Volume 38, 2020.
Digital Object Identifier: 10.3233/JIFS-191674 [CrossRef]
Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.
Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.