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1Abstract—High rate irregular QC-LDPC codes based on 

circulant permutation matrices, for efficient encoder 
implementation, are proposed in this article. The structure of 
the code is an approximate lower triangular matrix. In 
addition, we present two novel efficient encoding techniques for 
generating redundant bits. The complexity of the encoder 
implementation depends on the number of parity bits of the 
code for the one-stage encoding and the length of the code for 
the two-stage encoding. The advantage of both encoding 
techniques is that few XOR-gates are used in the encoder 
implementation. Simulation results on partial response 
channels also show that the BER performance of the proposed 
code has gain over other QC-LDPC codes. 
 

Index Terms—circulant permutation matrices, high rate 
irregular QC-LDPC codes, low encoding complexity, partial 
response channels, redundant parity bits.     

I. INTRODUCTION 

Low-density parity-check (LDPC) codes are a class of 
systematic linear block codes with a sparse matrix and also a 
subclass of prominent iteratively decodable codes. LDPC 
codes are forward error correction (FEC) codes as first 
proposed by Gallager [1] in the early 1960s and 
rediscovered by Mackay and Neal [2]. The name of this 
code comes from the characteristic of their parity-check 
matrix which contains only a few non-zero elements in 
comparison to the number of zero elements. A lot of 
researchers have been interested in LDPC codes because 
they provide good performance, which is very close to the 
theoretical limit. LDPC codes also offer lower complexity 
decoding than the well know capacity approaching code 
called the Turbo code [3]. References [4]-[7] show that long 
length irregular LDPC codes obtain a performance within a 
fraction of a decibel (dB) of the theoretical limit. Due to the 
excellent performance, these codes have been adopted in a 
wide range of applications such as IEEE 802.11n [8] and 
IEEE 802.16e [9]. Recently, LDPC codes have attracted a 
lot of interest in magnetic recording channels [10]-[12]. 
However, a main drawback of general LDPC codes is a high 
encoding complexity. The random structure LDPC code has 
high complexity encoding quadratic with the code length. 
The structure of the LDPC codes can be used to 

significantly alleviate the encoding problem and simplify 
hardware implementation. The Quasi-Cyclic LDPC (QC-
LDPC) code is a subclass of LDPC codes that can perform 
as well as randomly constructed LDPC codes with iterative      
decoding on belief propagation in terms of bit error rate 
(BER). The advantage of the generator matrix of the QC-
LDPC code is that it can be encoded by using a simple shift 
register. References [15]-[16] show that the complexity of 
encoding of QC-LDPC codes is linearly proportional to the 
number of parity bits of the code for serial encoding and the 
length of the code for high-speed parallel encoding. 
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The QC-LDPC codes based on circulant matrices       
[13]-[14], which are kinds of structured QC-LDPC codes, 
are easy to implement because of their block and cyclic 
interconnection. In this paper, we design a new structure of 

 regular QC-LDPC codes based on circulant 

permutation matrices that are free from girth 4, girth 6, and 
sometimes girth 8. Moreover, we modify this code by 
replacing some circulant permutation matrices with zero 
matrices. The new structure code is an approximate lower-
triangular matrix so that the generator of this code is a linear 
independent form. In addition, we present two kinds of 
efficient encoding techniques that can generate parity bits of 
the codeword. It shows that the encoding complexity of the 
proposed code depends on the number of parity bits of the 
code for a one-stage encoding scheme, and the length of the 
code for a two-stage encoding scheme. The advantage of 
both encoding techniques is that it can generate redundant 
bits of the codeword with lower complexity, as compared 
with previously found ones. Finally, we show the BER of 
the proposed code at high code rate for magnetic recording 
channels. 

(3, )L

The rest of this paper is organized as follows. The basic 
concept of ( , )J L  regular QC-LDPC codes is reviewed in 

section II. The proposed construction of regular    

QC-LDPC codes based on circulant permutation matrices is 
introduced in section III. The modification of the proposed 
code for efficient encoding is presented in section IV. The 
magnetic recording channels model used in simulations is 
described in section V. Finally, section VI and section VII 
contain summaries of the main results and conclusions. 

(3, )L

II. ( , )J L  REGULAR QC-LDPC CODE BACKGROUND  

The ( , )J L

( , )

 regular QC-LDPC codes are defined by a 

parity-check matrix , in which each column has 
Hamming weight J and each row weight L [1] and [13]-[14]. 
The 

H

J L  regular QC-LDPC code introduced in [13] is 

       47

Digital Object Identifier 10.4316/AECE.2011.04008

1582-7445 © 2011 AECE

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 05:43:21 (UTC) by 3.235.140.73. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 11, Number 4, 2011 

based on circulant matrices of size p p

( ) (L

 and can be 

represented as 
 

1,1 1, -1

-1,1 -1, -1 )

(0) (0) (0)

(0) ( ) ( )

(0) ( ) ( )

L

J J J p L 

 
 
 
 
 
  p

I I I

I I p I p

I I p I p


H




   


            (1) 

  

where 
,( )j lI p  represents the circulant permutation matrix 

which shifts the identity matrix of size p p  to the right by 

,j lp  times. The value of 
,j lp  depends on some conditions 

that were described in [13], where1  1, 1  1j J l L      . 

(0)I  i te of ( , )s tity matrix the iden . The code ra J L  regular 

QCLDPC codes is 1 –R K , where K  is the message 
len L p  is th code length. The parity-check 

( , )

 /
e 

 N
gt

matrix

h an

 o

d N 
f J L  regular QC-LDPC codes with column 

2J  has rank of at mostweight – 1pJ J  . The upper 

of the minimum dist   (  1)!J   if 3J   

[13]-[14] and [17].  

bound ance is 
mind

QC-LDPC

(3 )

III. THE PROPOSED REGULAR  CODE  

pa
In this section, we show the method to construct the 
rity-check matrix of (3, )L  regular QC-LDPC codes 

based on circulant matrice r parity-check matrix can be 
represented in transpose matrix TH  form as follows.   

 

s. Ou

1 1 1

2 2 2

3 3 3

( )

( ) ( ) (0 )

( ) ( ) (0 )

( ) ( ) (0 )

( ) ( ) (0 )L L L L p p




          

I X I Y I

I X I Y I

I X I Y I

I X I Y I
 

 
 
 


 
  

TH

  

 

               (2) 

here 
 
w

lX  

,  4

and are integers that from set          

S 
lY  

}

are selected  

= {2, 3 , … p , where 
1 2 1     l lX X X X    , 

     Y Y Y Y    , and  
1 2 1l l 1  . All (0 )lI arel L 

p p tity rices.  iden mat ( )lI X  )and ( lI Y  are p p  

nt permutation matric ich shift  colum  
the identity matrix to the right by 1lX
circula es wh ns of the

  and 

1lY  positions, respectively. The relation betw ( )l
een I X  

( )l
and I Y  can be defined as  

2X Y p                       
l l                                   (3) 

The position o
lo

           

f the 1′s of any circulant matrices can be 
cated according to (4), (5), and (6) for the ( )lI X , (7), (8), 

and (9) for the ( )lI Y ,  and (10) for the (0 )I ectively. 

It is important t te that we set the fi w and the first 
column of any matrices with the index 1. 

 
1 if   = (X +  - 1)   

l

rst ro

od p
          

,  resp

o no

                (4)  

 

,( )l s tI X 
0 otherwise

{ lt s m

( 1)ls Y t mod p                                               (5)             

( 1)lt X s mod p                                                         (6) 

,( )l m nI Y 
1 if   = ( +  - 1)  

0 otherwise
{ ln Y m mod p

( 1)n mod p

                           (7) 

lm X                                                       (8) 

( 1)ln Y m mod p                                                         (9) 

,(0 )l m nI 
1 if 

0 otherwis
{

j k

e


                                              (10) 

 
where 1  ,  ,  ,  ,  ,j k m n s and . The order pairs   t p

( ,  ), ( ,  ),s t m n  ) and ( ,j k  are indices of I(Xl), I(Yl), and 

I(0 l), respectively. Note that if s, t, m, and n are zero they 
will be replaced with p . 

We group ( )lI X , ( )lI Y  and  to circulant 

permutation submatrix rows of  shown as follows 

(0 )lI
TH

1

2

3

( 1)

H

H

H

H L L

 
 
 
 
 
 
  

TH



                                                               (11) 

 (1 3)
( ) ( ) I(0 )l l l lI X I Y


H                                      (12) 

where 1  l L  . 

A. The girth of the proposed QC-LDPC  

Now we consider a cycle or the closed path in the Tanner 
graph [18]. The Tanner graph can be created with an edge 
between bit and check node if there are corresponding non- 
zero elements in the matrix H . A cycle in the Tanner graph 
refers to a closed path that starts and ends at the same node. 
A girth is the smallest cycle in the graph. In this paper, the 
index of 1′ s of any cycles of length 2i in the Tanner graph 
of the code can be represented as the ordered series 

 1 1 2 1 2 1 1( ,  ),  ( , ),  ( ,  ,  ,  ,  ( ,  )i i2 ),x y x y x x y x y

1 1 11    ,   ,   ,   ,   k k k i ik i x x y x x y y 

y 

ky

, where 

1      . The i is 

a positive integer. 
Lemma 1: If the TH  is defined as (11), the parity-check 

matrix is without cycles of four. 
Proof 1: For any positions of 1′ s between two circulant 

permutation submatrix rows of  e.g. H  and , where TH
a H b

1 a b L    ,  and Y , if the matrix  

has a path of length 4, it will be created by three patterns as 
follows. 

aX X b a  bY TH

Firstly, the path that combines between two ( )I X  and 

two ( )I Y  is shown as 
 

                   1 1 2 2 1 1 2 2

1 1

( , ) ( , ) ( , ) ( , )

( , )

( ) ( ) ( ) ( )

( )

a s t b s t b m n a m n

a s t

I X I X I Y I Y

I X

  


 

The closed path starts and ends at . The path 

of length 4 exists if
1 1( , )( )a s tI X

1 2s m , , ,  
1 2n n 1 2t t 1m s2  and 

1 2s s . However, 
1s  is not equal to whereas 

2m 1 2n n . 

Let us prove this by writing 
 

1 1( - 1)as Y t mod p                                                      (13) 

2 1( - 1)bs Y t mod p 

1 2( - 1)bn Y s mod p

                                                  (14) 

                             (15) 

2 2( - 1)am Y n mod p                                                   (16) 
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By substituting (14) into (15) and then (15) into (16) 
 

2 1( 2 - 3)a bm Y Y t mod   p                                         (17) 

 
It can be seen that (13) is not equal to (17). Clearly, a path 

of length 4 does not exist. 
Secondly, consider the path that combines two ( )I X  and 

two (0)I . 
 

1 1 2 2 1 1 2 2

1 1

( , ) ( , ) ( , ) ( , )

( , )

( ) ( ) (0 ) (0 )

( )

a s t b s t b j k a j k

a s t

I X I X I I

I X

  


              

 

The closed path starts and ends at . The path 

of length 4 exists if
1 1( , )( )a s tI X

1 2 11 2 2 1 2j j k s s   k t t   . 

However, 
1s  is not equal to 

2s  whereas . Clearly, a 

path of length 4 does not exist. 
1 2t t

Finally, consider the path that combines two ( )I Y  and 

two (0)I  
 

1 1 2 2 1 1 2 2

1 1

( , ) ( , ) ( , ) ( , )

( , )

( ) ( ) (0 ) (0 )

( )

a m n b m n b j k a j k

a m n

I Y I Y I I

I Y

  


  

              
The closed path starts and ends at . The path of 

length 4 exists if
1 1( , )( )a m nI Y

1 2 11 2 2 1 2j j k n m m   

2m 2n

k n  

1n 

. 

However,  is not equal to whereas . Clearly, a 

path of length 4 does not exist. 
1m

Lemma 2: If the TH  is defined as (11), the parity-check 
matrix exists with length of 6 if and only if the condition 
given below is satisfied. 
 

2c bX X X  a
                                                               (18) 
 

In this paper, there are two different closed paths of 
length 6.  The closed paths are created by combination of 
three circulant permutation submatrices rows of  e.g. 

,  and H , where 1 , 

TH

a b cH a H b c a b c L    X X X  

and Y Y .  
a b cY

The first path can be shown as 

1 1 2 2 1 1 2 2

1 1 2 2 1 1

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

( ) ( ) ( ) ( )

(0 ) (0 ) ( )

a s t b s t b m n c m n

c j k a j k a s t

I X I X I Y I Y

I I I X

  

  
  

 where , and  

 
1 2 1 2 1, ,m s t t n n  

2k
2

2

2 1 1m s j  

1 2k j
The second path can be shown as 
 

1 1 2 2 1 1 2 2

1 1 2 2 1 1

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

( ) ( ) ( ) ( )

(0 ) (0 ) ( )

a m n b m n b s t c s t

c j k a j k a m n

I Y I Y I X I X

I I I Y

  

  
    

                                      
where , and  

 
2 1 1 2 1, ,m s t t n n  

2k
1 2 1m s j  

1 2k j
Proof 2.1: If the first closed path starts and ends at 

, let us prove that (18) can create a girth 6 as 

follows 
1 1( , )( )a s tI X

 

1 1( 2 - 1)as p X t mod    p                                       (19) 

2 1( 2 - 1)bs p X t mod    p

p

p

                                     (20) 

1 2( 2 - 1)bn p X s mod                                        (21) 

2 1( - 1)cm X n mod                                                  (22) 
 

By substituting (20) into (21) and then (21) into (22), now 
we have 

2 1( 2 2 +1)c bm X p X t mod p                                 (23) 
 

If there is a closed path, (19) is equal to (23). 
 

1 1( 2 2 +1) ( 2 - 1)c b aX p X t mod p p X t mod       p

1 + 1

    

or equivalently, 
 

12 +1  c b aX X t X t                                          (24) 

Finally, we have 
2c bX X X a                                                                 (25) 

Example 1: If p = 11, ,  , and 3aX  5bX  7cX  , so 

that 10aY  , 8bY  , and . The first closed path of 

cycle 6 can be written as 

6cY 

 

(1, 3) (10, 3) (10, 6 ) (1, 6 ) (1,1)

(1, 1) (1, 3)

(3) (5) (8) (6) (0 )

(0 ) (3)

c

a

I I I I I

I I

   

 
 

 Proof 2.2: If the second closed path starts and ends at 

1 1
. Let us prove that (18) can create a girth 6 as 

follows 
( , )( )a m nI Y

1 1( - 1)am X n mod p                                                   (26) 

2 1( - 1)bm X n mod p                                                  (27) 

 
1 2( - 1)bt X m mod p                                                  (28) 

2 1( 2 - 1)bs p X t mod p                                          (29) 

By substituting (27) into (28) and then (28) into (29), now 
we have 

2 1( 2 -1)c bs p X X n mod p                                    (30) 
 

If there is a closed path, (26) is equal to (30).  
    

1 1( 2 -1) ( - 1)c b ap X X n mod p X n mod p         

or equivalently, 

12 +1 + c b aX X t X t1 1                                           (31) 

Finally, we have 
2c bX X X a                            (32) 

 

Example 2: If p = 11, ,  , and 3aX  5bX  7cX  , so 

that 10aY  , 8bY  , and . The first closed path of 

cycle 6 can be written as 

6cY 

 

(1, 10 ) (3, 10 ) (3, 7 ) (1, 7 ) (1,1)

(1, 1) (1, 10 )

(10) (8) (5) (7) (0 )

(0 ) (10)

c

a

I I I I I

I I

   

 
  

The closed paths of length 8 are created by combination 
of three circulant permutation submatrix rows of  e.g. 

,  and H , where 1

TH
H a H b c a b c L    , 

a b cX X X  

and . 
a b cY Y Y

The first path can be shown as 
 
 

1 1 2 2 1 1 2 2

1 1 2 2 3 3

4 4 1 1

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , )

( ) ( ) ( ) ( )

(0 ) (0 ) ( )

( ) ( )

a s t b s t b m n c m n

c j k b j k b m n

a m n a s t

I X I X I Y I Y

I I I Y

I Y I X

  

   



  

 

 where
1 2 1 2 1, ,m s t t n n2  

2k

,  
3 4 2 3 1,n n m m j   

1 2k j  4 1m s , and   . 

The second path can be shown as 
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1 1 2 2 1 1 2 2

3 3 4 4 3 3

4 4 1 1

( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , )

( ) ( ) (0 ) (0 )

( ) ( ) (0 )

(0 ) ( )

a m n b m n b j k c j k

c m n b m n b j k

a j k a m n

I Y I Y I I

I Y I Y I

I I Y

  

   



                                         

 

where ,  

,  and  . 
1 2 3,n n n n 

1 4m m j 
4 3 4 2 3 1 1,n n m m j k j    

3 3 3 4j k k  
2

a

2k
Lemma 3: The proposed code with girth 8 can be 

constructed by two conditions. The first condition is the 
same as the condition of girth 6 as in (18). The second 
condition is 

3 2c bX X X                                                               (33) 
 

Proof 3.1: If the first closed path starts and ends at 
, let us prove that (33) can create a girth 8 as 

follows 
1 1( , )( )a s tI X

1 1( 2 - 1)as p X t mod    p                                       (34) 

2 1( 2 - 1)bs p X t mod    p

p

p

p

p

p

p

+1

a

                                      (35) 

1 2( 2 - 1)bn p X s mod                                         (36) 

2 1( - 1)cm X n mod                                                  (37) 

4 2( 2 - 1)bn p X m mod                                       (38) 

4 4( - 1)am X n mod                                                  (39) 
 
 

By substituting (35) into (36), then substituting (36) into 
(37), then substituting (37) into (38) and then substituting 
(38) into (39), now we have 

4 1( 3 3 +1)c bm X p X t mod                                 (40) 
 

If there is a closed path, (34) is equal to (40). 
 

1 1( 3 3 +1) ( +1)c b aX p X t mod p p X t mod          
 

 or equivalently, 

13 1c b a aX X X t X t                                     (41) 

Finally, we have 
3 2c bX X X                                                               (42) 

 

Example 3: If  p = 11, ,  , and 2aX  3bX  5cX  , so 

that , , and . The first closed path of 

cycle 8 can be written as 

11aY  10bY  8cY 

 

(1, 2 ) (11, 2) (11, 9) ( 2, 9 ) (

(2,2 ) (2, 11) (1,11) (1, 2)

(2) (3) (10) (8) (0 )

(0 ) (10) (11) (2)

c

b

I I I I I

I I I I

   

   
2,2 )

p

p

p

p

p

  

Proof 3.2: If the second closed path starts and ends at 
, let us prove that (18) can create girth 8 as 

follows 
1 1( , )( )a s tI X

1 1( - 1)am X n mod                                                   (43) 

2 1( - 1)bm X n mod                                                  (44) 

3 2( 2 - 1)cn p X m mod                                       (45) 

4 3( - 1)bm X n mod                                                  (46) 
 

By substituting (44) into (45) and (45) into (46),  now we 
have  

4 1( 2 -1)b cm p X X n mod                                   (47) 
 

If there is a closed path, (43) is equal to (47). 
        

1 1( 2 -1) ( - 1)b c ap X X n mod p X n mod p       
   

      or equivalently, 

12 1b c aX X n X n1 1                                            (48) 

Finally, we have 
2c bX X X a                                                                 (49) 

 

Example 4: If p = 11, ,  , and 2aX  3bX  5cX  , so 

that 11aY  , 10bY  , and . The first closed path of 

cycle 8 can be written as 

8cY 

 

(1, 10 ) (3, 10 ) (3,3) (3,3) (3,8)

(1, 8) (1,1) (1,1) (1, 10 )

(10) (8) (0 ) (0 ) (6)

(8) (0 ) (0 ) (10)

b c

b a

I I I I I

I I I I

   

   
  

B. Algorithms for constructing the proposed code 
In this section we introduce two algorithms for 

constructing the proposed code. Algorithm I is used to 
construct the matrix H  that is free from girth 4 and girth 6 
whereas the algorithm II is free from girth 4, girth 6, and 
girth 8. 

Define  {2,  3,  4,  ,  }S p  , where p  is the size of the 

circulant matrix that depends on the rate of the codes and the 
length of the codeword. Define set  and set Y  as the set 
of integers. Initially, 

X

{2, 3}X  , { 2 2, 2 3Y p p }     .  

Define R as a set of integers that is computed from step 2 
of the algorithm, with initially . R  

 

Algorithm I 
Step 1. Set {2, 3}X   

Step 2. Compute the process to find the integer which 
satisfies the condition of (18) by the following script. 

w = 1   
v = 2 
for  j = 1 to nv − 1 do ; Note nv is the cardinality of set X  
for  i = v to nv do 
jf = ((p + 2 − Y(i)) + Y( j) − 1)mod p ; Note if jf = 0 

replace with j  = p f

kf = ((p + 2 − Y(i)) + j(f − 1))mod p ; Note if kf = 0 replace 
with kf = p 

R(w) ← kf ; Note keep kf  in set R. 
w ← w + 1 ; Note increase w by 1 
end 
v ← v + 1 ; Note increase v by 1 
end 
Step 3. Decision, if X R  

S
X R

( )S X R

, store set  and then 
select the next member from set  to be the next member of 
set and go to step 2. If , select the next 
member from set 

X

X   
   instead of the last number in 

set  then go to step 2. X
Step 4. The process ends when the members of set 
equal to X L . The members of  are used to construct the 

proposed matrix H that is free from girth 6.  
X

Next, we show the algorithm for the proposed code that is 
free from girth 8. 
Initially, {2, 3, 5}X  , { 2 2, 2 3, 2 5Y p p p }       .  

Define  and  as the set of integers that are 
computed from step 2 of the algorithm, with initially 

1R 2R

1R    and 2R   . 
 
Algorithm II 
Step 1. Set {2, 3, 5}X  . 

Step 2. Compute the process to find the integer which 
satisfies condition of (33) by the following script. 

w = 1. 
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v = 2. 
for j = 1 to nv − 1 do ; Note nv is the cardinality of set X  
for i = v to nv do 
jf = ((p + 2 − X(i)) + X( j) − 1)mod p ; Note if jf = 0 

replace with jf = p 
kf = ((p + 2 − X(i)) + j(f − 1))mod p ; Note if kf = 0 replace 

with kf = p 
jf 1 = (X(i+1)+ j(f −1))mod p ; Note if jf 1 = 0 replace with  
jf 1 = p 
R1(w) ← jf 1 ; Note keep jf 1 into set . 1R
jf 2 = ((p + 2 − Y(i)) + Y( j) − 1)mod p ; Note if jf 2 = 0 

replace with jf 2 = p 
R2(w) ← jf 2 ; Note keep jf 2 into set . 2R
w ← w + 1 ; Note increase w by 1 
end 
v ← v + 1 ; Note increase v by 1 
end 
Step 3. Decision, if , store the set  and 

select the next one member from set into set  and 
then go to step 2. If , select the next member 
from set  instead of the last number in set  and 
then go to step 2. 

1 2R R  

1 2R R  

X
X

X

S X

S X

Step 4. The process ends when the members of set are 
equal to 

X
L . The members of  are used to construct the 

pr posed matrix H that is free from girth 8. 
X

o  

IV. THE PROPOSED IRREGULAR QC-LDPC CODE  

The proposed parity-check matrix as in (2) can be 
modified to be an irregular QC-LDPC by replacing 

1( )I X with identity matrices and replacing
1( )I Y , , 

and  with 0, where 0 is a 
1(0 )I

2 )(0I p p zero matrix. This code 

is an approximate lower-triangular matrix so that the 
generator of this code is a linear independent form. The 
transpose of the parity-check matrix is shown in (50).  Ĥ T

Next we show a novel method to generate redundant bits 
by using a simple shift register as follows:  

Denote as a 

codeword vector.  is generated from systematic LDPC 

codes so that .  

1 2 3 1 2 3 ( 3)  ( ,   ,  ,  ,  , ,  )   Lw Z Z Z D D D D  
w

ˆ 0w TH
u u u u uDenote 

1 2 3 ( ,  ,  , ,  )pZ Z Z Z Z 

  3u 

 as a redundant 

parity bits vector, where 1  .  
Denote 

1 2 3 ( ,  ,  , ,  )v v v v v
pD D D D D 

  - 3v L 

 as an information 

vector, where 1  .  

Now divide  into  and  as follows ˆ TH TB TG
 

2 2

3 3 3

( ) (3

(0) 0 0

( ) ( ) 0
ˆ ( ) ( ) (0 )

( ) ( ) (0 )L L L

2 2

3 3 3 (3 ) (3 )

(0) 0 0

( ) ( ) 0

( ) ( ) (0 )
P P

I

I X I Y

I X I Y I
  

 
  
  

TB                           (51) 

2 2 2

3 3 3

4 4 4

(( 3) ) (3 )

( ) ( ) (0 )

( ) ( ) (0 )

( ) ( ) (0 )

( ) ( ) (0 )L L L L P P

I X I Y I

I X I Y I

I X I Y I

I X I Y I
   

 
 
 
 
 
 
  

TG

  

                   (52) 

 
If ˆ 0w TH

wQ
, so that . Denote 

, where 
+  = 0Z DT TB G

1 2 ( ,  ,  w w w wD TG 3 , ,  )w
pQ Q Q Q Q , 

1    3w  .  We can generate all redundant parity bits by 
using the sequentially relation of equations as follows: 
 

3 (0) 3Z I Q                                                                     (53) 
2 3

2 3( ) ( ) 2Z I Y Z I Y Q                                                   (54) 
1 2 3

2 3(0) ( ) ( ) 1Z I Z I X Z I X Q                                  (55) 

The results of ( )u
lZ I X  and ( )u

lZ I Y are equivalent to the 

vector uZ  that has data shifted to the right by ( ) 1lX   

positions and ( ) 1lY   positions, respectively. 

A. Two-stage encoding schemes 
The two-stage encoding scheme is as shown in figure 1. In 

the first stage of the encoding process, all information is 
read into p  buffers of the feedback shift registers or 

equivalently, vector . In this process, each subvector of 
vector  contains the results that are generated by 

multiplying information vectors with circulant permutation 
submatrix columns of G

3L 
D

Q

T
 as shown in (56), (57), and (58). 

 
 

4

51 1 2 3

( )

( )
( , , ..., )

( )

L

L

I X

I X
Q D D D

I X



 
 
 
 
 
 


                                   (56) 

 

4

52 1 2 3

( )

( )
( , , ..., )

( )

L

L

I Y

I Y
Q D D D

I Y



 
 
 
 
 
 


                                    (57) 

 

4

53 1 2 3

(0 )

(0 )
( , , ..., )

(0 )

L

L

I

I
Q D D D

I



 
 
 
 
 
 


                                    (58) 

)L P P

I

I X I Y

I X I Y I

I X I Y I
  

 
 

 
 
 
  

TH

  

                        (50) 
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In the encoder implementation, we use several buffers of 
information registers that correspond to bits 1 of the first 
column of each circulant permutation submatrix columns of 
matrix GT as inputs of XOR-gates. The summation results 
from all XOR-gates are set to the first buffer of all Q  

registers. We can form new equations by using (5) and (8) 
as follows. 

4 5 6

1 1 2 3
1 ...,

l

3L
Y Y Y YQ D D D D                                           (59) 

4 5 6

2 1 2 3
1 ...,

l

3L
X X X XQ D D D D    

3 1 2 3 3
1 1 1 1 1...,

                                  (60) 
LQ D D D D                                             (61) 

                       

At the beginning of the first stage encoding, all 3L   
information sections are read into  feedback shift 
registers in the first clock cycle. The 

results are formed based on (59), (60), and (61) and then are 
shifted into Q , , and Q  registers concurrently. By 

continuing to shift registers to the left 

3L 

1

1 2 ( 3)( ,  , ,  )  LD D D 

1 2Q 3

p  times until the 

end at the p th
3Q

) p (  -  L

 clock cycles, all of the results are stored in 

, , and  registers. This stage requires a total of 

 flip-flops and (   XOR-gates.  

1Q

(

2Q

3L  3) -  1)3

 Now we replace 3Z  with 3Q   into (54) so that 
2 3

2( )  ( )  2
3  Z Y Q Y

3Q 2

Q . After that we set indices of 

and Q  that correspond to the first index of 2Z  by using 

(8), and we have 
 

3 2 2

2 3
1 (( + -1)  )

2
X Y mod p YZ Q Q                                                (62) 

 

Next, we replace 3Z  with and 3Q 2Z  with               

2 2 2

3
(( + -1)  )

2
X Y mod p YQ 

3 Q

Q into (55), then using (5) we get the 

indices of Q  and  that correspond to the first index of 2

1Z  as follows: 

2 3

1 2 2
1 Y Y

1
1Z Z Z Q  

1 3

                                      (63) 

3 2 2 2 2 3

3 3
(( + + -2)  ) (( + -1)  ) 1X Y Y mod p X Y mod p Y

1
1Z Q Q Q Q            (64) 

 
In the second stage, equation (53) shows that the vector 
3Z  equals  so that the output can be directly connected 

to the first buffer of the Q

3Q

 1)

3
 register. The  

3 2 - )X Y mod p th((    buffer of Q 3
 and 

2Y th  buffer 

of  are set to be the input of a XOR-gate, and the results 

of this gate are redundant parity bits of vector 

2Q
2Z . In the 

last connection, the 
3 2  -X Y Y o2  (( 2)m )d p th    buffer 

of , the ((3Q 2 2  - 1)Y Y )mod p th  buffer of Q , the 2

3Y th  buffer of Q , and the first buffer of Q3 1  are set to be 

inputs of two XOR-gates, the results of each gates are set to 
be inputs of the last XOR-gates and the result of the last 
gates are redundant parity bits of vector 1Z . At the first 
clock cycle, the results are formed to be 1Z ,  2Z , and 3Z  .  

By continuing to cyclically shift buffers of all Q  to the 

left 1p   times until the end at the p th  clock cycles, all 

redundant parity bits of Z  can be generated. This stage 
requires a total of 3 p  flip-flops and 4 XOR-gates. Finally, 

we conclude that the two-stage encoding uses a total 2 p  

clock cycles,  flip-flops and ( (( )  

XOR-gates. 
Lp 3)   1)3  4L

 
Figure 1. Block diagram of the two-stage encoding circuit 

D1

p  bits
 shift

register
array

…

p  bits
 shift

 register
array

p  bits
shift

register
 array

…
…

…

Z
1

Z
2

Z
3

D2

DL-3

XOR-
gates

XOR-
gates

XOR-
gates

 
 

           Figure 2. Block diagram of the one-stage encoding circuit. 

TABLE I. COMPARISON OF ENCODING SCHEMES.  

Encoding scheme Clock Cycles Flip-Flops XOR-gates (Two-input) AND-gates (Two-input) 

QC-LDPC Serial SRAA [16] (L-c)p 2cp cp cp 

QC-LDPC Parallel SRAA [16] cp (L-c)p (L-c)p-1 (L-c)p 

QC-LDPC Two-stage [16] p Lp O(c2p) 0 

QC-LDPC Proposed  Two-Stage 2p Lp ((L-3)-1)(3) + 4 0 

QC-LDPC Proposed  One-Stage p (L-3)p ((L-3)-1)(7) + 4 0 

Note, c and L are the number of circulant permutation matrices of rows and columns of the parity-check matrix.  p is the size of a circulant matrix. 
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B. One-stage encoding schemes 
Now we reduced the stages of the two-stage encoding 

scheme to be a one-stage encoding scheme as shown in 
figure 2.  In the redundant parity bit generating process, we 
set buffers of information registers to be inputs of XOR-
gates at the first clock cycle by modifying (62) and (64) as 
follows. 

 

3 2 +3 2

3 3
2

1 (( + -1)  ) (( + -1)  )
1 1

v

L L
v v

X Y mod p X Y mod p
v v

Z D D
 

 

  

3 2 2 3

+3 2 2 +3

3 3
1
1 (( + + -2)  )

1 1

3 3

(( + + -1)  )
1 1

v v

L L
v v

               (65)    

X Y Y mod p Y
v v

L L
v v

X Y Y mod p Y
v v

Z D D

D D

 

 

 

 

 

 

 

 
                                (66) 

 
As for the first-stage of the two-stage scheme, all 3L   

information sections are read into  feedback shift 
registers in the fist clock cycle. All redundant parity bits of 

3L 

3Z  can be generated using (53). However, the redundant 
parity bits of 2Z  and of 1Z  are formed by using (65) and 
(66), respectively. By continuing to shift information of the 
shift registers to the left 1p   times, all redundant parity 

bits of Z  can be generated. This process requires a total of 
p clock cycles, ( 3)L p  

( (( 3) 1)7L  

flip-flops and 

) XO

 

   4 R-gates.  

Table I shows the encoding speed and complexity of both 
encoding schemes compared to other encoding schemes. 
One can see that the two-stage encoding scheme uses twice 
as many clock cycles as the one-stage encoding and the two-
stage encoding of [16]. However, the advantage of both 
encoding schemes is that a few XOR-gates are used in 
encoder implementation. 

2

0
10 2

10 log

v

ii
h

SNR

                                                   (68) 
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Figure 5. Comparison BER of the modified code (new encoding method) 
with other QC-LDPC codes over EPR2 channel. 
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Figure 4.  Comparison BER of the modified code (new encoding method) 
with other QC-LDPC codes over PR2 channel. 

where, 2  is the variance of  the AWGN noise. 
V. CHANNEL MODEL 

A block diagram of a magnetic recording system is shown 
in Fig.3. The (  regular QC-LDPC code and irregular 

QC-LDPC code are error correcting codes. The magnetic 
recording channel is modeled as a perfectly equalized partial 
response (PR) channel that can be defined by target response 
as 

3, 26)
VI. PERFORMANCE RESULT  

In the simulations, a ( regular QC-LDPC code (7982, 

7063) and an irregular QC-LDPC code (7982, 7061) were 
constructed from the proposed procedure. To compare the 
performance results, the other (  regular QC-LDPC 

codes were constructed with the same parameters. In this 
paper, QC random code [13] and QC Tanner code [14] were 
used for comparison with the proposed code. All codes were 
constructed with circulant matrices of size 

3, 26)

3, 26)

307 307     
307p  . The partial response over the magnetic recording 

channels used Binary Phase Shift Keying (BPSK) 
modulation. For encoding of the regular QC-LDPC codes, 
Gaussian elimination was employed to yield the generator 
matrix whereas an irregular QC-LDPC code was used for 
the new encoding scheme. The sum-product algorithm SPA 
was used for all decoders. 

0

( )
v

i i
i

h D h D


                                                                 (67) 

where  is the length of the channel memory and 
i
 is 

the i th  channel coefficient. The information bits are 
encoded by the proposed code, the codeword 

1 2
 is mapped into antipodal encoded 

data symbols 
1 2

, where 
i i

 and 

, and then passed to the partial response 

channel with Additive White Gaussian Noise (AWGN). In 
this paper we assume that the soft output Viterbi algorithm 
(SOVA) [19] is used as the PR channel detector. The sum-
product algorithm SPA is employed as the LDPC decoder. 
The signal to noise ratio (in dB) of the partial response 
channel is defined as 

v

,

3,

h

1



(w w

1, 2,i

 ,  ,  )Nw w 
( ,r r

, N

 ,  ,  )Nr r 2r w

Fig. 4 and fig. 5 show the performance of the proposed 
regular QC-LDPC code and the proposed irregular 

QC-LDPC code at code rate 0.8846 over PR2 channel 
 and EPR2 channel 

, respectively. The iteration 

between Viterbi detector and SPA was set as 3 while the 
iteration of SPA was set as 5. One can see from the figures 
that the proposed regular QC-LDPC code has performance 
very close to the other codes whereas the proposed 
irregular QC-LDPC code achieves the best BER 

(3, 26)

( ( )h D

( ( )h D

21 2 )D D  
1 3 3D D   2 3 )D

  
 

Figure 3.  Diagram of concatenation LDPC code and PR channel. 
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performance in the high signal to noise region.  

VII. CONCLUSION 

We have designed and investigated some conditions for 
constructing the proposed parity-check matrix without short 
girth. The new structure of the regular QC-LDPC 

codes is based on circulant permutation matrices. The 
modified code is constructed by replacing some circulant 
permutation matrices with zero circulant matrices. In 
addition, we have presented two new efficient encoding 
techniques that can generate redundant bits of the codeword 
with lower complexity compared with the previous methods. 
The encoding complexity of the proposed code depends on 
the number of parity bits of the code for the one-stage 
encoding scheme, and the length of the code for the two-
stage encoding scheme. Finally, we demonstrate the BER 
performance of the proposed code at high code rate on 
partial response channels.  

(3, )L
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