Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.825
JCR 5-Year IF: 0.752
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: Aug 2022
Next issue: Nov 2022
Avg review time: 74 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,976,035 unique visits
789,686 downloads
Since November 1, 2009



Robots online now
bingbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 22 (2022)
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
  View all issues  








LATEST NEWS

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

Read More »


    
 

  2/2020 - 8

Performance Analysis of Tree Seed Algorithm for Small Dimension Optimization Functions

BESKIRLI, M. See more information about BESKIRLI, M. on SCOPUS See more information about BESKIRLI, M. on IEEExplore See more information about BESKIRLI, M. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,365 KB) | Citation | Downloads: 566 | Views: 1,132

Author keywords
benchmark testing, algorithms, optimization, heuristic algorithms, optimization methods

References keywords
algorithm(22), optimization(17), tree(13), seed(13), systems(9), problems(5), improved(5), kiran(4), constrained(4), chen(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2020-05-31
Volume 20, Issue 2, Year 2020, On page(s): 65 - 72
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2020.02008
Web of Science Accession Number: 000537943500008
SCOPUS ID: 85087439628

Abstract
Quick view
Full text preview
Tree-Seed Algorithm (TSA) simulates the growth of trees and seeds on a land. TSA is a method proposed to solve continuous optimization problems. Trees and seeds indicate possible solutions in the search space for optimization problems. Trees are planted in the ground at the beginning of the search and each tree produces several seeds during iterations. While the trees were selected randomly during seed formation, the tournament selection method was used and also hybridized by adding the C parameter, which is the acceleration coefficient calculated according to the size of the problem. In this study, continuous optimization problem has been solved by the hybrid method. First, the performance analyses of the five best known numerical benchmark functions have been done, in both TSA and hybrid method TSA with 2, 3, 4 and 5 dimensions, and 10-50 population numbers. After that, well-known algorithms in the literature like Particle Swarm Optimization (PSO), TSA, Artificial Bee Colony (ABC), Harmony Search (HS), as well as hybrid method TSA (HTSA) have been applied to twenty-four numerical benchmark functions and the performance analyses of algorithms have been done. Hopeful and comparable conclusions based on solution quality and robustness can be obtained with the hybrid method.


References | Cited By  «-- Click to see who has cited this paper

[1] A. Beskirli, M. Beskirli, H. Hakli and H. Uguz, "Comparing Energy Demand Estimation Using Artificial Algae Algorithm: The Case of Turkey," Journal of Clean Energy Technologies, vol. 6, no. 4, pp. 349-352, 2018,
[CrossRef]


[2] J. Kennedy and R. Eberhart, "Particle swarm optimization (PSO)," in Proc. IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942-1948, 1995,
[CrossRef] [Web of Science Times Cited 28258]


[3] M. Dorigo, V. Maniezzo, and A. Colorni, "Ant system: optimization by a colony of cooperating agents," IEEE Transactions on Systems, man, and cybernetics, Part B: Cybernetics, vol. 26, no. 1, pp. 29-41, 1996.
[CrossRef] [Web of Science Times Cited 6766] [SCOPUS Times Cited 9232]


[4] D. Karaboga and B. Basturk, "Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems," in International fuzzy systems association world congress, 2007, pp. 789-798: Springer.
[CrossRef] [Web of Science Times Cited 735] [SCOPUS Times Cited 992]


[5] Z. W. Geem, J. H. Kim, and G. V. Loganathan, "A new heuristic optimization algorithm: harmony search," Simulation, vol. 76, no. 2, pp. 60-68, 2001,
[CrossRef] [Web of Science Times Cited 3658] [SCOPUS Times Cited 4627]


[6] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, "GSA: a gravitational search algorithm," Information sciences, vol. 179, no. 13, pp. 2232-2248, 2009.
[CrossRef] [Web of Science Times Cited 3767] [SCOPUS Times Cited 4606]


[7] S. Zhao, L. Gao, J. Tu, and D. Yu, " Zhao, S., Gao, L., Tu, J., and Yu, D. (2020). A Novel Modified Tree-Seed Algorithm for High-Dimensional Optimization Problems," Chinese Journal of Electronics, vol. 29, no. 2, pp. 337-343, 2020.
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 6]


[8] M. S. Kiran, "TSA: Tree-seed algorithm for continuous optimization," Expert Systems with Applications, vol. 42, no. 19, pp. 6686-6698, 2015.
[CrossRef] [Web of Science Times Cited 142] [SCOPUS Times Cited 169]


[9] S. Gupta and K. Deep, "Improved sine cosine algorithm with crossover scheme for global optimization," Knowledge-Based Systems, vol. 165, pp. 374-406, 2019.
[CrossRef] [Web of Science Times Cited 95] [SCOPUS Times Cited 109]


[10] S. Gupta, K. Deep, A. A. Heidari, H. Moayedi, and H. Chen, "Harmonized salp chain-built optimization," Engineering with Computers, 2019/10/16 2019.
[CrossRef] [Web of Science Times Cited 49] [SCOPUS Times Cited 37]


[11] S. Gupta and K. Deep, "A hybrid self-adaptive sine cosine algorithm with opposition based learning," Expert Systems with Applications, vol. 119, pp. 210-230, 2019.
[CrossRef] [Web of Science Times Cited 126] [SCOPUS Times Cited 138]


[12] W. Chen, M. Cai, X. Tan, and B. Wei, " Chen, W., Cai, M., Tan, X., & Wei, B. (2019). Parameter Identification and State-of-Charge Estimation for Li-Ion Batteries Using an Improved Tree Seed Algorithm," IEICE TRANSACTIONS on Information and Systems, vol. 102, no. 8, pp. 1489-1497, 2019,
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 7]


[13] X. Zhang and W. Zhu, " Disruption Management for Vehicle Routing Problem Based on Consumer Value and Improved Tree-Seed Algorithm," IEEE Access, vol. 7, pp. 122019-122027, 2019,
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 3]


[14] M. S. Kiran, "An implementation of tree-seed algorithm (TSA) for constrained optimization," in Intelligent and Evolutionary Systems: Springer, 2016, pp. 189-197.
[CrossRef] [Web of Science Times Cited 22]


[15] P. S. Rao, D. Vasumathi and K. Suresh, " The Adaptive Strategies Improving Web Personalization Using the Tree Seed Algorithm," In Cognitive Science and Artificial Intelligence, pp. 23-29, 2019.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 2]


[16] J. Zhou, Y. Zheng, Y. Xu, H. Liu, and D. Chen, "A heuristic TS fuzzy model for the pumped-storage generator-motor using variable-length tree-seed algorithm-based competitive agglomeration," Energies, vol. 11, no. 4, p. 944, 2018.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 14]


[17] M. Aslan, M. Beskirli, H. Kodaz, and M. S. Kiran, "An improved tree seed algorithm for optimization problems," Int J Mach Learn Comput, vol. 8, no. 1, pp. 20-25, 2018.
[CrossRef] [SCOPUS Times Cited 18]


[18] A. Babalik, A. C. Cinar, and M. S. Kiran, "A modification of tree-seed algorithm using Deb's rules for constrained optimization," Applied Soft Computing, vol. 63, pp. 289-305, 2018.
[CrossRef] [Web of Science Times Cited 44] [SCOPUS Times Cited 55]


[19] V. Muneeswaran and M. P. Rajasekaran, "Beltrami-regularized denoising filter based on tree seed optimization algorithm: an ultrasound image application," in International Conference on Information and Communication Technology for Intelligent Systems, 2017, pp. 449-457: Springer.
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 7]


[20] A. A. El-Fergany and H. M. Hasanien, "Tree-seed algorithm for solving optimal power flow problem in large-scale power systems incorporating validations and comparisons," Applied Soft Computing, vol. 64, pp. 307-316, 2018.
[CrossRef] [Web of Science Times Cited 58] [SCOPUS Times Cited 67]


[21] A. Beskirli, D. Ozdemir, and H. Temurtas, "A comparison of modified tree-seed algorithm for high-dimensional numerical functions," Neural Computing and Applications, pp. 1-35, 2019.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 8]


[22] H. Kilic and U. Yuzgec, "Tournament selection based antlion optimization algorithm for solving quadratic assignment problem," Engineering Science and Technology, vol. 22, no. 2, pp. 673-691, 2019.
[CrossRef] [Web of Science Times Cited 32] [SCOPUS Times Cited 34]


[23] H. Kilic and U. Yuzgec, "Improved antlion optimization algorithm via tournament selection," in 2017 9th International Conference on Computational Intelligence and Communication Networks (CICN), 2017, pp. 200-205: IEEE.
[CrossRef] [Web of Science Times Cited 21] [SCOPUS Times Cited 28]


[24] J. Jiang, M. Xu, X. Meng, and K. Li, " STSA: A sine Tree-Seed Algorithm for complex continuous optimization problems," Physica A: Statistical Mechanics and its Applications, vol. 537, no. 1, 2020.
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 24]


[25] X. Wang and X. Yan, "Global best harmony search algorithm with control parameters co-evolution based on PSO and its application to constrained optimal problems," Applied Mathematics and Computation, vol. 219, no. 19, pp. 10059-10072, 2013.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 11]


[26] X. Hu, "Particle swarm optimization tutorial," swarmintelligence. [Online] Available: Temporary on-line reference link removed - see the PDF document (cit. on p. 3 3), 2007.



References Weight

Web of Science® Citations for all references: 43,838 TCR
SCOPUS® Citations for all references: 20,194 TCR

Web of Science® Average Citations per reference: 1,624 ACR
SCOPUS® Average Citations per reference: 748 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2022-10-04 20:57 in 152 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2022
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: