Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 1.221
JCR 5-Year IF: 0.961
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: Nov 2021
Next issue: Feb 2022
Avg review time: 88 days


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


1,820,811 unique visits
Since November 1, 2009

No robots online now

SCOPUS CiteScore

SCOPUS CiteScore


SCImago Journal & Country Rank


Anycast DNS Hosting

 Volume 21 (2021)
     »   Issue 4 / 2021
     »   Issue 3 / 2021
     »   Issue 2 / 2021
     »   Issue 1 / 2021
 Volume 20 (2020)
     »   Issue 4 / 2020
     »   Issue 3 / 2020
     »   Issue 2 / 2020
     »   Issue 1 / 2020
 Volume 19 (2019)
     »   Issue 4 / 2019
     »   Issue 3 / 2019
     »   Issue 2 / 2019
     »   Issue 1 / 2019
 Volume 18 (2018)
     »   Issue 4 / 2018
     »   Issue 3 / 2018
     »   Issue 2 / 2018
     »   Issue 1 / 2018
  View all issues  


Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

Read More »


  3/2018 - 3


Adaptive LSB Steganography Based on Chaos Theory and Random Distortion

TUTUNCU, K. See more information about TUTUNCU, K. on SCOPUS See more information about TUTUNCU, K. on IEEExplore See more information about TUTUNCU, K. on Web of Science, DEMIRCI, B. See more information about DEMIRCI, B. on SCOPUS See more information about DEMIRCI, B. on SCOPUS See more information about DEMIRCI, B. on Web of Science
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,291 KB) | Citation | Downloads: 936 | Views: 1,657

Author keywords
ciphers, chaos, data encapsulation, data security, digital images

References keywords
image(17), steganography(15), chaotic(11), hiding(10), steganographic(9), information(8), algorithm(8), communications(7), signal(5), security(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2018-08-31
Volume 18, Issue 3, Year 2018, On page(s): 15 - 22
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2018.03003
Web of Science Accession Number: 000442420900003
SCOPUS ID: 85052105181

Quick view
Full text preview
Image steganography is a technique to hide secret information in an image without leaving any apparent evidence of image alteration. Hiding capacity, perceptual transparency, robustness, and resistance against attack must be considered as characteristics of the image steganography algorithms. In this study, Improved Chaos Based Bit Embedding has been proposed as a new steganography algorithm. It is based on two basic principles. One of them is determining the bits in which the secret data will be embedded by logistic map and the other one is embedding the secret data into only one of the three color channels that is chosen randomly. It distorts the other remaining channels so that it is harder to obtain the text within the image by an unwanted person. The proposed algorithm has been tested on 10 sample images along with the four basic steganography algorithms: Least Significant Bit Embedding, Pseudo Random Least Significant Bit Embedding, EzStego, and F5. It has been seen that generating unpredictable indexes by the chaotic random number generators, and embedding the secret data into only one of the three channels (distorting remaining channels) increased resistance against attacks. Perceptual transparencies and capacity ratio of the proposed algorithm are compatible with the other four algorithms.

References | Cited By  «-- Click to see who has cited this paper

[1] A. Beimel, "Secret-Sharing Schemes: A Survey," in Coding and Cryptology, 2011, pp. 11-46.
[CrossRef] [SCOPUS Times Cited 320]

[2] A. Shamir, "How to Share a Secret," Commun. ACM, vol. 22, no. 11, pp. 612-613, Nov. 1979.
[CrossRef] [Web of Science Times Cited 6210] [SCOPUS Times Cited 8635]

[3] A. Cheddad, J. Condell, K. Curran, and P. Mc Kevitt, "Digital image steganography: Survey and analysis of current methods," Signal Processing, vol. 90, no. 3, pp. 727-752, Mar. 2010.
[CrossRef] [Web of Science Times Cited 731] [SCOPUS Times Cited 1089]

[4] C. Kurak and J. McHugh, "A cautionary note on image downgrading," in [1992] Proceedings Eighth Annual Computer Security Application Conference, 1992, pp. 153-159.
[CrossRef] [SCOPUS Times Cited 89]

[5] I. S. Moskowitz, G. E. Longdon, and L. Chang, "A new paradigm hidden in steganography," in Proceedings of the 2000 workshop on New security paradigms, 2001, pp. 41-50.

[6] T. Sharp, "An Implementation of Key-Based Digital Signal Steganography," in Information Hiding, 2001, pp. 13-26.
[CrossRef] [SCOPUS Times Cited 247]

[7] E. Kawaguchi and R. Eason, "Principle and applications of BPCS-Steganography," in Principle and applications of BPCS-Steganography, Boston,USA, 1998, vol. 3528, pp. 464-473.

[8] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, "Techniques for data hiding," IBM Systems Journal, vol. 35, no. 3.4, pp. 313-336, 1996.
[CrossRef] [Web of Science Times Cited 1293] [SCOPUS Times Cited 2078]

[9] I. S. Moskowitz and N. F. Johnson, "A detection study of an NRL steganographic method," NAVAL RESEARCH LAB WASHINGTON DC, 2002.

[10] M. Noto, "MP3Stego: Hiding text in MP3 files," Sans Institute, p. 5, 2001.

[11] N. F. Johnson and S. Katzenbeisser, "A survey of steganographic techniques," in Information hiding, 2000, pp. 43-78.

[12] L. Zhi, S. A. Fen, and Y. Y. Xian, "A LSB steganography detection algorithm," in Personal, Indoor and Mobile Radio Communications, 2003. PIMRC 2003. 14th IEEE Proceedings on, 2003, vol. 3, pp. 2780-2783.
[CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 25]

[13] Jessica Fridrich and Miroslav Goljan, "Digital image steganography using stochastic modulation," 2003, vol. 5020, pp. 5020-12.
[CrossRef] [Web of Science Times Cited 57] [SCOPUS Times Cited 99]

[14] R. O. El Safy, H. H. Zayed, and A. El Dessouki, "An adaptive steganographic technique based on integer wavelet transform," in 2009 International Conference on Networking and Media Convergence, 2009, pp. 111-117.
[CrossRef] [SCOPUS Times Cited 68]

[15] C.-C. Chang, T.-S. Chen, and L.-Z. Chung, "A steganographic method based upon JPEG and quantization table modification," Information Sciences, vol. 141, no. 1, pp. 123-138, Mar. 2002.
[CrossRef] [Web of Science Times Cited 200] [SCOPUS Times Cited 269]

[16] R. Chu, X. You, X. Kong, and X. Ba, "A DCT-based image steganographic method resisting statistical attacks," in Acoustics, Speech, and Signal Processing, 2004. Proceedings.(ICASSP'04). IEEE International Conference on, 2004, vol. 5, pp. V-953.

[17] M. Hussain and M. Hussain, "A survey of image steganography techniques," 2013.

[18] C.-K. Chan and L. M. Cheng, "Hiding data in images by simple LSB substitution," Pattern Recognition, vol. 37, no. 3, pp. 469-474, Mar. 2004.
[CrossRef] [Web of Science Times Cited 829] [SCOPUS Times Cited 1164]

[19] Y. K. Lee and L. H. Chen, "High capacity image steganographic model," IEE Proceedings - Vision, Image and Signal Processing, vol. 147, no. 3, pp. 288-294, Jun. 2000.
[CrossRef] [Web of Science Times Cited 196] [SCOPUS Times Cited 274]

[20] R.-Z. Wang, C.-F. Lin, and J.-C. Lin, "Image hiding by optimal LSB substitution and genetic algorithm," Pattern Recognition, vol. 34, no. 3, pp. 671-683, Mar. 2001.
[CrossRef] [Web of Science Times Cited 438] [SCOPUS Times Cited 573]

[21] S.-H. Liu, T.-H. Chen, H.-X. Yao, and W. Gao, "A variable depth LSB data hiding technique in images," in Machine Learning and Cybernetics, 2004. Proceedings of 2004 International Conference on, 2004, vol. 7, pp. 3990-3994.

[22] C. E. Shannon, "Communication theory of secrecy systems," The Bell System Technical Journal, vol. 28, no. 4, pp. 656-715, Oct. 1949.
[CrossRef] [SCOPUS Times Cited 5638]

[23] W. Wong, L. Lee, and K. Wong, "A Modified Chaotic Cryptographic Method," in Communications and Multimedia Security Issues of the New Century: IFIP TC6 / TC11 Fifth Joint Working Conference on Communications and Multimedia Security (CMS'01) May 21-22, 2001, Darmstadt, Germany, R. Steinmetz, J. Dittman, and M. Steinebach, Eds. Boston, MA: Springer US, 2001, pp. 123-126.

[24] A. Kanso and N. Smaoui, "Irregularly decimated chaotic map (s) for binary digits generations," International Journal of Bifurcation and Chaos, vol. 19, no. 04, pp. 1169-1183, 2009.
[CrossRef] [Web of Science Times Cited 19] [SCOPUS Times Cited 21]

[25] A. Kanso, H. Yahyaoui, and M. Almulla, "Keyed hash function based on a chaotic map," Information Sciences, vol. 186, no. 1, pp. 249-264, 2012.
[CrossRef] [Web of Science Times Cited 51] [SCOPUS Times Cited 58]

[26] A. Kanso, "Self-shrinking chaotic stream ciphers," Communications in nonlinear science and numerical simulation, vol. 16, no. 2, pp. 822-836, 2011.
[CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 34]

[27] X. Wu and Z.-H. Guan, "A novel digital watermark algorithm based on chaotic maps," Physics Letters A, vol. 365, no. 5-6, pp. 403-406, 2007.
[CrossRef] [Web of Science Times Cited 62] [SCOPUS Times Cited 87]

[28] S. Behnia, M. Teshnehlab, and P. Ayubi, "Multiple-watermarking scheme based on improved chaotic maps," Communications in Nonlinear Science and Numerical Simulation, vol. 15, no. 9, pp. 2469-2478, Sep. 2010.
[CrossRef] [Web of Science Times Cited 22] [SCOPUS Times Cited 30]

[29] M. Keyvanpour and F. Merrikh-Bayat, "An Effective chaos-based image watermarking scheme using fractal coding," Procedia Computer Science, vol. 3, pp. 89-95, Jan. 2011.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 14]

[30] L. Yu, Y. Zhao, R. Ni, and T. Li, "Improved Adaptive LSB Steganography Based on Chaos and Genetic Algorithm," EURASIP Journal on Advances in Signal Processing, vol. 2010, no. 1, p. 876946, Jun. 2010.
[CrossRef] [Web of Science Times Cited 35] [SCOPUS Times Cited 33]

[31] A. Kanso and H. S. Own, "Steganographic algorithm based on a chaotic map," Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 8, pp. 3287-3302, Aug. 2012.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 24]

[32] R. Roy, A. Sarkar, and S. Changder, "Chaos based Edge Adaptive Image Steganography," Procedia Technology, vol. 10, pp. 138-146, Jan. 2013.
[CrossRef] [Web of Science Times Cited 36]

[33] S. Ahadpour and M. Majidpour, "Image Steganography Using Discrete Cross-Coupled Chaotic Maps," 2013.

[34] M. Ghebleh and A. Kanso, "A robust chaotic algorithm for digital image steganography," Communications in Nonlinear Science and Numerical Simulation, vol. 19, no. 6, pp. 1898-1907, Jun. 2014.
[CrossRef] [Web of Science Times Cited 56] [SCOPUS Times Cited 78]

[35] M. Y. Valandar, P. Ayubi, and M. J. Barani, "A new transform domain steganography based on modified logistic chaotic map for color images," Journal of Information Security and Applications, vol. 34, pp. 142-151, Jun. 2017.
[CrossRef] [Web of Science Times Cited 40] [SCOPUS Times Cited 53]

[36] G. Sathishkumar, D. N. Sriraam, and others, "Image encryption based on diffusion and multiple chaotic maps," arXiv preprint arXiv:1103.3792, 2011.

[37] B. Y. Ryabko, V. S. Stognienko, and Y. I. Shokin, "A new test for randomness and its application to some cryptographic problems," Journal of Statistical Planning and Inference, vol. 123, no. 2, pp. 365-376, Jul. 2004.
[CrossRef] [Web of Science Times Cited 25] [SCOPUS Times Cited 28]

[38] A. Westfeld and A. Pfitzmann, "Attacks on Steganographic Systems," in Information Hiding, 2000, pp. 61-76.
[CrossRef] [SCOPUS Times Cited 370]

[39] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: from error visibility to structural similarity," IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.
[CrossRef] [Web of Science Times Cited 21372] [SCOPUS Times Cited 25723]

[40] A. Hore and D. Ziou, "Image quality metrics: PSNR vs. SSIM" in 20th International Conference on Pattern Recognition, ICPR 2010, Istanbul, Turkey, 2010, pp 2366-2369
[CrossRef] [SCOPUS Times Cited 1379]

[41] H. Gupta, R. Kumar and S. Changlani, "Enhanced data hiding capacity using LSB-based image steganography algorithm." International Journal of Emerging Technology and Advanced Engineering, 3(6), pp. 212-214, 2013

[42] N. P. Kamdar, D. G. Kamdar and D. N. Khandhar, "Performance evaluation of lsb based steganography for optimization of psnr and mse." Journal of information, knowledge and research in electronics and communication engineering, 2(2), pp. 505-509, 2013

[43] A. Westfeld, "F5-a steganographic algorithm", In International workshop on information hiding, vol 2137, Springer, Berlin, Heidelberg. pp. 289-302,
[CrossRef] [SCOPUS Times Cited 738]

References Weight

Web of Science® Citations for all references: 31,741 TCR
SCOPUS® Citations for all references: 49,238 TCR

Web of Science® Average Citations per reference: 721 ACR
SCOPUS® Average Citations per reference: 1,119 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2022-01-29 05:30 in 242 seconds.

Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2022
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: