3/2024 - 4 |
MINI Logic 1-Bit Adder: A Comparison with Hybrid NMOS-Memristor-Logic Styles Using Ta2O5/Al2O3 Based RRAM DeviceNITHYA, N. , PARAMASIVAM, K. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (4,100 KB) | Citation | Downloads: 341 | Views: 420 |
Author keywords
adder, CMOS, logic circuits, memristor, thin film devices
References keywords
logic(20), memristor(14), memory(10), cmos(9), circuits(9), systems(7), full(6), design(6), adder(6), electronics(5)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2024-08-31
Volume 24, Issue 3, Year 2024, On page(s): 33 - 44
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2024.03004
Web of Science Accession Number: 001306111400004
SCOPUS ID: 85203017771
Abstract
This study addresses the demand for more efficient logic circuits by focusing on reducing area, power consumption, and delay. As conventional CMOS technology faces scaling and efficiency limitations, integrating emerging memory technologies like Resistive Random Access Memory (RRAM), also known as memristor, offers a promising solution. By replacing conventional PMOS transistors with memristors in CMOS logic, the study leverages the high-off resistance and low-voltage operation of RRAM devices to develop more compact and energy-efficient circuits. The proposed RRAM device is a Metal-Insulator-Metal structure fabricated with Platinum electrodes, Aluminum Oxide and Tantalum Pentoxide insulator layers. It operates with set and reset voltages of 1 V, and its current-voltage characteristics were theoretically modeled using the VTEAM model. A Memristor-based Imply and N-Imply(MINI) logic approach is introduced for XNOR, XOR and 2X1 Multiplexer designs and compared with three other hybrid NMOS-Memristor logics. Implementing 36 different 1-bit adder circuits in the Cadence Virtuoso 45 nm technology, the study evaluates area efficiency, power consumption, and delay. Results show that the memristor-based MINI logic designs are more area and power-efficient than traditional CMOS-based full adders and various optimized CMOS and memristor-based logics. This research underscores the potential of the proposed RRAM device integration in advanced hybrid logic design. |
References | | | Cited By |
Web of Science® Times Cited: 0
View record in Web of Science® [View]
View Related Records® [View]
Updated today
SCOPUS® Times Cited: 0
View record in SCOPUS® [Free preview]
There are no citing papers in the CrossRef Cited-by Linking system.
Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.
Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.