
Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

 49

1Abstract—It is often suggested that the approach to IPv6
transition is dual-stack deployment; however, it is not feasible
in certain environments. As Network Address Translation --
Protocol Translation (NAT-PT) has been deprecated, stateful
NAT64 and DNS64 RFCs have been published, supporting
only IPv6-to-IPv4 translation scenario. Now the question of
usability in the real world arises. In this paper, we
systematically test a number of widely used application-layer
network protocols to find out how well they traverse Ecdysis,
the first open source stateful NAT64 and DNS64
implementation. We practically evaluated 18 popular
protocols, among them HTTP, RDP, MSNP, and IMAP, and
discuss the shortcomings of such translations that might not be
apparent at first sight.

Index Terms—Network address translation, IP networks,
Next-generation networking, Domain Name System, Protocols

I. INTRODUCTION AND RELATED WORK

After the IPv6 protocol [1] was adopted as the new-
generation Internet protocol, researchers started to
investigate different approaches to transition from IPv4 to
IPv6 protocol [2]-[4]. These approaches are called transition
mechanisms, and they can be roughly categorized into three
groups: tunneling, translation, and dual-stack. The three are
reviewed in [5].

Tunneling is most often used when two isolated IPv6-
enabled networks or hosts communicate through an IPv4-
only network. The tunnel endpoints perform encapsulation
and decapsulation of IPv6 datagrams into IPv4 datagrams as
their payload. The IPv6 header remains intact, but a new
IPv4 header is formed and used on the way through the IPv4
network. On exiting the tunnel, IPv6 datagrams are
decapsulated again. Of course, IPv4 communication is also
possible through an IPv6 tunnel.

In the dual stack scenario, the network nodes implement
both protocol stacks, IPv4 and IPv6. Dual stack results in an
unnecessary highly complex network backbone and end
systems. In this scenario, end systems may run IPv6 and
IPv4 applications, and servers may receive connections from
IPv4-only as well as IPv6-only hosts. The situation becomes
complicated when communication is requested between
IPv4-only and IPv6-only entities. Translation of network
protocols and IP addresses between IPv4 and IPv6 realms is
necessary to enable cross-family communication. For
example, if a host from an IPv6-only network wants to
access a web server operating in an IPV4-only environment,
the original IPv6 packets need to be converted into IPv4

1Operation part-financed by the European Union, European Social Fund.

packets. This means that the IPv6 header is discarded and an
IPv4 header is substituted, whereas the contents of the fields
with no clear mapping in the target protocol header are lost
[6].

In 2010, the first open source implementations of the
stateful NAT64 gateway and DNS64 server called Ecdysis
[7] were made publicly available. Until then, we could only
theoretically discuss stateful NAT64/DNS64 feasibility.
Ecdysis is available for Linux and OpenBSD operating
systems. It includes a stateful IP translator and DNS
application layer gateway, implemented within Unbound
and Bind open source DNS servers. In Linux, the stateful IP
translator is implemented as a kernel module using netfilter
facilities. In the OpenBSD operating system, it is available
as a modification of the PF firewall. Ecdysis appears to be
modestly documented and not yet extensively tested in the
real-world environments. At this time, we are not aware of
other open source stateful NAT64/DNS64 implementations.
However, there are some implementations of the obsolete
NAT-PT (RFC 2766), e.g., [8] and a stateless NAT64
gateway implementation TAYGA [9], which performs 1-to-
1 stateless IP/ICMP translation (SIIT) of IPv6 addresses into
IPv4 addresses. The major drawback of stateless NAT64 is
that each IPv6-only host requires its own (possibly
temporary) IPv6-to-IPv4 address mapping. Since this is a
substantial requirement, which is not present when
performing stateful translation, we did not consider stateless
translators in our research, and we will use the term
“NAT64 translation” to refer to stateful NAT64 translation
only.

The stateful NAT64 and DNS64 mechanism
specifications, as described in the latest RFCs [22], [25]
seem very consistent and ready for implementation. It is to
be expected that with the anticipated depletion of IPv4
address space at the regional registry level there will be
more and more IPv6-only networks, which will need access
to IPv4 services in the rest of the Internet. Since many
applications rely on the underlying application layer
protocols, it is important for administrators to know what
they can expect from translation mechanisms: is the
behavior of the applications going to change during
translation? Will this perhaps occur only if they are using
specific application layer protocols? How well are these
protocols going to be translated? Is translation feasible for
every application-layer protocol?

In an attempt to answer these questions, the purpose of
this paper is twofold: first, we evaluate translation of
different application-layer network protocols theoretically,

Practical Evaluation of Stateful NAT64/DNS64
Translation

Nejc ŠKOBERNE1, Mojca CIGLARIČ2

1Viris, Šmartinska 130, SI-1000 Ljubljana
2Faculty of Computer and Information Science, University of Ljubljana,

Tržaška 25, SI-1000 Ljubljana
nejc@viris.si, mojca.ciglaric@fri.uni-lj.si

Digital Object Identifier 10.4316/AECE.2011.03008

1582-7445 © 2011 AECE

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 23:30:23 (UTC) by 3.83.87.94. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

50

and then we empirically evaluate traversal of these
application-layer network protocols over Ecdysis in a
controlled environment. We did not, however, test other
aspects of translation, such as scalability and performance.
The paper will be of interest to application administrators,
system administrators, to network infrastructure architects
and to the designers and constructors of other
NAT64/DNS64 translators and ALGs. Moreover, it might
be of interest to anybody interested in general IPv6
transition problems and technologies.

The paper is organized as follows. In the rest of this
section we review IPv6 transition mechanisms and comment
on related literature. In Section 2, we propose an objective
measure for evaluating the quality of NAT64/DNS64
traversal of application-layer network protocols and
theoretically assess translation quality of the chosen
protocols. In the next section, we describe the test beds used
for assessing the traversal of protocols over the Ecdysis
translator. Then, we present the test results and point out the
most interesting observations. Finally, we critically evaluate,
in accordance with the proposed objective measure, the
quality of traversal of a selected set of application-layer
protocols over the Ecdysis NAT64/DNS64 translator. We
conclude with practical implications and a discussion of
future research possibilities.

The research on IPv4 and IPv6 coexistence is scarce. Che
and Lewis [10] compare transition mechanisms and evaluate
their effectiveness regarding packet delay and packet loss in
a simulated environment. The authors expose some
migration challenges, but they do not address
NAT64/DNS64. Martin [11] points out that the IPv4-to-
IPv6 transition strategy is incomplete and the IPv4-to-IPv6
migration process will be more difficult than originally
thought, so there is a need for additional translation
mechanisms. He offers no further discussion on translation.
AlJa’afreh et al. [12]-[14] discuss bidirectional mapping
among native IPv4 and IPv6 networks, examine its
performance by means of a network simulator, and compare
performance with tunneling and a dual stack approach. Chen
[15] proposes an ALG for SIP protocol; however, it is not
implemented, and the authors do not properly address its
performance. One of the most recognized names in the area
of transitional mechanisms specifications is Wing. His paper
[6] reviews and compares the different known approaches to
NAT in IPv4 networks and in IPv6 and mixed networks. It
appears that no research has been published that is directly
related to our work, probably due to the fact that NAT64
and DNS64 translation methods are yet to be massively
implemented.

II. TRANSLATION MECHANISMS

In this paper we focus on stateful IPv6-to-IPv4 translation
mechanisms. Stateful translation is a conceptually
challenging and highly complex mechanism, and IETF
issued several RFCs and Internet drafts on this problem.
Although Network Address Translation (NAT) is a well-
established concept in the IPv4 world [16], the translation
between IPv4 and IPv6 addresses brings a range of new
problems, which different translation mechanisms –
NAT64/DNS64, NAT-PT and NAPT-PT [17], Transport
Relay Translation (TRT)) [18], etc. – try to address each in

its own way. We can split the translation problem into two
subproblems with regard to the direction of translation: from
larger IPv6 to smaller IPv4 address space (NAT64) and
translation of network addresses from smaller IPv4 to larger
IPv6 address space (NAT46). The latter is much harder to
achieve since IPv4 address space is smaller (IPv4 uses 32-
bit addresses, while IPv6 uses 128-bit addresses). A device
using IPv4 address space can therefore address (using one of
the translation mechanisms) only a small subset of the IPv6
address space. Furthermore, some of the application-layer
protocols (called control/data protocols) make direct use of
the IP addresses in their payload, so not only the message
header needs to be translated. The payload is usually not
inspected by the translator itself. Consequently, another
translation-related entity needs to be implemented:
application layer gateway (ALG). The key functionality of
the ALG is the conversion of the network layer address
information found inside the application payload into the
address so it is acceptable to the hosts on the other side of
the NAT device. In other words, ALGs are application-
specific translation agents that allow an application on a host
in one address realm to transparently connect to its
counterpart running on a host in a different realm [19].

The main advantage of translation is that the
communicating devices need not be changed in any way, so
translation may be applicable with all kinds of legacy
devices, where either hardware, operating system or
applications do not permit pure IPv6 deployment or more
advanced transition mechanisms. However, translation also
exhibits a conceptual disadvantage: it could break the end-
to-end connectivity, which is considered a core concept of
the Internet. Therefore, the role of Internet users behind
translation devices is reduced to Internet “consumers” only,
and, consequently, they cannot make their own content and
services available to other Internet users.

The first standardized IPv6-to-IPv4 translation
mechanism was NAT-PT, and although it was adopted by
some major vendors, it was too complex and has been
deprecated by RFC 4966 [20]. Its intention was to provide
NAT64 together with NAT46 translation and DNS ALG in
one complex device. Moreover, DNS ALG was tightly
coupled with the translator itself (with a direct interface to
the translator). According to Wing [6], the main reason for
its deprecation was operational complexities, and deeper
discussion of its issues is outside the scope of this paper and
can be found in the aforementioned RFC. Stateful NAT64
translation, however, is still useful in IPv6-only
environments in order to access the IPv4 Internet, and the
underlying translation method is called stateful
NAT64/DNS64. (From now on, these terms will refer to
translation methods, not translation subproblems.) In 2008
the first stateful NAT64, DNS64, and other IPv6-to-IPv4
translation-related Internet drafts were proposed, some of
which are now RFCs [21]-[25], supporting only some
specific cases of IPv6-to-IPv4 translation. In addition,
Stateful NAT64 RFC only allows for translation of TCP and
UDP transport-layer protocols and network-layer protocol
ICMP. In other words, according to specifications the
application-layer protocols relying on transport-layer
protocols other than TCP or UDP are not supposed to
traverse a stateful NAT64 translator.

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 23:30:23 (UTC) by 3.83.87.94. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

 51

Figure 1. IPv6-only client accessing IPv4 Internet through stateful NAT64

Figure 1 shows a typical scenario of an IPv6-only client
communicating to the IPv4-only Internet over a NAT64
gateway, using a DNS64 server:

1. DNS query: AAAA record for www.domain.test?
2. DNS query: AAAA record for www.domain.test?
3. DNS answer: no AAAA record for www.domain.test.
4. DNS query: A record for www.domain.test?
5. DNS answer: A record for www.domain.test is 203.0.113.10.
6. DNS64 server synthesizes AAAA record, i.e.

64:FF9B::203.0.113.10.
7. DNS64 answer: the IPv6 address of www.domain.test is

64:FF9B::203.0.113.10.
8. TCP/UDP packet: SRC address: 2001:DB8:1::100, DST

address: 64:FF9B:203.0.113.10.
9. NAT64 translation.
10. TCP/UDP packet: SRC address: 198.51.100.1, DST address:

203.0.113.10.

III. EXPERIMENTAL METHODS

First, we selected a representative set of the most
commonly used application protocols. In order to
consistently evaluate traversal of application-layer protocols
over a NAT64/DNS64 translator, we established a test
environment and defined an ordinal scale as a metric for
protocol translation quality. We also theoretically evaluated
how well different types of protocols are expected to
translate. Afterwards, the protocols were tested one by one.
The IPv6-only clients would connect to the IPv4 Internet
using the tested application-layer protocol. When the
protocol did not traverse NAT64 seamlessly, we also
analyzed packet trace files in order to find an explanation
for the incompatibility.

A. Selection of Protocols to be Tested

The selection of protocols (see Table 1) is based on the
authors' subjective knowledge of the area. We considered
three groups of users – corporate users, mobile users, and
home users (there is some overlap in these groups, but we
assume that their union represents the great majority of
Internet or computer network users) – and collected a set of
applications these users use most frequently (according to
our personal experience). These applications are: the

operating system itself, e-mail client, Internet browser,
terminal services client, peer-to-peer (P2P) client, instant
messaging (IM) client, soft phone (VoIP) client, terminal
client, and VPN client. We considered each application and
figured out which application-layer protocols it uses. DNS
protocol is not included since IPv6-only machines behind
the NAT64 translator have to use the DNS64 server in order
to be able to connect to the IPv4 world. We considered use
of DNS servers other than DNS64 to be irrelevant.

For each of the selected protocols, we evaluated the
quality of NAT64 traversal, first theoretically and then
empirically, using the protocol in our test bed and inspecting
what happens with protocol messages after Ecdysis
traversal.

TABLE 1: LIST OF SELECTED APPLICATION-LAYER PROTOCOLS

Acronym Protocol Name Application
BitTorrent BitTorrent (P2P file sharing protocol) P2P client

FTP File Transfer Protocol Internet browser
HTTP Hypertext Transfer Protocol Internet browser

HTTPS Hypertext Transfer Protocol Secure Internet browser
IMAP Internet Message Access Protocol e-mail client

NTP Network Time Protocol operating system
POP3 Post Office Protocol (version 3) e-mail client
RDP Remote Desktop Protocol terminal client

Skype Skype (P2P VoIP protocol) VoIP, IM client
MSNP Microsoft Notification Protocol VoIP, IM client

SIP Session Initiation Protocol VoIP client
CIFS Common Internet File System operating system

SMTP Simple Mail Transfer Protocol e-mail client
SSH Secure Shell terminal client

TELNET Terminal Network terminal client
OpenVPN OpenVPN (Virtual Private Network) VPN client

IPsec IPsec (IP security) VPN client
PPTP Point-to-Point Tunneling Protocol VPN client

B. Translation Quality Metrics

In this section, we suggest the ordinal scale, categorizing
the protocols into three translation quality classes. If only
the IPv6 header would need to be replaced with an IPv4
protocol header, all the protocols would translate well.
However certain protocols include network-related data (i.e.,
IP addresses) in the application payload, which complicates
the translation. Our suggested classification rules are
outlined below.

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 23:30:23 (UTC) by 3.83.87.94. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

52

Figure 2. The experimental environment for translation quality evaluation

1) Well Translated Protocols
Well translated protocols are the protocols that do not

need any special treatment when traversing the NAT64
translator. They do not need the support of a dedicated ALG
or any other additional translation logic either at the server
or at the client side.

2) Conditionally Translated Protocols
Conditionally translated protocols are protocols requiring

some kind of special treatment in order to be successfully
translated over a NAT64 translator. By special treatment we
mean either a dedicated ALG, constructed only for the
purpose of NAT64 translation for the specific protocol, or
any modifications or limitations at the server or at the client
side. After the special treatment is applied, at least core
protocol functionality is successfully provided over a
NAT64 translator.

3) Poorly Translated Protocols
If nothing could be done in order to make a protocol

traverse a NAT64 translator and any special treatment is not
feasible to implement, the protocol is classified as poorly
translated.

When we had the translation quality metrics defined, we
were able to formulate some predictions or hypotheses about
the chosen protocols’ translation quality. We wanted to
confirm these predictions empirically in our testbed:

 The protocols seamlessly traversing IPv4 NAT
translators will also be well translated over a
NAT64 translator.

 The protocols embedding network-layer addresses
(IPv4 or IPv6) in their payload will belong to a
conditionally translated class. For example, SIP
needs an ALG even when performing IPv4 network
address translation [16].

 The protocols using transport layer protocols other
than TCP and UDP (for example, GRE or ESP)
will classify as poorly translated, since the NAT64
translator only implements translation of TCP-,
UDP-, and ICMP-based protocols.

C. Testbed and Experimental Details

The testbed scheme and topology are shown in Figure 2.
The experimental environment was virtualized and consisted
of a NAT64 translator and a DNS64 server (Fedora Linux
with Ecdysis), a DHCPv6 server, and two IPv6-only clients,
one with Ubuntu Linux and the other with a Windows 7
operating system. NAT64 and DNS64 methods only support
the IPv6-to-IPv4 scenarios, which means that IPv6-only
machines can establish connections with the IPv4-only
Internet. Consequently, we tested the translation in the IPv6-
to-IPv4 direction over Ecdysis. We decided to use BIND
because of its widespread use, although Ecdysis also
supports the Unbound DNS server. Router Advertisement
daemon radvd was announcing the prefix
2001:470:1f0b:763::/64 on the internal IPv6-only network.
A DHCPv6 server was used to configure the DNS server on
DHCPv6 clients.

For each of the selected application layer protocols, the
IPv6-only clients would connect to the IPv4 Internet using a
tested protocol from within a client application. If the
protocol translated seamlessly, which means that from the
user's perspective the application performed as if there were
no translation, the test was finished at that point. Otherwise,
if the protocol did not translate well, we needed to analyze
packet trace files and identify the reasons for the
incompatibility.

IV. RESULTS

The test results have mostly confirmed our hypotheses.
The control/data protocols, which use network-layer
addresses in the payload, belong to Conditionally Translated
or Poorly Translated classes. Results are shown in Table 2.
However, some of the results require additional explanation,
which is provided below.

A. Well Translated Protocols

For well translated protocols, it is sufficient that only the
IP header is replaced by the translator (IPv4 header is
removed and IPv6 header is inserted). As shown in Table 2,
we empirically proved the translation quality for all well-
translated protocols; however, there were two exceptions:

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 23:30:23 (UTC) by 3.83.87.94. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

 53

TABLE 2: TRANSLATION QUALITY OF THE SELECTED PROTOCOLS

Acronym Theoretical Translation
Quality

Empirical Translation
Quality

BitTorrent Conditionally Translated Conditionally Translated
FTP Conditionally Translated Conditionally Translated

HTTP Well Translated Well Translated
HTTPS Well Translated Well Translated

IMAP Well Translated Well Translated
NTP Well Translated Well Translated

POP3 Well Translated Well Translated
RDP Well Translated Well Translated

Skype Poorly Translated Poorly Translated
MSNP Poorly Translated Poorly Translated

SIP Poorly Translated Poorly Translated
CIFS Well Translated Well Translated

SMTP Well Translated Well Translated
SSH Well Translated Well Translated

TELNET Well Translated Well Translated
OpenVPN Conditionally Translated Poorly Translated

IPsec Poorly Translated Poorly Translated
PPTP Poorly Translated Poorly Translated

1) HTTP
Although we classified HTTP as a Well Translated

protocol, it should be pointed out that a small percentage of
HTTP URIs contain an IPv4 address literal as the hostname
(e.g., http://203.0.113.1), which is not accessible to IPv6-
only HTTP clients using a NAT64 translator since the
address is not known to the DNS64 server (see the typical
scenario depicted in Figure 1).

An examination of Alexa's top 1 million domains at the
end of August 2009 showed that 2.38% of the HTML in
their home pages contained IPv4 address literals. Also, of
the top 1 million websites at the end of August 2009, 0.35%
were IPv4 address literals.

In [26] Wing proposes using a HTTP proxy to handle
such traffic as a workaround. Although it overcomes the
described problem, operating an HTTP proxy interfaced to
IPv4 Internet is not a trivial task, is more resource-intensive,
complicates the network topology, and increases the attack
surface. Moreover, proxy still cannot handle IPv4 address
literals located in the URL path or query string (for example,
http://www.example.com/?host=203.0.113.1).

2) CIFS
In our experiment, we were able to empirically evaluate

file transfer only. The Microsoft NetBIOS-over-TCP/IP
(NBT) name resolution and service location protocol could
not be tested, since Microsoft's implementation does not
support IPv6 [27]. Link-local Multicast Name Resolution
protocol (LLMNR) also could not be tested, since it uses
link-local multicast addresses, which are only valid within
the same network segment. Since the NAT64 translator
terminates the network segment, LLMNR traffic cannot
traverse the translator. Therefore, we suggest using DNS for
name resolution when using a CIFS protocol with NAT64
translation.

B. Conditionally Translated Protocols

Conditionally translated application-layer protocols
require dedicated application layer gateways for NAT64
traversal. We proved empirically that none of the
conditionally translated protocols in Table 2 were able to

traverse NAT64 seamlessly.

1) OpenVPN
Since OpenVPN does not currently officially support

IPv6 endpoints, the connections could not be established
during the test. However, since OpenVPN only uses UDP
datagrams, we expect the traversal over NAT64 should be
seamless when the endpoints are upgraded with IPv6
capability, and OpenVPN will be promoted to the Well
Translated class.

2) BitTorrent
The problem of BitTorrent traversal over NAT64 was

identified by Wing [28]: although BitTorrent packets would
traverse NAT64 and reach their destination, an IPv6-only
BitTorrent peer cannot use IPv4 addresses obtained from its
tracker. To do so, the client software would need to prefix
the IPv4 address with the prefix of an IPv6/IPv4 translator
that will perform the necessary address family translation on
behalf of the IPv6-only client.

As an alternative to Wing's suggestion, introduction of an
ALG is possible, performing application-layer deep packet
inspection and IPv4-to-IPv6 address translation on the fly.
In this way, BitTorrent clients would not need changes. The
payload of HTTP sessions between BitTorrent client and
tracker could be modified, either transparently or by means
of a HTTP proxy. Note that the proposed solution is only
feasible when using HTTP protocol, since it is not possible
for an ALG or proxy to decrypt HTTPS payload.

3) FTP
Some considerations about IPv6-to-IPv4 translation of

FTP can be found in [29]. Disparate implementations of the
newer FTP commands EPSV and EPRT are largely
inconsistent, which causes inconsistent behavior of FTP
even when not traversing NAT64 and makes ALG
construction significantly harder.

C. Poorly Translated Protocols

At present, these protocols are not able to traverse
NAT64, either due to their closedness and lack of IPv6
support or due to incompatibility with any NAT in general.

1) Skype
Skype is a proprietary peer-to-peer protocol for VoIP and
Instant Messaging communication. Currently it does not
support IPv6. It is impossible to predict whether IPv6-ready
Skype will be able to pass NAT64 translators, since we do
not know how Skype will implement IPv6.

2) MSNP
Microsoft Notification Protocol is a proprietary P2P

protocol unable to traverse the NAT64 translator. MSNP
only supports IPv6 in P2P communication among users. In
communication with server IPv6 it is not yet supported.

3) SIP
SIP protocol uses bidirectional UDP communication

among peers. Since NAT64 only supports connections from
IPv6 towards the IPv4 world, SIP over NAT64 is not viable.

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 23:30:23 (UTC) by 3.83.87.94. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 11, Number 3, 2011

54

4) IPsec
To encapsulate transport-layer protocols, IPsec uses

Encapsulating Security Payload (ESP), which is not
supported by NAT64 specification (only TCP, UDP and
ICMP are supported on lower layers). IPv4 NATs usually
implement “IPsec Pass-Through” functionality. However,
there exists another method enabling IPsec-protected
datagrams to pass through IPv4 NAT translators. It is called
NAT Traversal (NAT-T) in Internet Key Exchange (IKE),
which encapsulates ESP packets into UDP datagrams that
can traverse traditional NATs. However, we did not test
NAT-T.

5) PPTP
PPTP has a problem similar to that encountered with

IPsec. On transport layer, PPTP uses Generic Routing
Encapsulation (GRE) protocol. Since GRE is not supported
by NAT64, PPTP is unable to traverse a NAT64 translator.

V. CONCLUSIONS

The experiment mostly confirmed our expectations about
NAT64/DNS64 traversal quality of different application-
layer protocols. Most of the protocols daily used by average
Internet users are categorized as Well Translated. FTP, SIP,
PPTP, and Skype are conditionally or poorly translated;
however, where the lack of IPv4 dictates the use of IPv6-
only networks, we will hopefully be able to cope without
them. New Internet drafts [29] indicate that ALGs might be
released in the near future, although further research is still
needed on ALG design considerations.

From the users' point of view, NAT64/DNS64 translation
might not provide an experience comparable to native IPv6-
or IPv4-only connectivity, especially since VoIP and IM
applications are extensively used in home environments.
However, in the corporate environment, most business
applications will continue to perform as before.

REFERENCES

[1] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6)
Specification”, RFC 2460, 1998. [Online]. Available:
http://www.ietf.org/rfc/rfc2460.txt.

[2] H. Afifi and Laurent Toutain, “Methods for IPv4-IPv6 Transition”, in
Proc. IEEE Symposium on Computers and Communications, Sharm
El Sheik, 1999, pp. 478–484. [Online]. Available:
http://dx.doi.org/10.1109/ISCC.1999.780953.

[3] J. Bi, J. Wu and X. Leng, “IPv4/IPv6 Transition Technologies and
Univer6 Architecture”, International Journal of Computer Science and
Network Security, vol. 7, pp. 232–243, Jan. 2007.

[4] M. Tatipamula, P. Grossetete and H. Esaki, “IPv6 Integration and
Coexistence Strategies for Next-Generation Networks”, IEEE
Communications Magazine, vol. 42, pp. 88–96, Jan. 2004. [Online].
Available: http://dx.doi.org/10.1109/MCOM.2004.1262167.

[5] D. G. Waddington and F. Chang, “Realizing the Transition to IPv6”,
IEEE Communications Magazine, vol. 40, pp. 138–148, Jun. 2002.
[Online]. Available: http://dx.doi.org/10.1109/MCOM.2002.1007420.

[6] D. Wing, “Network Address Translation: Extending the Internet
Address Space”, IEEE Internet Computing, vol. 14, pp. 66–70, Jul.
2010. [Online]. Available: http://dx.doi.org/10.1109/MIC.2010.96.

[7] S. Perreault, “Ecdysis: Open-Source Implementation of a NAT64
Gateway”, Feb. 2010. [Online]. Available: http://ecdysis.viagenie.ca.

[8] Microsoft Corporation, “Using Integrated NAT64 and DNS64 with
Forefront UAG DirectAccess”, Feb. 2010. [Online]. Available:
http://technet.microsoft.com/en-us/library/ee809079.aspx.

[9] N. Lutchansky, “TAYGA: Simple, no-fuss NAT64 for Linux”, Dec.
2010. [Online]. Available: http://http://www.litech.org/tayga/.

[10] X. Che and D. Lewis, “IPv6: Current Deployment and Migration
Status”, International Journal of Research and Reviews in Computer
Science, vol. 1, pp. 22–29, Jun. 2010.

[11] O. Martin, “Where is the Internet heading to?”, Journal of Physics:
Conference Series, vol. 219, part 6, 2010. [Online]. Available:
http://dx.doi.org/10.1088/1742-6596/219/6/062019.

[12] R. AlJa’afreh, J. Mellor and I. Awan, “Implementation of IPv4/IPv6
BDMS Translation Mechanism”, in Proc. UKSIM European
Symposium on Computer Modeling and Simulation, Liverpool, 2008,
pp. 512–517. [Online]. Available:
http://dx.doi.org/10.1109/EMS.2008.71.

[13] R. AlJa’afreh, J. Mellor and I. Awan, “Evaluating BDMS and DSTM
Transition Mechanisms”, in Proc. UKSIM European Symposium on
Computer Modeling and Simulation, Liverpool, 2008, pp. 488–493.
[Online]. Available: http://dx.doi.org/10.1109/EMS.2008.60.

[14] R. AlJa’afreh, J. Mellor and I. Awan, “A Comparison Between the
Tunneling Process and Mapping Schemes for IPv4/IPv6 Transition”,
in Proc. International Conference on Advanced Information
Networking and Applications, Bradford, 2009, pp. 601–606. [Online].
Available: http://dx.doi.org/10.1109/WAINA.2009.209.

[15] W.-E. Chen, Q. Wu, Y.-B. Lin, Y.-C. Lo, “Design of SIP Application
Level Gateway for IPv6 Translation”, Journal of Internet Technology,
vol. 5, pp. 343–348, Apr. 2004.

[16] P. Srisuresh and K. Egevang, “Traditional IP Network Address
Translator (Traditional NAT)”, RFC 3022, 2001. [Online]. Available:
http://www.ietf.org/rfc/rfc3022.txt.

[17] G. Tsirtsis and P. Srisuresh, “Network Address Translation – Protocol
Translation (NAT-PT)”, RFC 2766, 2000. [Online]. Available:
http://www.ietf.org/rfc/rfc2766.txt.

[18] J. Hagino and K. Yamamoto, “An IPv6-to-IPv4 Transport Relay
Translator”, RFC 3142, 2001. [Online]. Available:
http://www.ietf.org/rfc/rfc3142.txt.

[19] P. Srisuresh and H. Holdrege, “IP Network Address Translator (NAT)
Terminology and Considerations”, RFC 2663, 1999. [Online].
Available: http://www.ietf.org/rfc/rfc2663.txt.

[20] C. Aoun and E. Davies, “Reasons to Move the Network Address
Translator – Protocol Translator (NAT-PT) to Historic Status”, RFC
4966, 2007. [Online]. Available: http://www.ietf.org/rfc/rfc4966.txt.

[21] C. Bao, C. Huitema, M. Bagnulo, M. Boucadair and X. Li, “IPv6
Addressing of IPv4/IPv6 Translators”, RFC 6052, 2010. [Online].
Available: http://www.ietf.org/rfc/rfc6052.txt.

[22] M. Bagnulo, P. Matthews and I. van Beijnum, “Stateful NAT64:
Network Address Translation and Protocol Translation for IPv6
Clients to IPv4 Servers”, RFC 6146, 2011. [Online]. Available:
https://www.ietf.org/rfc/rfc6146.txt.

[23] X. Li, C. Bao and F. Baker, “IP/ICMP Translation Algorithm”, RFC
6145, 2011. [Online]. Available: http://www.ietf.org/rfc/rfc6145.txt.

[24] F. Baker, X. Li, C. Bao and K. Yin, “Framework for IPv4/IPv6
Translation”, RFC 6144, 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc6144.txt.

[25] M. Bagnulo, A. Sullivan, P. Matthews and I. van Beijnum, “DNS64:
DNS Extensions for Network Address Translation from IPv6 Clients
to IPv4 Servers”, RFC 6147, 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc6144.txt.

[26] D. Wing, “Coping with IP Address Literals in HTTP URIs with
IPv6/IPv4 Translators”, draft-wing-behave-http-ip-address-literals-02
(IETF Internet Draft, expired), 2010. [Online]. Available:
http://tools.ietf.org/html/draft-wing-behave-http-ip-address-literals-
02.

[27] J. Davies, “TCP/IP Fundamentals for Microsoft Windows”, Microsoft
Corporation, Feb. 2008.

[28] D. Wing, “Referrals Across an IPv6/IPv4 Translators”, draft-wing-
behave-nat64-referrals-01 (IETF Internet Draft, expired), 2009.
[Online]. Available: http://tools.ietf.org/html/draft-wing-behave-
nat64-referrals-01.

[29] I. van Beijnum, “An FTP ALG for IPv6-to-IPv4 translation”, draft-
ietf-behave-ftp64-07 (IETF Internet Draft), 2011. [Online]. Available:
http://tools.ietf.org/html/draft-ietf-behave-ftp64-07.

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 23:30:23 (UTC) by 3.83.87.94. Redistribution subject to AECE license or copyright.]

