Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 1.221
JCR 5-Year IF: 0.961
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: Aug 2021
Next issue: Nov 2021
Avg review time: 88 days


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


1,748,412 unique visits
Since November 1, 2009

Robots online now


SCImago Journal & Country Rank


Anycast DNS Hosting

 Volume 21 (2021)
     »   Issue 3 / 2021
     »   Issue 2 / 2021
     »   Issue 1 / 2021
 Volume 20 (2020)
     »   Issue 4 / 2020
     »   Issue 3 / 2020
     »   Issue 2 / 2020
     »   Issue 1 / 2020
 Volume 19 (2019)
     »   Issue 4 / 2019
     »   Issue 3 / 2019
     »   Issue 2 / 2019
     »   Issue 1 / 2019
 Volume 18 (2018)
     »   Issue 4 / 2018
     »   Issue 3 / 2018
     »   Issue 2 / 2018
     »   Issue 1 / 2018
 Volume 17 (2017)
     »   Issue 4 / 2017
     »   Issue 3 / 2017
     »   Issue 2 / 2017
     »   Issue 1 / 2017
  View all issues  


Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

Read More »


  3/2015 - 18


HiGIS: An Open Framework for High Performance Geographic Information System

XIONG, W. See more information about XIONG, W. on SCOPUS See more information about XIONG, W. on IEEExplore See more information about XIONG, W. on Web of Science, CHEN, L. See more information about CHEN, L. on SCOPUS See more information about CHEN, L. on SCOPUS See more information about CHEN, L. on Web of Science
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,702 KB) | Citation | Downloads: 548 | Views: 2,769

Author keywords
high performance computing, geographic information system, geocomputation, communicating sequential process

References keywords
parallel(10), computing(8), cloud(7), system(6), data(6), processing(5), geospatial(5), remote(4), performance(4), high(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2015-08-31
Volume 15, Issue 3, Year 2015, On page(s): 123 - 132
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.03018
Web of Science Accession Number: 000360171500018
SCOPUS ID: 84940739658

Quick view
Full text preview
/Big data/ era expose many challenges to geospatial data management, geocomputation and cartography. There is no exception in geographic information systems (GIS) community. Technologies and facilities of high performance computing (HPC) become more and more feasible to researchers, while mobile computing, ubiquitous computing, and cloud computing are emerging. But traditional GIS need to be improved to take advantages of all these evolutions. We proposed and implemented a GIS married with high performance computing, which is called HiGIS. The goal of HiGIS is to promote the performance of geocomputation by leveraging the power of HPC, and to build an open framework for geospatial data storing, processing, displaying and sharing. In this paper the architecture, data model and modules of the HiGIS system are introduced. A geocomputation scheduling engine based on communicating sequential process was designed to exploit spatial analysis and processing. Parallel I/O strategy using file view was proposed to improve the performance of geospatial raster data access. In order to support web-based online mapping, an interactive cartographic script was provided to represent a map. A demostration of locating house was used to manifest the characteristics of HiGIS. Parallel and concurrency performance experiments show the feasibility of this system.

References | Cited By  «-- Click to see who has cited this paper

[1] A. G. Aly and N. M. Labib, "Proposed Model of GIS-based Cloud Computing Architecture for Emergency System," Int. J. Comput. Sci., vol. 1, no. 4, pp. 17-28, 2013.

[2] J. de la Torre, "Organising geo-temporal data with CartoDB. an open source database on the cloud," In Proc. Biodiversity Informatics Horizons, Rome, Italy, Sept. 2013

[3] S. Wang, "CyberGIS: blueprint for integrated and scalable geospatial software ecosystems," Int. J. Geogr. Inf. Sci., vol. 27, no. 11, pp. 2119-2121, 2013.
[CrossRef] [Web of Science Times Cited 20] [SCOPUS Times Cited 22]

[4] I. H. Kim and M. H. Tsou, "Enabling Digital Earth simulation models using cloud computing or grid computing-two approaches supporting high-performance GIS simulation frameworks," Int. J. Digit. Earth, vol. 6, no. 4, pp. 383-403, 2013.
[CrossRef] [Web of Science Times Cited 19] [SCOPUS Times Cited 23]

[5] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz, "Hadoop gis: a high performance spatial data warehousing system over mapreduce," Proc. VLDB Endow., vol. 6, no. 11, pp. 1009-1020, 2013.
[CrossRef] [SCOPUS Times Cited 386]

[6] X. Guan, H. Wu, and L. Li, "A Parallel Framework for Processing Massive Spatial Data with a Split-and-Merge Paradigm," Trans. GIS, vol. 16, no. 6, pp. 829-843, 2012.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 10]

[7] W. Guo, X. Zhu, T. Hu, and L. Fan, "A Multi-granularity Parallel Model for Unified Remote Sensing Image Processing WebServices," Trans. GIS, vol. 16, no. 6, pp. 845-866, 2012.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 3]

[8] L. Liu, A. Yang, L. Chen, W. Xiong, Q. Wu, and N. Jing, "HiGIS - When GIS Meets HPC," In Proc. 12th Int. Conf. on GeoComputation, WuHan, 2013. [Online]. Available:

[9] J. Liu, A.X. Zhu, Y. Liu, T. Zhu, and C.Z. Qin, "A layered approach to parallel computing for spatially distributed hydrological modeling," Environ. Model. Softw., vol. 51, no. 0, pp. 221 - 227, 2014.
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 37]

[10] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe, "A Theory of Communicating Sequential Processes," J ACM, vol. 31, no. 3, pp. 560-599, Jun. 1984.
[CrossRef] [Web of Science Times Cited 557] [SCOPUS Times Cited 731]

[11] W. Guo, J.Y. Gong, W.S. Jiang, Y. Liu and G. She, "OpenRS-Cloud: A remote sensing image processing platform based on cloud computing environment," Sci. CHINA Technol. Sci., vol. 53, no. 1, pp. 221-230, 2010.
[CrossRef] [Web of Science Times Cited 33] [SCOPUS Times Cited 43]

[12] Q. Chen, L. Wang, and Z. Shang, "MRGIS: A MapReduce-Enabled High Performance Workflow System for GIS," in Proc. of the 2008 Fourth IEEE Int. Conf. on eScience, Washington, DC, USA, 2008, pp. 646-651.
[CrossRef] [SCOPUS Times Cited 41]

[13] Y. Ma, D. Liu and J. Li, "A new framework of cluster-based parallel processing system for high-performance geo-computing," In Geoscience and Remote Sensing Symposium, Cape Town, 2009, vol. 4, pp. IV49-IV52.
[CrossRef] [SCOPUS Times Cited 2]

[14] T. Yuan, Y. Tang, X. Wu, Y. Zhang, H. Zhu, J. Guo, and W. Qin, "Formalization and Verification of REST on HTTP Using CSP," Electron. Notes Theor. Comput. Sci., vol. 309, no. 0, pp. 75-93, 2014.
[CrossRef] [SCOPUS Times Cited 8]

[15] G. Staples, "TORQUE Resource Manager," in Proc. of the 2006 ACM/IEEE Conf. on Supercomputing, New York, NY, USA, 2006.
[CrossRef] [SCOPUS Times Cited 101]

[16] D. Jackson, Q. Snell, and M. Clement, "Core Algorithms of the Maui Scheduler," in Job Scheduling Strategies for Parallel Processing, vol. 2221, D. Feitelson and L. Rudolph, Eds. Springer Berlin Heidelberg, 2001, pp. 87-102.
[CrossRef] [SCOPUS Times Cited 222]

[17] S. Zhang, L. Chen, W. Xiong, "Research on performances of parallel programming models based on chip multi-processor," in Proc. 2011 Int. Conf. Computer Application and System Modeling, XiaMen, 2011, pp. 2688-2691.

[18] C. Yang, M. Goodchild, Q. Huang, D. Nebert, R. Raskin, Y. Xu, M. Bambacus, and D. Fay, "Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing?," Int. J. Digit. Earth, vol. 4, no. 4, pp. 305-329, 2011.
[CrossRef] [Web of Science Times Cited 67] [SCOPUS Times Cited 82]

[19] L. Ouyang, J. Huang, X. Wu, and B. Yu, "Parallel Access Optimization Technique for Geographic Raster Data," in Geo-Informatics in Resource Management and Sustainable Ecosystem, vol. 398, F. Bian, Y. Xie, X. Cui, and Y. Zeng, Eds. Springer Berlin Heidelberg, 2013, pp. 533-542.
[CrossRef] [SCOPUS Times Cited 3]

[20] C. Z. Qin, L. J. Zhan, and A. X. Zhu, "How to Apply the Geospatial Data Abstraction Library (GDAL) Properly to Parallel Geospatial Raster I/O?," Trans. GIS, vol. 18, no. 6, pp. 950-957, 2014.
[CrossRef] [Web of Science Times Cited 30] [SCOPUS Times Cited 32]

[21] Y. Zou, W. Xue, and S. Liu, "A case study of large-scale parallel I/O analysis and optimization for numerical weather prediction system," Future Gener. Comput. Syst., vol. 37, no. 0, pp. 378-389, 2014.
[CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 19]

[22] R. Thakur, W. Gropp, and E. Lusk, "Optimizing noncontiguous accesses in MPI-IO," Parallel Comput., vol. 28, no. 1, pp. 83 - 105, 2002.
[CrossRef] [Web of Science Times Cited 65] [SCOPUS Times Cited 87]

[23] C. Heipke, "Crowdsourcing geospatial data," ISPRS J. Photogramm. Remote Sens., vol. 65, no. 6, pp. 550-557, 2010.
[CrossRef] [Web of Science Times Cited 245] [SCOPUS Times Cited 303]

References Weight

Web of Science® Citations for all references: 1,094 TCR
SCOPUS® Citations for all references: 2,155 TCR

Web of Science® Average Citations per reference: 46 ACR
SCOPUS® Average Citations per reference: 90 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2021-10-13 09:32 in 136 seconds.

Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2021
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: