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1Abstract—The Logarithmic Type Image Processing (LTIP) 

tools are mathematical models that were constructed for the 
representation and processing of gray tones images. By careful 
redefinition of the fundamental operations, namely addition 
and scalar multiplication, a set of mathematical properties are 
achieved. Here we propose the extension of LTIP models by a 
novel parameterization rule that ensures preservation of the 
required cone space structure. To prove the usability of the 
proposed extension we present an application for low-light 
image enhancement in images acquired with digital still 
camera. The closing property of the named model facilitates 
similarity with human visual system and digital camera 
processing pipeline, thus leading to superior behavior when 
compared with state of the art methods. 
 

Index Terms—Digital cameras, Image processing Image 
enhancement, Linear algebra. 

I. INTRODUCTION 
In the recent years, digital still cameras (DSC) have 

sufficiently evolved so to become compact and cheap 
enough to be used way beyond simple photography. In the 
consumer range, the miniaturization trend reached a 
pinnacle with Mobile Phone Cameras. In the same time their 
distribution was broadly enlarged in various fields of 
industry like automotive or game industry, etc. While, the 
camera producers engage with tremendous efforts in the 
megapixels race, the trend of miniaturization is imposing 
design modifications such as reducing the size of optics and 
of photo-sensible area, which lead to more pressure on the 
image processing pipeline, especially if new features are 
added. In this paper we introduce a parametric extension of 
existing models for image processing that provides a 
suitable framework for enhancing the functionality of 
typical digital cameras in extreme lighting conditions. To be 
more precise, we will describe methods for enhancing 
images acquired in low lighting (which is a solution to 
motion-blur degradation of images due to shaky hands). 

The Logarithmic Type Image Processing models 
represent an alternative to image processing with real based 
operations. Under certain circumstances, such a 
combination, named Classical Linear Image Processing 
(CLIP) - [1] proves its limitations like the upper range 
overflow which is often brutally solved by truncation. 
Consequently, more elaborate structures appeared, namely 
Logarithmic Image Processing (LIP) models [2], [3]. More 

recently the logarithmic model has been replaced by a 
logarithmic-like one with the benefits of a simplified 
calculus [4] (to form the class of logarithmic type image 
processing – LTIP) and these models were enriched with 
parametric extensions [5], [6]. While these models required 
additional constraints, the set of simple rules that guarantee 
the algebraic model of a cone space introduced in [7], [8] 
permits a more robust parameterization. The structure of a 
vector or a cone space includes the property of closing 
which enforces a similarity with the human visual system, 
trait that also exists in the digital camera. We will exploit 
this similarity while constructing a method for low light 
image enhancement.  

 
1The work has been co-funded by the Sectoral Operational Programme 

Human Resources Development 2007-2013 of the Romanian Ministry of 
Labor, Family and Social Protection through the Financial Agreement 
POSDRU/ 89/1.5/S/62557. 

The remainder of the paper is organized as follows: in the 
next section the mathematical background of the LTIP 
models is reviewed, as well as the new parametric extension. 
Section III reviews the global description of the image 
processing pipeline for DSC platforms. Section IV describes 
how we can use the closed logarithmic-like amplification 
and addition to provide an efficient solution for low-light 
image acquisition. The application is a core one for a DSC 
platform and we will discuss the achieved results in section 
V. Finally, section VI summarizes the proposed solutions 
and discusses further continuations paths. 

II. LOGARITHMIC TYPE IMAGE PROCESSING MODELS 
The mathematical construction of a LTIP model may start 

by defining the operational laws (the addition and the scalar 
multiplication) or, equivalently, by finding the function that 
maps the investigated model definition set onto the real 
number algebraic structure, hence acting as a generative 
mapping. We follow the procedure from [7], [8] namely 
focusing on the second alternative and in the next 
subsections we will review results that define a set of 
conditions that guarantees achieving a vector (cone) space 
structure. We must stress that this is an algebraic exercise 
applied on image processing domain. 

A.   Vector/Cone Space Structure 

Let us consider a function, . Within this 

choice, the set  is the uni-dimensional image definition 
set. For color (multi-dimensional) images, the discussion 
may refer to each plane independently. Typically, if the 
image values have intensity meaning, the set is bounded 
(e.g. the values are in the [0,255] range). 

ED →Φ Φ:

ΦD

The function Φ  defines the model structure and maps the 
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image definition set, , onto a subset of real numbers, E. 
Following the theory elaborated by Oppenheim, [9], [10], 
the two basic operations (addition of two elements of the set, 

, and multiplication, ⊗ , with an outer, typically real 
scalar α) are defined over the given set, , as following: 

ΦD

⊕

ΦD

)(+)    (1) (=)( vuvu ΦΦ⊕Φ

)(=)( uu Φ⊗Φ αα        (2) 

where  and Φ∈Dvu, ℜ⊂∈Kα . 
Equations (1) and (2) are the defining conditions of a 

homomorphism between two similar algebraic structures. 
The simplest solution is to consider the function Φ a 
bijection and, hence, to have the laws uniquely determined. 

With respect to the bijectivity constraint (thus, the 
existence of ), the definition laws are determined by:  1−Φ

( )(+)(= -1 vuvu ΦΦΦ⊕ )                 (3) 

( ))(= 1- uu ΦΦ⊗ αα                 (4) 

A set of sufficient conditions that need to be fulfilled by a 
generative function so to produce a usable logarithmic-type 
image processing model is:  

• should be bijective;  Φ
• The target E should be at least in the case of 

cone structure;  
);0[ +∞

• .  0)( 0 =Φ u
Of practical importance for the LTIP models is the 

closing property of both addition and scalar multiplication. 
This states that the sum of any two images should lead to 
another valid image and, respectively, any amplified or 
attenuated image should be an image:  

ΦΦ

ΦΦ

∈⇒⊗=∈∀∈∀
∈⇒⊕=∈∀

DzvzKDu
DzvuzDvu

αα ,,
,,

 (5) 

Given the two operative laws, ⊕ and , the vector set 
 and the outer scalar set K, the formal definition of the 

vector space implies several properties (see [11], section 
II.1). More precisely the vector addition has to be 
associative, commutative, should have neutral element and 
inverse element, while the scalar multiplication should be 
distributive with respect to vector addition in the fields of 
vectors and in the fields of scalars, should respect field 
multiplication and have identity element. These properties 
do hold under the bijectivity constraint [7]. 

⊗

ΦD

The existence of the addition identity element, u0, implies 
further conditioning over the mapping function, Φ as a 
consequence of the isomorphic behavior: 

0)(,, 000 =Φ⇔=⊕∈∃∈∀ ΦΦ uuuuDuDu (6) 

The existence of addition inverse element, u- is 
conditioned by a symmetry towards 0 of the generative 
function. This property makes the difference between vector 
and cone space. However, since this is not of paramount 
importance for practical applications, in many cases, the 
LTIP model has a cone structure. 

Similarly with addition, the identity element of the scalar 
multiplication has to be 1:  

{ } 1,, 1101 =⇔=⊗−∈∀∈∃ Φ ααα uuuDuK (7) 

For models that have a cone space structure, the 
subtraction is defined as follows:  

( ))()(1 vuvu Φ−ΦΦ=Θ −         (8) 

where u is enforced to be larger than v, u>v 

B.  Overview of existing models and their applications 
The first logarithmic model has been proposed by Jourlin 

and Pinoli, [12], [2]. They have started from the cascade of 
two light-transmitting filters to deduce the equation for 
logarithmic addition and subsequently derived the scalar 
multiplication. The model was further used in various 
applications, like background removing [13], image 
enhancement (contrast and sharpness improvement) [14], 
[15] and so on. If initially the model has been dedicated to 
gray-scale image only, soon applications for color image 
representation and processing appeared [16]. Extensive 
studies of up-to-the day advances and applications for the 
LIP may be found in [15] and more recently in [17]. Later 
advances witness Deng interpretation of the LIP model from 
an entropy point of view [18] and proof of similitude with 
the Giga-vision image sensor [6]. 

In the same time, several other L(T)IP models have been 
proposed. Pătraşcu, [3] built his model from a mathematical 
point of view, aiming at a fully developed vector space, 
while Vertan described a computational simpler 
logarithmic-like model. Additional results regarding 
possible generative functions are presented in [7], [19]. All 
these models, from a mathematical point of view are 
covered by the formulation proposed in the previous section. 
The current basic models (that have been showed to be 
useful for image processing applications, [2], [3], [4]) are 
summarized in Table 1. 

The extension of the LTIP models to color images is 
trivial since the computation takes place independently on 
each plane [14]. The same approach will be assumed in this 
paper too. 

C. Parameterization 
The basic result used by us to extend the LTIP models by 

parameterization comes from the algebraic theory (see [11], 
section III.2). It states that the composition of two valid 
homeomorphisms leads to another homomorphism [7]. Let 
be 21: ΦΦ → DDψ , a homomorphism from to  and 

let be a homomorphism from to , 

then the composite function 

1
ΦD 2

ΦD

2
2: ED →Φφ 2

ϕD 2E

)(ψφψφρ == is a 
homomorphism from to . With such a construction, 

we choose 

1
ϕD 2E

φ  to be the generative function, , of a known 
LTIP model and 

Φ
ψ  any real function with bounded domain 

and target set; the result is a valid new LTIP model. One 
may go even further: it is not really necessary to have the ψ  
function a homomorphism, but only a bijective function; 
even in such a case the result is a valid generative LTIP 
model function. 
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TABLE 1. SOME OF THE EXISTING LOGARITHMIC TYPE IMAGE PROCESSING 
MODELS WITH BASIC OPERATIONS. D IS THE UPPER BOUND OF THE IMAGE 

DEFINITION SET (TYPICALLY D = 255). 

Model 
Domain 

 
Isomorphism 

Addition 
 

Scalar multiplication 

Jourlin 
[2] 

],( DD −∞=Φ

 

xD
DDxJ −

=Φ log)(

 

D
uvvuvu ++=⊕

 
α

α ⎟
⎠
⎞

⎜
⎝
⎛ −−=⊗

D
uDDu 1  

Pătraşcu 
[3] 

)1,1(−=ΦD
 

x
xxP −

+
=Φ

1
1log)(  

uv
vuvu

+
+

=⊕
1

 
( ) ( )
( ) ( )αα

αα

α
uu
uuu

−++
−−+

=⊗
11
11  

Vertan 
[4] 

)1,0[=ΦD
 

x
xxV −

=Φ
1

)(  

uv
vuvu

−
−−

−=⊕
1

)1)(1(1

 

u
uu

)1(1 −+
=⊗

α
αα  

 
The parameterization is naturally achieved if the ψ  

function is a parametric function that in all the cases uses the 
same sets. Such an example may be the family of  bijective 
”power(gamma)-type” functions [7]: 

),0(,)(),1,0[[0,1): +∞∈∀=→ mxx m
mm ψψ  (9) 

Composing this family of functions with the generator 
mapping of the Vertan logarithmic-like model, [4], a set of 
parametric LTIP models with the base function is obtained: 

m

m

-1
))(((x)),,0[[0,1):

x
xxmmm =Φ=Φ+∞→Φ ψ  (10) 

The inverse function is: 

mmm y1
yx))((y)( 111

+
=Φ=Φ −−− ψ        (11) 

The mathematical formulas of the so-generated model are 
found if one replaces formulas (10) and (11) in equations 
(3), (4) or (8). Hence, the addition  becomes: m⊕

m
mm

mm

m vu
vuvu

−
−=⊕

1
)-)(1-(11    (12) 

The detailed form of the subtraction, , is: mΘ

m
mmm

mm

m vvu
vuvu

21
-
−+

=Θ     (13) 

Scalar amplification is:  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

=⊗ mum
uu

)1(1
log1exp

α
αα   (14) 

We have to note that the ”power” function is the hereby 
choice and any other bijective parametric function will do.  

TABLE 2. PARAMETRIC LTIP MODELS. NOTE THAT PANETTA MODEL HAS A 
CONE SPACE STRUCTURE ONLY IF )()( DD Λ=γ WHILE DENG MODEL 

ENFORCES ),(),(),( yx DyDxDyx Φ+Φ=+Φ TO ACHIEVE 

THE SAME STRUCTURE  

Model Isomorphism 
Addition 

 
Scalar multiplication 

Panetta
[22] 

β

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Λ

−⋅

⋅Λ−=Φ

)(
1log

)()(

D
x

Dx

 

)(D
uvvuvu
γ

++=⊕

 
α

γ
γγα ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−=⊗

)(
1)()(

D
uDDu  

Deng 
[18] 

⋅

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

=Φ

x

x

D
xD

Dx

1log

),(

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=⊕

vuvu DD
uv

D
v

D
uDvu

 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=⊗

α

α
uD

uDu 11  

m
mm

mm

vu
vuvu

−
−−

−=⊕
1

1)(1(1 )

Curren
t 

 

m

m

m x
xx
−

=Φ
1

)(   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

=⊗ mum
uu

)1(1
log1exp

α
αα

 
 
In the used case, for m=1 the logarithmic-like model is 
obtained. 

D. Relation with other parametric extensions of the LIP 
models 

The first significant result in parameterization of LIP 
models may be considered the one reported by Panetta et al. 
[5], [20]. They proposed a parametric extension of the 
Jourlin model, named PLIP (see table II for details) by 
replacing the upper bounds with affine transformation with 
parametric coefficients. The introduction of the parameters 
offers greater flexibility for defining the new operations but 
with the cost of losing the cone space structure. In the same 
time, the Panetta model, if )()( DD Λ≠γ is no longer an 
extension of Oppenheim’s homomorphic systems [9]. 

Another parameterization has been introduced by Deng 
[18]. He extends Jourlin model in the framework of 
homomorphic theory [9], which he calls GLIP (Generalized 
LIP), using the similarity of Jourlin model with the Giga-
vision sensor. The resulting effect is similar with the one 
produced using the hereby framework. A summary of the 
parametric LTIP models may be followed in table II.  

We note the previous models require additional (and not 
intuitive) constraints in order to preserve the algebraic 
structure. Thus the procedure discussed in section II. A is 
critical when detailing a new extension of the LIP models. 
Furthermore, we stress that current parametric extension 
always follows the homomorphic theory and is simpler than 
Gigavision based model. 

III. DIGITAL STILL CAMERAS 
The acquisition of images relies on the auto-exposure and 

autofocus algorithms. While the for the current work only 
the auto-exposure algorithm, we will refer to the excellent 
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paper by Ramanath et al. [21] for further details on image 
processing pipeline in DSC.  

The auto-exposure algorithm relies on the APEX equation 
[22]: 

K
SB =N2log+t-log=E 22V
⋅         (16) 

where EV is the exposure value, the log2t forms the time 
value (TV), N is the relative diaphragm opening (that is 
formed by taking the log, the aperture value, AV), B is the 
incident light, S is the sensors sensibility (or for digital 
cameras – the “ISO” amplification) and K is a constant 
specific to the camera model. Given the scene (i.e. incident 
light), camera adjusts the other parameters to balance 
equation (16). In general, two out of the three parameters 
(exposure time, aperture value and amplification) are kept 
fix and the third is adjusted so that the reported image 
intensity in an area of interest forms a Gaussian-like 
histogram with the mean equal with half of the values range. 
A description of the typical exposure algorithm may be 
found in [23], chapter 19. 

Regarding the image post-processing, the following main 
steps are usually required to transform the raw image 
provided by the sensor into a final one [21], [24]: flawed 
pixel correction, white balance, de-mosaicing, tone/gamma 
correction, color correction and color transform. 

A.  Camera Response Function 
The entire camera processing system is typically modeled 

by the so-called Camera Response Function (CRF). The 
function takes as input the relative scene objects reflectance 
and outputs the reported digitized image intensities. The 
subject of estimating the camera response function has been 
widely debated in literature. The first attempts were based 
on taking a single exposure of a uniformly illuminated chart 
containing patches of known reflectances, such as the 
Gretag Macbeth chart [25]. The Gretag Macbeth Color 
Checker provides a subject scene with uniform patches and 
intensity varying over the entire range of interest. The CRF 
is estimated in the given set of brightness values and 
interpolated in the rest. However, the process is quite 
complicated and can only be performed in restrictive 
conditions (e.g. the environment illumination must remain 
un-changed), which are not always accessible. 

Later attempts were based on the Debevec and Malik 
observation, [26], which states that a set of differently 
exposed images contain, usually, enough information to 
recover the CRF (denoted here by g) using the images 
themselves. 

If the scenario conditions include the same scene, aperture 
number and sensors amplification as constants, then the 
measured intensity is linearly dependent of the exposure 
time. To be more precise, let us assume that images FA and 
FB of the same scene were photographed with different 
exposure times TA and, respectively, TB. Given a photo-
detector, its charge from the two images must have the same 
ratio as the one between the exposure times. Now, if we 
come to the reported pixel values uA and uB, we get the basic 
CRF equation:  

)g(u
T
T =)g(u A

A

B
B     (17) 

Recovering g from the equation (17) is a difficult task, 
[27] and certain restrictions have to be imposed on g. Mann 
and Picard, [28], proposed a gamma-like function for g, 
while Mitsunaga and Nayar, [29], used a low degree 
polynomial regression. 

IV.  AMPLIFICATION OF UNDEREXPOSED IMAGES 
Nowadays, strong directions of developing DSCs seem to 

be that of decreasing the size of the camera module and 
increasing the resolution. 

The miniaturization imposes design modifications such as 
reducing the size of optics and of photo-sensible area, which 
increases the chance of images to blur from shaking hands 
[30]. The small photo-sensible area diminishes the number 
of collisions in the photo-voltaic effect and, therefore, it 
reduces the correlation between the incident light and the 
reported image intensity. On the other hand, the small 
photo-sensible area decreases picture angle. Since human 
hand jitter is always present, the small picture angle 
increases the chances that the relative motion between the 
camera and the scene during exposure time becomes larger 
than a pixel size and thus leading to visible motion blur. 
Because this phenomenon can significantly degrade the 
visual quality of images, photographers and camera 
manufactures are frequently searching for methods to limit 
its effects. 

An abundance of proposed solutions to the mentioned 
problem do exist. We may divide these approaches in two 
categories. The first category tries to eliminate the effects of 
the motion blur, meaning that there will be a normal image 
acquisition (with a long enough exposure time that includes 
blur) and subsequently camera trajectory is estimated in 
order to restore the blur. The restoration and the estimation 
processes may be simultaneous and real-time (the so-called 
optical image stabilization, [31] ) or consecutive and digital 
(by means of deconvolution). However this alternative 
implies the use of motion sensors and heavy computation 
(which comes as an extra circuit) and therefore contradicts 
the size-diminishing goal. 

The second approach works on avoiding the 
circumstances that generate motion blur. This is achieved by 
reducing the exposure time below the “motion limit”. The 
motion limit may be based on the “q over f35” rule of thumb 
[32] or dynamically deduced from computing the 
misalignment on consecutive frames for more precise 
indication of camera motion [33]. This alternate solution 
may be easily implemented on existing digital camera 
hardware, without any changes in the acquisition process. 
However, if such a solution is chosen, the under-exposed 
image must be amplified so to provide proper luminance and 
color saturation level. This amplification consists of pixel-
based multiplication and it must avoid introducing artifacts 
that will decrease the perceived image quality [34] and [35].  

The hereby proposed solution falls into this category. If 
the amplification takes place on an image resulting after the 
processing pipeline, then the amplification should be 
governed by the camera CRF. Motivated by the similarity 
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between the CRF and LTIP amplification (discussed in the 
next subsection), the low-light enhancement algorithm 
should be implemented in a LTIP framework.  

A. Relation of the CRF with LTIP amplification 
Beyond avoiding brutal truncation while amplifying, 

further motivation for the use of the LTIP in such 
framework lies in the fact that LTIP amplification is a good 
approximation of the DSC’s CRF. 

The initial reason that LTIP amplification is an exposure 
compensation algorithm traces back to the fact that both 
(camera model and LTIP) were built to follow Weber’s law. 
This law, [36], describes the response of the human eye to a 
linear variation of the stimulus as being logarithmical. The 
consistency with Weber’s law is one of the properties of the 
initial model proposed by Jourlin, fact thoroughly 
demonstrated in [2]. It was also shown that logarithmic 
subtraction (and hence addition and multiplication) is 
consistent with Fechner’s law of (non-linearity of human) 
perception [15]. 

In parallel, the DSC camera incorporate a gamma 
correction function ([24] – section 8.1.4), which is the main 
source of the gamma-like shapes of the CRF, noted by 
Grossberg and Nayar [37]. A set of eloquent examples may 
be followed in the mentioned paper. The explanation may be 
in the aimed consistency with older film camera (which 
were specifically build to follow Weber’s law), but there is 
another, more modern, which is based on adaptation to the 
human visual system [38]. The basics come from Stevens 
effect [39], which states that while light becomes more 
intense, the perception of lightness contrast increases. This 
means that a visual quanta in the domain of low light is 
significantly larger than in the high light domain. Since the 
image acquired by regular image sensor is near linear with 
respect to image intensity ([24], section 3.4.2.1), to adapt the 
camera’s reported intensity to human visual system there is 
need for a non-linear distribution of intensities (smaller 
density in low light domain and larger density - compression 
at high luminance) followed by uniform quantization. The 
function that achieves the non-linear compression is a 
gamma-like function.  

The closing property of the LTIP models implies that no 
matter how strong the input is, the response will always be 
in the same domain. With respect to reported luminance this 
means small density of values in domains close to the origin 
and high density (small quanta) in the upper domain. The 
similarity between LTIP multiplication, a gamma function 
and CRF function of camera used in this section may be 
followed in Fig. 1. 

However, observing the results reported by [37] and the 
ones plotted in Fig. 1, the cameras use the same shape of 
CRF, but there are differences among various models. To 
keep the algorithm unitary we used a parametric LTIP 
model that for various parameters is capable of coping with 
different CRFs. 

Furthermore, we will note that Stevens [39] challenged 
the Weber-Fechner logarithmic curve of perception and 
argued for a gamma-shaped. As said, a gamma curve is 
implemented in DSC. This motivates to extract our 
parametric model from Vertan logarithmic-like model and 
not from the older, purely logarithmic ones. 

B.  Determination of image amplification parameter 
First we have to deal with the challenge of selecting the 

amplification curve that approximates best a specific camera  

 
Figure 1.  Representation of multiplication (with 0.2 0.5, 1, 1.3 scalars) 
with the proposed LTIP model (black dotted lines), gamma (γ=0.45) 
function (solid blue line) and CRF of the a two DSCs used here (red dashed 
lines). On the X axis we represented we represented input luminance (gray 
level) and on the Y axis output luminance. The CRFs were approximated 
with gamma functions as in [28]. 

 

CRF. This procedure is similar with the one proposed in 
[25] and should be done once for a camera model. To be 
more precise, images with various relative exposure of the 
Gretag Macbeth chart are taken and a search for the “best” 
value of the parameter m is performed. The ”best” value is 
chosen as the value that minimizes the mean square error  

2
mε :  

( )( )22 )(2)(∑∑ ⊗−= −

V

V
E P

E
Ev

refm PIPIε     (18) 

where P stands for one of the 24 color patches from the 

Gretag Macbeth chart,  )(PIref is the average value of the 

pixels from the chosen patch of the reference image (i.e. 
image normally exposed, with parameters that balance eq. 
(16) ), the multiplication m⊗  is done according to (14), 
while EV is the relative exposure of the investigated image. 
Normally we search in the {±2; ±1; ±0.5; +0.5; +1; +2;} 
range of relative exposures. Various values for m produce 

different values for  2
mε . The choice will be the argument 

that produces the minimum error. The obtained m parameter 
will be used in all operations that involve LTIP model. 

C.  Low Light Image Enhancement 
It is a known fact that underexposing and amplifying is a 

solution for reducing the exposure. The camera computes 
the exposure time using eq. (16). A typical low-light 
enhancement method firstly captures an image with a short 
exposure time, ensuring that the image is hand motion free. 
Next, the image is amplified until its luminance and color 
levels match the reference extracted from equation (16). 

The method works in two steps: global underexposing 
compensation and local adaptation. The motivation for 
splitting our method lays in the similarity with human 
perception. First we quote Dunn et al. [40] that observed 
that global visual adaptation is completely a retinal process 
and we follow Stevens model for this part. Next visual 
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information is processed in the visual cortex for local 
adaptation/contrasting - see Hubel’s book [41], Ch. 4 for a 
discussion on this topic.  

In the underexposing compensation step, we amplify the 
input image with 2-Ev using equation (14). In the local 
adaptation step, we correct the previously amplified image 
so to obtain a specific statistic in small subsets of the image. 
To formalize the algorithm, let us denote the low-light 
image with F(i,j). Then, the estimate of the reference image 
(denoted by G(i,j)) is found as: 

( ) ),(),(),( 21 jicjiFcjiG mm ⊕⊗=    (19) 

The parameter was determined by the method described 
in section IV. B. The c1 factor comes from the opposite of 
the relative underexposure c1=2-Ev and the amplification 
stands for underexposure compensation. The amplification 
is computed with the same c1 value for the entire image. 

The addition with c2 represents the local adaptation. In 
this step, the image is divided in smaller rectangular 
adjacent areas and, independently, for each such patch we 
find a value for c2. The search process is an iterative 
approximation where the aimed value is the one that needs 
transform best the histogram of the patch of 

image into a target histogram. The purpose 
of this step is to increase the visibility of small objects. At 
the end, in order to prevent creating fake edges, the c

( FcF m⊗= 11 )

2 image 
is highly blurred. 

V.  IMPLEMENTATION AND RESULTS 
Experimental tests showed that a good compromise is 

obtained if the rectangular pieces used for determination of 
c2 have the tenth part of the image size and the blur kernel is 
twice this value. Theoretically the search for c2 should be as 
elaborate as possible; however, practical results showed that 
restricting the possible values domain to {-40;-25;-12;0;+12; 
+25;+40} works well enough; the restriction of the range 
allows to speed up computation with the use of Look-Up-
Tables (LUT) for the possible values of the function 

, where u is a intensity level. Furthermore, 
since the operation is pixel–wise, trial and error procedure 
should be applied on the histogram of the F

2)( cuuf m⊕=

1 image. The 
tests showed that the objective function (which is the mean 
square error between the obtained histogram and the aimed 
histogram – Gaussian with 128 mean and 40 variance) is 
uni–modal, hence to reduce the number of steps a simple 
Hill Climbing [42] procedure is implied. 

For demonstration purposes, we considered a low-light 
landscape type scene (Fig. 2) and a still one (Fig. 3). The 
reference image (showed in subplot (a)) and original image 
(in subplot (b)) were obtained with a consumer camera. The 
under-exposed subject image (b) was obtained by forcing 
the exposure value to be EV=-1. The ideal image (a), which 
is not affected by motion blur, was recorded with a tripod 
mounted camera. The results are showed in subplot (c) 
where subplot (d) shows the c2 correction map; for 
comparison we showed in subplot (e) the image obtained by 
histogram stretching. 

For numerically evaluation of our method we considered 
the histogram stretching method and internal ISO 

amplification (i.e. image acquired with the small exposure  

(a) (b) 

(c) (d) 

  
(e) 

Figure 2: Low–light image amplification. The ideal image (acquired with 
tripod mounted camera) (a), original underexposed image (b), image 
resulted after applying our algorithm (c), image obtained by histogram 
stretching (d) and c2 coefficient map (value–stretched to maximum for 
displaying -e). The histogram stretch does almost nothing to this image, 
while our method produces one extremely similar with the reference one.  

 

 
(a) 

 
(b) 

(c) (d) 
Figure 3. Low–light image amplification. The subplots have the same 
significance as in Fig. 2. On this artificial set, the image obtained by 
histogram stretching presents more pleasant colors, even that our algorithm 
produce an image closer to the reference one.  

 

time, but with higher ISO). The methods were applied on a 
set of static images with scenes in which objects were 
manually segmented. The images were taken on a tripod and 
for each scene, the low-light image and the normally 
exposed image are available. Overall we used 3 different 
cameras (low consumer, medium consumer and high-end 
mobile phone). There are 104 images of 4000x3000 
resolution underexposed with EV=-2 and 112 with EV=-1 and 
a total number of 616 patches (that were uniform enough) 
marked. The results are presented in tables 3 and 4. 
Supplementary, we counted in how many images there were 
regions with saturated (e.g. higher than 252), incorrect 
values. 
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The histogram stretching is the classical method (see [43], 
chapter 3.3), while for ISO we used the internal camera 
amplification (i.e. same exposure time as the underexposed 
image for our method, double S factor for EV=-1 and 
quadruple for EV=-2). 

For comparison we considered typical reference 
measures, like  ε   (mean of absolute differences between 
the reference image and the processed images, given in 
intensity levels), maxε  (maximum difference between the 
mean of selected patches, also given in pixels) and the 
number of saturated areas, Nsat. For more thoroughly 
evaluation a no reference perceptual metric Sδ  was added. 

The last metric is based on the measure S (derived in [44]) 
so to be highly correlated with human mean opinion score: 
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where β is 3.6 (extracted by psycho visually experiments) 
and  L is the number of blocks, Rb, used of size 64x64. Each 
block is taken on the Sobel edge image ei; w(ei) is the total 
edge width in the given block computed by counting the 
number of pixels with increasing grayscale values in one 
direction of the edge pixel while counting the number of 
pixels with decreasing grayscale values in the other 
direction. having width has small values in sharp images. 
wJNB(ei) integrate in the measure the human perception as it 
has the meaning of the minimum edge width where a human 
objerver would notice blur (just noticeable blur). Since the 
actual measure depends on the image content, we considered 
as reference image, the acquired low light image, where the 
found measure is St and we computed Sδ  as a percentage of 
increase (decrease) from the reference image: 

( )
( )reft

reft

SS
SS

S
+
−

=
2

100δ     (21) 

Obviously higher values for Sδ  means better image. 
Regarding the results showed in tables 3 and 4, one may 

notice that the proposed method outperformed the classical 
histogram stretching (always in terms of mean error, number 
of saturated areas and partially with respect to the perceptual 
metric), results easy explainable by the fact that the latter 
method simply targets a histogram type without using any 
information on the scene. The internal ISO amplification 
provided more accurate colors in general – smaller errors 
(easy explainable since it benefits from tuning with 
knowledge on the specific internal DSC processing), but it 
produces quite often saturated areas. Regarding the no-
perceptual reference metric, Sδ , it gives an idea about the 
amount of noise existing in the final image (and 
amplification of noisy image produce it) and the local 
contrast provided; the images less underexposed have better  
TABLE 3: OBJECTIVE MEASURES ON THE LOW LIGHT AMPLIFICATION 

ALGORITHM WHEN UNDEREXPOSING WAS EV=-1.  ε  IS THE MEAN OF 
ABSOLUTE DIFFERENCES BETWEEN THE TRIPOD MOUNTED REFERENCE 
IMAGE AND THE PROCESSED IMAGES; 

maxε , IS COMPUTED AS THE 

MAXIMUM DIFFERENCE BETWEEN THE MEAN OF THE PATCHES (OVER THE 

ENTIRE TEST SET OUT OF A POSSIBLE MAXIMUM OF 255 INTENSITY LEVELS) 
AND IT EXCLUDES SATURATED AREAS; THE LAST ENCOUNTERS ARE GIVEN 
AS NSAT. VALUES Sδ ARE BASED ON NO-REFERENCE PERCEPTUAL METRIC 
FROM [44]. THERE WERE 112 IMAGES WITH 364 MANUALLY MARKED 
PATCHES. 

Method ε [lev] maxε [lev] Nsat Sδ [%] 
Current 10.24 22 2 9.06 

Histogram 
stretching 12.12 38 12 3.4 

Internal 
ISO 7.15 17 15 7.63 

 
TABLE 4: OBJECTIVE MEASURES ON THE LOW LIGHT AMPLIFICATION 
ALGORITHM WHEN UNDEREXPOSING WAS EV=-2. THERE WERE 104 IMAGES 
WITH 352 MANUALLY MARKED PATCHES. 

Method ε [lev] maxε [lev] Nsat Sδ [%] 
Current 15.12 35 4 -8.29 

Histogram 
stretching 18.85 61 16 -5.67 

Internal ISO 11.36 27 21 -11.71 
 

contrast than noise, while for high  underexposing,  noise 
becomes dominant (for all solutions).  

Specifically for the Ev=-2 case, where the internal ISO 
amplification provide better perceptual score, the 
explanation lies in the designed tendency of the internal ISO 
amplification algorithm to provide maximum possible 
contrast by using the entire gamut. This trait, while it leads 
to the increase of the perceptual metric S, comes with the 
disadvantage of exceeding the given range and forming 
burned images. As Nsat shows, the incidence of such areas is 
much higher in the case of ISO amplification. On the other 
hand, the use of LIP models impedes the intensity overflow 
but produces less contrast in other areas. To avoid contrast 
diminishing the solution at hand is to reduce size of the blur 
kernel radius used for smoothing c2 map. 

The use of the LTIP models with their closing property 
ensures that we will never exceed the given range. 
Furthermore, with the cost of some extra operations, the 
refined search of the c2 factor makes the method to provide a 
better dynamic range and local contrast than usual.  

The duration of the proposed method is in average 0.232 
*10-7 sec/pixel in single core Matlab implementation on an 
Intel i7 at 2.7 GHz.  

VI. CONCLUSIONS 
In this paper we have summarized our contribution to the 

advance of parametric logarithmic-type image processing 
models. From a mathematical point of view, these models 
form definite structures, namely vector or cone space. The 
most important LIP property is that of closing. This property 
ensures special behaviors near the edges of the definition 
set. Applied on logarithmic-like models, this property shows 
similarity with Stevens effect of the human visual system 
and thus with gamma-like function of digital still camera.  

From the application point of view, non-linearity localized 
especially near the boundary of the value domain makes 
them suitable for processing images that have important part 
of the histogram in these ranges; these are images acquired 
in extreme lighting. We have shown the usability of the 
proposed framework by describing an application for digital 
still cameras- low-light enhancement - that showed results 
superior to the state of the art methods.  

       103

[Downloaded from www.aece.ro on Tuesday, June 06, 2023 at 23:47:34 (UTC) by 35.172.164.32. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 13, Number 2, 2013 

Regarding the further continuation paths, the algorithms 
are currently in a process of optimization, including 
adaptation for ASIC (Application Specific Integrated 
Circuit) acceleration. The latter process is rather easy since 
the framework is pixel-wise oriented, hence powerfully 
parallelization may be used. Also another DSC core 
algorithm that is non-linear is the white balance. We will 
investigate if this part can benefit from the LTIP model 
properties. 
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