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Abstract—This paper presents an accurate modeling method 
that is applied to a single-sided outer-rotor transverse flux 
permanent magnet generator. The inductances and the induced 
electromotive force for a typical generator are calculated using 
the magnetostatic three-dimensional finite element method. A 
new method is then proposed that reveals the behavior of the 
generator under any load. Finally, torque calculations are 
carried out using three dimensional finite element analyses. It 
is shown that although in the single-phase generator the 
cogging torque is very high, this can be improved significantly 
by combining three single-phase modules into a three-phase 
generator. 

Index Terms—equivalent circuit, finite element method, 
generators, permanent magnets.

I. INTRODUCTION

Transverse flux machines can offer higher power and 
torque density than conventional radial flux machines [1]-
[5]. The torque in a transverse flux machine is nearly 
proportional to the number of poles [2]. The capability of 
having large pole numbers, combined with the torque from a 
transverse flux permanent magnet generator (TFPMG) being 
almost proportional to the number of poles, makes TFPMGs 
particularly suitable for gearless wind turbines [6], [7].

The flux path in a TFPMG has a three dimensional (3D) 
nature. Accurate modeling of a TFPMG therefore requires 
three-dimensional finite element analysis (3D FEA) [8]. The 
cogging torque of a single phase TFPMG is typically very 
high, but this is usually improved significantly by 
combining three single phase modules into a three phase 
machine [9]-[11].

In this paper, the equivalent circuit parameters of a 
designed TFPMG are calculated using 3D FEA. The chosen 
TFPMG topology was proposed by Gieras in [12]. The 
calculated parameters are used to evaluate the TFPMG’s 
performance characteristics. A new method is then proposed 
to evaluate the behavior of the generator under any load. In 
the proposed method two non-linear equations are solved 
iteratively. The proposed method is used to investigate the 
output power, output voltage, efficiency and load angle as 
functions of a varying RL load. These results can be used to 
optimally utilization of the generator for any given load. 
Finally, the cogging torque is calculated using 3D FEA. It is 
shown that the cogging torque is very high in a single phase  
TFPMG, but that this can be significantly reduced by 
combining three single phase modules into a three phase 
machine. 

II. TFPMG CONSTRUCTION

Fig. 1 shows a 3D view of a single-sided outer-rotor 
TFPMG. Fig. 1, only shows a single phase of the generator.

A three-phase generator can be constructed from three
identical single phase modules (Fig. 1) shifted in space by 
120 electrical degrees [12], [13]. Nd-Fe-B rare-earth 
permanent magnets create the generator excitation. Both the 
stator and the rotor cores are made up from thin steel 
laminations. The rotor consists of surface mounted
permanent magnets (PMs) in two rows. These PMs create 
homopolar fluxes in stator cores at any time, meaning that 
the polarity of all the stator cores is identical at any given 
time. The rotation of the rotor causes a change in the 
armature winding flux linkage, which induces the armature 
electromotive force (EMF).

Every phase of the generator has one armature winding 
which is located between the stator poles and consists of a 
simple ring-shaped coil. In the TFPMG, the number of PMs 
in one row is twice the number of stator cores. 

Figure 1. 3D view of a single-sided  outer-rotor TFPMG. (1) Rotor core. 
(2) PM. (3) Stator I-shaped core. (4) Stator U-shaped core. (5) Armature 
winding.

Let p denote the number of pole pairs (which is equal to half 

of the number of PMs belonging to one row or the number 
of stator cores) and  rpsn stands for the rotational speed, 

then the frequency of output voltage is determined exactly 
as it would be for a synchronous machine, i.e.,
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pnf                                                                                 (1)

III. TFPMG MODEL

A per phase equivalent circuit diagram of the TFPMG is 
shown in Fig. 2. In general sdL  and sqL  represent the 

armature winding d- and q-axis inductances, respectively. 
The d- and q-axis reactances in Fig. 2, sdX  and sqX , are 

therefore obtained as below
 sqsqsdsd LXLX  ;                                                 (2)

where f 2  is the angular frequency. In Fig. 2, aI

, aR , outV , LR , and LX  are the current of the armature 

winding; the armature winding resistance, the output voltage 
of the armature winding; the load resistance of the armature 
winding; and the load reactance of the armature winding, 
respectively. The induced EMF of the armature winding due 
to the fundamental flux linkage of PMs in the air-gap is 
represented by fE . The phasor diagram of one module of 

the TFPMG loaded with the resistance ( LR ) and reactance 

( LX ) is shown in Fig. 3.

The associated output voltage projections on the d- and q-
axis are
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Where adI  and aqI  are the projections of the armature 

current aI  on the d- and q-axis, respectively. The load angle 

 is the angle between the output voltage outV  and EMF 

fE . The output power of one module (phase) is

cosaoutout IVP                                                                (4)

where  is the phase angle between the armature current 

and the output voltage. In (4), cosaI is the projection of 

aI  on outV . Using Fig. 3 this becomes

 cossincos aqada III                                               (5)

Combining (3), (4) and (5) leads to

  2
aasqsdaqadaqfout IRXXIIIEP                             (6)

The internal electromagnetic power of one module of the 
generator, elmP , is the sum of the stator winding losses, 

defined by 2
aalw IRP  , the stator core losses, defined by

lFeP , and the output power, outP .  
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                                 (7)

The stator core losses can be calculated if the amplitude 
and the frequency of the time varying magnetic flux density 
in the stator core are known. The efficiency is
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Figure 2. Per phase equivalent circuit diagram of the TFPMG.

Figure 3. Phasor diagrams of one module of the TFPMG loaded with an 
RL load.

where rotP  and strP  are rotational losses and stray losses, 

respectively. The power factor, PF , is an important figure 
of merit of an electrical machine. The value of PF
determines the size of control unit and thus the cost of the 
entire system. The PF is defined as 

out

aqaf

V

IRE
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
                                                                (9)

when the armature current is chosen to be in phase with the 

EMF, i.e. armature current is in the q-axis direction only [9].
If in Fig. 3, outV  is considered as the reference vector, aI

and its projections on the d- and q-axis as well as fE

become
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Applying Kirchhoff's voltage law to Fig. 2 yields

adsdaqsqaaout

f
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                       (11)

Combining (10) and (11) while separating into real and 
imaginary parts gives the two non-linear equations below
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The generator behavior under any arbitrary RL load (or 
variation of aI and  ) can be obtained by first finding the 

load angle,  , from (12) and then finding the output voltage 
from (13). Equation (12) is a non-linear equation and must 
be solved iteratively [14]. After obtaining  , the output 
voltage, outV  can be obtained from (13). Knowing   and 

outV , it is possible to calculate the generator characteristic 

performance under any RL load.

IV. CALCULATION OF THE EQUIVALENT CIRCUIT 

PARAMETERS USING 3D MAGNETOSTATIC FEA

The geometric dimensions used for this TFPMG are those 
given in [12].

A. Inductance Calculation

Synchronous inductances are calculated using the 
modified incremental energy method [15]. This method 
consists of the following steps: (1) for a given rotor position 

e (rotor electrical angle position), conduct a non-linear 

field analysis considering the saturation due to the PMs to 
find the operating point of the machine, and save the 
incremental permeability in each element; (2) Set the 
remanence of the PMs to be zero, and conduct a linear field 
analysis with the saved permeabilities with stator current 
perturbation, i.e. assigning winding current i ; (3) 
Calculate the magnetic co-energy for the current excitation; 
and (4) Calculate the incremental inductances by:

   
 2

,2

i

iW
L ec

e






                                                          (14)

where i is the nominal current of the armature winding, 

e is electrical angle position, and cW  is coenergy. Results 

of the inductance calculation are given in Table I, where it 
can be seen that this machine is non-salient.

TABLE I. RESULTS OF INDUCTANCE CALCULATION

Lsd (H) 772×2.9946×10-6

Lsq (H) 772×2.9877×10-6

B. EMF Calculation

Fig. 4 and Fig.5 illustrate the magnetic flux density in the 

stator and rotor cores established by the PMs at 0e

(maximum excitation) and 90e , respectively. In Fig. 6, 

the no-load flux linkage per turn versus electrical angle is 
shown. In order to obtain every point of Fig. 6, a 3D 
magnetostatic FEA is performed.  

Fourier analysis of the graph shown in Fig. 6 gives: a 

fundamental of Wbf
4

1 1096.1  and a total harmonic 

distortion of %4.9THD . 1f is the fundamental harmonic

Figure 4. The magnetic flux density in the stator and rotor cores at θe=00.

Figure 5.  The magnetic flux density in the stator and rotor cores at 
θe=900.
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Figure 6.  No-load flux linkage per turn versus electrical angle.

of the no-load flux linkage per turn. When the generator is 
rotated at the speed  Secradm , the rms value of the 

induced EMF of the armature winding is 

2

1
2

fm
f

Np
E





                                                          (15)

where N  is the turn number of the armature winding. In the 
studied TFPMG 18p  and 77N [12]. The generator is 

rotated with the fixed speed 594 rpm. Consequently, 

V215
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C. Core Losses Estimation
The rotation of the rotor causes a varying magnetic flux 

density in the stator cores (both the U-shaped and the I-
shaped cores). Fig. 4 and Fig. 5 demonstrate magnetic flux 
does not change in rotor cores due to rotor rotation. 
Therefore core losses only exist in the stator cores. In order 
to calculate stator core losses, magnetic flux density in stator 

cores at 0e  (maximum excitation) should be calculated. 

After the 3D magnetostatic FEA (Fig. 4), the magnetic flux 
density in each node of the meshed area, shown in Fig. 7, is 
derived. Fig. 8 and Fig. 9 illustrate the magnetic flux density 
in the U-shaped and the I-shaped stator cores, respectively, 
for the meshed areas shown in Fig.7. The average value of 

the maximum flux density, mB , is the average of the surface 

nodes which are shown in Fig. 8 and Fig. 9. Having mB and 

its variation in frequency determined, it is possible to 

calculate the core losses using the Steinmetz method. mB  in 

the U-shaped and the I-shaped stator cores as well as the 
corresponding specific core losses, Fep , in (W/kg) at the 

operation frequency, are given in Table II. The operational 
frequency is   Hzpnf 2.1781860594  . 

The stator core losses of one single phase module are
 IFeIUFeUlFe mpmpP                                    (16)

where Um , Im , FeUp  and FeIp  are total U-shaped core 

mass, the total I-shaped core mass, and the specific core 
losses of U-shaped cores and specific core losses of I-shaped 
cores, respectively. The calculated total iron losses for this 
machine were WPlFe 26.84 . PMs losses are neglected.

V. PERFORMANCE ANALYSIS OF THE TFPMG

A. Power Factor and Power Density

In order to compare the power factor of different 
machines it is common to assume the current is in phase 
with the EMF ( 0adI ) the output voltage, outV  is

   22
aqsqaqafout IXIREV                                    (17)

Power density of a single phase module is the ratio of the 
module’s output power to the module’s active material 
(PMs+ stator and rotor cores+ copper) mass. aR , nominal 

aqI  and mass of active materials are given in [12]. The 

calculated power factor ( PF ) and power density are given 
in Table III. These results are in good agreement with 
experimental results which are given in [12].

Figure 7. Meshed areas in the U-shaped and I-shaped stator cores.


Figure 8.  The magnetic flux density in the meshed area of the U-shaped 
stator core.

Figure 9. The magnetic flux density in the meshed area of the I-shaped 
stator core.
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TABLE II. SPECIFIC STATOR CORE LOSSES AT THE OPERATION 

FREQUENCY

)(TBm ∆pFe (W/Kg)

U-shaped Core 1.176 19.351
I-shaped Core 1.212 21.495

TABLE III. CALCULATED POWER FACTOR AND POWER DENSITY

Calculation Experiment [12] 
Power Factor 0.64 0.57
Power Density (kW/Kg) 0.33 0.3

B. TFPMG Behavior Under RL Load

Using the described method at the end of section II, the 
behavior of the TFPMG is investigated for any RL load. The 
rotational losses and the stray losses are estimated to about 
66W and 43W, respectively [13]. Fig. 10, Fig. 11, Fig. 12 
and Fig. 13 illustrate the variation of load angle, output 
voltage, per phase output power, and efficiency versus RL
load current and phase angle, respectively. These figures are 
very useful for optimal utilization of the TFPMG in different 
applications. For example, the maximum output power of 
the TFPMG can be found from Fig. 12 and the maximum 
efficiency can be found from Fig. 13. The conditions for 
maximum output power are found using Fig. 12 and 
displayed in Table IV. 

Figure 10. Variation of  versus RL load current.

Figure 11. Variation of Vout versus RL load current.

Figure 12. Variation of Pout versus RL load current.

Figure 13. Variation of efficiency versus RL load current.

TABLE IV. TFPMG OPERATIONAL INFORMATION FOR DELIVERING 

MAXIMUM OUTPUT POWER UNDER AN RL LOAD

 AIa 7.5

cos 1

 kWPout 1.13

 % 83.24

 reedeg 43.82

 VVout 150.48

VI. COGGING TORQUE

The cogging torque of a single phase module versus 
electrical angle is shown in Fig. 14. The peak cogging 
torque of one module is very high compared with the 
average torque of the one module TFPMG (44.8Nm). The 
cogging torque is so high that the instantaneous torque 
becomes negative for the electrical angle intervals: 

 2614  e and  206194  e . This can be seen in 

Fig. 14, where the negative cogging torque is shown to be 
higher than the average torque of 44.8Nm, in the electrical 

angle intervals:  2614  e and  206194  e . 

Constructing a single phase TFPMG of this type would 
therefore not be wise. 

Fig. 15 illustrates the three phase cogging torque variation 
versus electrical angle. The three-phase cogging torque is 
obtained by adding three times the cogging torque of a 
single phase module whilst taking phase shift between them 
into account [9]. Fig 15 shows that the peak cogging torque 
of a three phase TFPMG is significantly reduced compared 
with the single phase module TFPMG. The peak cogging 
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torque of a single phase module was 121.5% of the average 
torque (54.45Nm compared to an average of 44.8Nm). A 
single phase TFPMG of this type would therefore be highly 
impractical. The peak cogging torque of a three phase 
machine was 28.6% of the average torque (38.44Nm 
compared to an average of 134.4Nm). This is still a very 
high cogging torque, which would result in significant 
vibrations and noise. Although the cogging torque was not 
reported in [12], it was still admitted that the cogging torque 
was too high and resulted in noise and vibrations.
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Figure 14. One module cogging torque versus electrial angle
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Figure 15. Three phase cogging torque versus elecrical angle

VII. CONCLUSION

This paper presents an accurate modeling method applied 
to a typical TFPMG, with the aid of 3D magnetostatic FEA. 
Inductances, induced EMF, and the core losses are 
calculated using 3D FEA. A new method for investigating 
the behavior of the TFPMG under any RL load is presented. 
The cogging torque analysis shows this type of generator 
requires a minimum of three phases but would benefit 
further if a higher number of phases were employed. 
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