Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 77 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,530,972 unique visits
1,006,361 downloads
Since November 1, 2009



Robots online now
bingbot
Googlebot
SemanticScholar


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Analysis of the Hybrid PSO-InC MPPT for Different Partial Shading Conditions, LEOPOLDINO, A. L. M., FREITAS, C. M., MONTEIRO, L. F. C.
Issue 2/2022

AbstractPlus


SAMPLE ARTICLES

On Proposing a Novel SDN-Caching Mechanism for Optimizing Distribution in ICN Networks, NASCIMENTO, E. B., MORENO, E. D., MACEDO, D. D. J., CARLOS ERPEN de BONA, L., RIGHI, R. R., MESSINA, F.
Issue 1/2023

AbstractPlus

Hybrid PSO-Incremental Conductance MPPT for Induction Motor based Solar Water Pumping System under Partial Shading Conditions, SHETTY, D., SABHAHIT, J. N., MUDLAPUR, A., HEBBAR, P.
Issue 1/2023

AbstractPlus

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus

Electro-Thermal Coupled Modeling of Induction Motor Using 2D Finite Element Method, BOUHERAOUA, M., ATIG, M., BOUSBAINE, A., BENAMROUCHE, N.
Issue 2/2021

AbstractPlus

Novel Power Smoothing Technique for a Hybrid AC-DC Microgrid Operating with Multiple Alternative Energy Sources, NEMPU, P. B., SABHAHIT, J. N., GAONKAR, D. N., RAO, V. S.
Issue 2/2021

AbstractPlus

A New Visual Cryptography Method Based on the Profile Hidden Markov Model, OZCAN, H., KAYA GULAGIZ, F., ALTUNCU, M. A., ILKIN, S., SAHIN, S.
Issue 1/2021

AbstractPlus




LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  2/2019 - 11

A New Single-Stage Three-Phase PFC for Four-Switch Three-Phase Inverter Fed IM Drives

ZAKY, M. See more information about ZAKY, M. on SCOPUS See more information about ZAKY, M. on IEEExplore See more information about ZAKY, M. on Web of Science, FETOUH, T. See more information about  FETOUH, T. on SCOPUS See more information about  FETOUH, T. on SCOPUS See more information about FETOUH, T. on Web of Science, AZAZI, H. See more information about AZAZI, H. on SCOPUS See more information about AZAZI, H. on SCOPUS See more information about AZAZI, H. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,648 KB) | Citation | Downloads: 1,004 | Views: 2,194

Author keywords
induction motors, inverters, converters, motor drives, machine vector control

References keywords
power(31), electronics(19), phase(18), motor(16), induction(12), drive(11), switch(10), factor(9), inverter(7), converter(7)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2019-05-31
Volume 19, Issue 2, Year 2019, On page(s): 83 - 90
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2019.02011
Web of Science Accession Number: 000475806300011
SCOPUS ID: 85066313554

Abstract
Quick view
Full text preview
This paper proposes a single-stage three-phase power factor correction (PFC) for four-switch inverter (FSI) fed induction motor (IM) drives. The PFC scheme uses a Cuk converter with only one switch, and consequently, it needs only one control signal. This attains low computation burden, simple control algorithm, and minimum cost. A new PFC control technique is proposed to guarantee sinusoidal supply currents with high power factor (PF) and low total harmonic distortion (THD). Moreover, the PFC technique regulates the DC bus voltage. Equivalent circuits of the Cuk converter operating in two modes are deduced, its mathematical modeling and analysis are performed. The proposed drive system is built using MATLAB/Simulink and operates in real-time using a prototype system which consists of a DSP-DS1104 digital control board and an IM. The efficacy of the Cuk converter is verified by extensive tests in various operating conditions.


References | Cited By  «-- Click to see who has cited this paper

[1] J. W. Finch, D. Giaouris, "Controlled AC Electrical Drives," IEEE Trans. on Industrial Electronics, vol. 55, no. 2, pp. 481-491, 2008.
[CrossRef] [Web of Science Times Cited 217]


[2] C. Jui-Y, L. Chang-Ming, "Development of a Switched-Reluctance Motor Drive with PFC Front End," IEEE Trans. on Energy Conversion, vol. 24, no. 1, pp. 30-42, 2009.
[CrossRef] [Web of Science Times Cited 36]


[3] I. Jun-ichi, O. Nobuhiro, "Square-Wave Operation for a Single-Phase-PFC Three-Phase Motor Drive System without a Reactor," IEEE Trans. on Industry Applications, vol. 47, no. 2, pp. 805-811, 2011.
[CrossRef] [Web of Science Times Cited 11]


[4] H. Z. Azazi, E. E. El-Kholy, S. A. Mahmoud, S. S. Shokralla, "Power Factor Correction using Predictive Current Control for Three Phase Induction Motor Drive System," Electric Power Components and Systems, vol. 42, no. 2, pp. 190-202, 2014.
[CrossRef] [Web of Science Times Cited 8]


[5] B. Singh, B.N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, D. P. Kothari, "A Review of Three-phase Improved Power Quality AC-DC Converters," IEEE Transactions on Industrial Electronics, vol. 51, no. 3, pp. 641-660, 2004.
[CrossRef] [Web of Science Times Cited 622]


[6] J. O. Estima, A. J. M. Cardoso, "A New Algorithm for Real-Time Multiple Open-Circuit Fault Diagnosis IN Voltage-Fed PWM Motor Drives by the Reference Current Errors," IEEE Trans. on Industrial Electronics, vol. 60, no. 8, pp. 3496-3505, 2013.
[CrossRef] [Web of Science Times Cited 299]


[7] S. Bhim, G. Bhuvaneswari, V. Garg, "Power-Quality Improvements in Vector-Controlled Induction Motor Drive Employing Pulse Multiplication in AC-DC Converters." IEEE Transactions on Power Delivery, vol. 21, no. 3, pp. 1578-1586, 2006.
[CrossRef] [Web of Science Times Cited 35]


[8] Compliance Testing to the IEC 1000-3-2 (EN 61000-3-2) and IEC 1000-3-3 (EN 61000- 2-3) Standards, Application Note 1273, Hewlett Packard Co., 1995.

[9] IEEE guide for harmonic control and reactive compensation of Static Power Converters, IEEE Standard 519-1992.
[CrossRef]


[10] G. Bhuvaneswari, B. Singh, S. Madishetti, "Three-Phase, Two-Switch PFC Rectifier Fed Three-Level VSI Based FOC of Induction Motor Drive" IEEE Fifth Power India Conference, 2012.
[CrossRef]


[11] A. R. Al-Ali, M. M. Negm, M. Kassas, "A PLC based power factor controller for a 3-phase induction motor," IEEE Industry Applications Conference, 2000.
[CrossRef]


[12] N. Zabihi, R. Gouws, "Improving Energy Consumption of an Induction Motor by Design of a Power Factor Correction System and Estimation of it's saving on a Large Scale," IEEE International Conference on Industrial and Commercial Use of Energy (ICUE), 2014.
[CrossRef]


[13] G. Bhuvaneswari, Bhim Singh, S. Madishetti, "Three-Phase, Two-Switch PFC Rectifier Fed Three-Level VSI Based FOC of Induction Motor Drive," IEEE Fifth Power India Conference, 2012.
[CrossRef]


[14] R. Krishnan, D. Diamantidis, S. Lee, "Impact of Power Factor Correction on Low Power Inverter-Fed Induction Motor Drive System," 26th Annual IEEE Power Electronics Specialists Conference, PESC'95, vol. 1, 1995.
[CrossRef]


[15] M. Gonzalez-Ramirez, C. A. Cruz-Villar, "Variable Speed Drive with PFC Front-End for Three-Phase Induction Motor" IET Electronics Letters, vol. 53, no. 16, pp. 1139-1140, 2017.
[CrossRef] [Web of Science Times Cited 3]


[16] U. Kamnarn, V. Chunkag, "Analysis and Design of a Modular Three-Phase AC-to-DC Converter Using CUK Rectifier Module With Nearly Unity Power Factor and Fast Dynamic Response," IEEE Transactions on Power Electronics, vol. 24, no. 8, pp. 2000-2012, 2009.
[CrossRef] [Web of Science Times Cited 68]


[17] H. C. Chiang, F. J. Lin, J. K. Chang, K. F. Chen, Y. L. Chen, K. C. Liu, "Control Method for Improving the Response of Single-Phase Continuous Conduction Mode Boost Power Factor Correction Converter," IET Power Electronics, vol. 9, no. 9, pp. 1792-1800, 2016.
[CrossRef] [Web of Science Times Cited 23]


[18] L. S. Yang, T. J. Liang, J. F. Chen, "Analysis and Design of a Novel Three-Phase AC-DC Buck-Boost Converter," IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 707 - 714, 2008.
[CrossRef] [Web of Science Times Cited 13]


[19] M. G. Umamaheswari, G. Uma, K. M. Vijayalakshmi, "Analysis and Design of Reduced-Order Sliding-Mode Controller for Three-Phase Power Factor Correction Using Cuk Rectifiers," IET Power Electronics, vol. 6, no. 5, pp. 935-945, 2013.
[CrossRef] [Web of Science Times Cited 31]


[20] S. Singh, B. Singh, "A Voltage-Controlled PFC Cuk Converter-Based PMBLDCM Drive for Air-Conditioners," IEEE Transactions on Industry Applications, vol. 48, no. 2, pp. 832-838, 2012.
[CrossRef] [Web of Science Times Cited 76]


[21] J. Klima, "Analytical Investigation of an Induction Motor Fed from Four-Switch VSI with a New Space Vector Modulation Strategy," IEEE Transactions on Power Electronics, vol. 21, no. 6, pp. 1618-1617, 2006.
[CrossRef] [Web of Science Times Cited 23]


[22] B. El Badsi, B. Badii, A. Masmoudi, "DTC Scheme for a Four-Switch Inverter-Fed Induction Motor Emulating the Six-Switch Inverter Operation" IEEE Transactions on Power Electronics, vol. 28, no. 7, pp. 3528-3538, 2013.
[CrossRef] [Web of Science Times Cited 92]


[23] D. Souvik, N. M. Shankar, K. S. Sanjib, K. P Sanjib, "Application of Four-Switch-Based Three-Phase Grid-Connected Inverter to Connect Renewable Energy Source to a Generalized Unbalanced Microgrid System," IEEE Transactions on Industrial Electronics,vol. 60, no. 3, pp. 1204-1215, 2013.
[CrossRef] [Web of Science Times Cited 91]


[24] S. Sajeev, M. Anna, "Novel Cost Effective Induction Motor Drive with Bridgeless PFC and Four Switch Inverter," International Conference on Emerging Trends in Communication Control Signal Processing and Computing Applications, 2013.
[CrossRef]


[25] J. Klima, "Analytical Investigation of an Induction Motor Fed from Four-Switch VSI With a New Space Vector Modulation Strategy," IEEE Transactions on Power Electronics, vol. 21, no. 6, pp. 1618-1617, 2006.
[CrossRef] [Web of Science Times Cited 23]


[26] M. N. Uddin, T. S. Radwan, M. A. Rahman, "Fuzzy-Logic-Controller-Based Cost-Effective Four-Switch Three-Phase Inverter-Fed IPM Synchronous Motor Drive System," IEEE Transactions on Power Electronics, vol. 42, no. 1, pp 21-30, 2006.
[CrossRef] [Web of Science Times Cited 80]


[27] M. S. Zaky, M. K. Metwaly, "A Performance Investigation of a Four-Switch Three-Phase Inverter-Fed IM Drives at Low Speeds Using Fuzzy Logic and PI Controllers," IEEE Transactions on Power Electronics, vol. 32, issue, 5, 2017.
[CrossRef] [Web of Science Times Cited 62]


[28] M. Narimani, G. Moschopoulos, "A New Single-Phase Single-Stage Three-Level Power Factor Correction AC-DC Converter," IEEE Transactions on Power Electronics, vol. 27, no. 6, pp. 2888- 2899, 2012.
[CrossRef] [Web of Science Times Cited 37]


[29] R.-Emil Precup, S. Preitl, P. Korondi, "Fuzzy controllers with maximum sensitivity for servosystems," IEEE Transactions on Industrial Electronics, vol. 54, no. 3, pp. 1298-1310, 2007.
[CrossRef] [Web of Science Times Cited 64]


[30] D. Martin, R. del Toro1, R. Haber, J. Dorronsoro, "Optimal tuning of a networked linear controller using a multi-objective genetic algorithm and its application to one complex electromechanical process," International Journal of Innovative Computing, Information and Control, vol. 5, no. 10 (B) pp. 3405-3414, 2009.

[31] T. Gabriel, I. Barbi, "Isolated three-phase high power factor rectifier based on the SEPIC converter operating in discontinuous conduction mode" IEEE Transactions on Power Electronics, vol. 28, no.11, pp 4962-4969, 2013.
[CrossRef] [Web of Science Times Cited 71]


[32] G. Bhuvaneswari, B. Singh, S. Singh, "Three-phase single stage medium power supply using Cuk converter," Power Electronics (IICPE), 2012 IEEE 5th India International Conference on. IEEE, 2012.
[CrossRef]




References Weight

Web of Science® Citations for all references: 1,985 TCR
SCOPUS® Citations for all references: 0

Web of Science® Average Citations per reference: 60 ACR
SCOPUS® Average Citations per reference: 0

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-04-15 09:29 in 170 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy