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1 Abstract—In this paper, we present a new compressive 

image fusion method based on combined sparsifying 
transforms. First, the framework of compressive image fusion 
is introduced briefly. Then, combined sparsifying transforms 
are presented to enhance the sparsity of images. Finally, a 
reconstruction algorithm based on the nonlinear conjugate 
gradient is presented to get the fused image. The simulations 
demonstrate that by using the combined sparsifying 
transforms better results can be achieved in terms of both the 
subjective visual effect and the objective evaluation indexes 
than using only a single sparsifying transform for compressive 
image fusion. 
 

Index Terms—compressive sensing, combined sparsifying 
transforms, image fusion. 

I. INTRODUCTION 

Compressive sensing (CS) [1-2] is a recently developed 
theory and has been widely used in many applications such 
as compressive imaging [3-4], speech coding [5-6], and 
biomedical signal processing [7-8] etc. It demonstrates that a 
sparse or compressible signal can be accurately 
reconstructed from a small number of incoherent 
projections, which is far fewer than the number of samples if 
the signal is sampled at the Nyquist rate [9]. CS theory 
provides the possibility of reconstructing the signal at a 
lower sampling rate without any prior information about the 
observed signal. It thus can significantly reduce the storage 
space and simplify the sampling hardware.  

All the advantages of CS discussed above motivate us to 
combine image fusion application with CS theory in order to 
reduce the burden at the sensor side. Wan et al. firstly 
proposed an image fusion framework based on CS theory in 
[10-11]. They use the spatial finite-difference as the 
sparsifying transform and Min-TV (Total Variation) as the 
reconstruction model in those papers. Meanwhile, the fusion 
rule employed there is the maximum of absolute value 
(MAV). As the spatial finite-difference is not a good 
sparsifying transform for natural images [12], wavelet 
transform is used in place of it in [13] and the reconstruction 
model used there is Min-L1. Moreover, although MAV 
fusion rule has been widely used in wavelet based image 
fusion framework, it doesn’t work very well in compressive 
image fusion. As a result, linear fusion scheme via the 

weighted average on the CS measurements is proposed in 
[12-13], which proves to be more reasonable. In [12], the 
weights are calculated based on standard deviation (SD) of 
the CS measurements. And a different fusion rule is 
proposed in [13], where the weights are calculated based on 
entropy metrics of the CS measurements. 
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Combined sparsifying transforms is used in [14] for CS 
based Magnetic Resonance (MR) imaging to improve the 
sparsity of MR images. Inspired by this, we propose a new 
compressive image fusion method based on combined 
sparsifying transforms to improve the compressive image 
fusion results. Three different sparsifying transforms: the 
spatial finite-difference, the wavelet and the contourlet are 
employed for sparsely representing different features of 
images. As a consequence, the reconstruction model 
becomes combined Min-TV and Min-L1. We also present a 
reconstruction algorithm based on the nonlinear conjugate 
gradient to get the fused image. 

The rest of this paper is organized as follows. Section II 
provides a brief review of the framework of compressive 
image fusion. In Section III, our proposed compressive 
image fusion scheme is presented. Simulation results are 
given in Section IV. Finally, conclusion and suggestions for 
future work are given in Section V. 

II. FRAMEWORK OF COMPRESSIVE IMAGE FUSION 

The framework of compressive image fusion is illustrated 
in Fig. 1. It consists of four steps: (1) finding a sparsifying 
transform to sparsely represent the input images; (2) taking 
the compressive measurements of the input images; (3) 
using the fusion rule to fuse the compressive measurements 
into a composite one; (4) getting the fused image via CS 
reconstruction algorithm. Below, we will discuss the four 
steps in details.   

A. Sparsifying transform 

Sparse is the core concept of the CS theory, the sparser of 
the signal, the fewer measurements we should take. For a 
signal x with length N (an image can be vectorised into a 
long one-dimensional vector), we say x is K sparse if it can 
be represented as 

                     x                                          (1) 
where Ψ is the sparsifying transform and α is a vector 
containing only K<<N nonzero coefficients.  

In previous work of compressive image fusion, the spatial 
finite-difference is commonly used as the sparsifying 

       79
1582-7445 © 2013 AECE

Digital Object Identifier 10.4316/AECE.2013.04014

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 01:15:31 (UTC) by 52.54.103.76. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 13, Number 4, 2013 
 

transform in [10-12]. As the spatial finite-difference is not a 
good sparsifying transform for natural images [12], wavelet 
transform is used in place of it in [13]. However, the spatial 
finite-difference can only sparsely represent piecewise 
smooth images and the wavelet transform is good at sparsely 
representing point-like features but fails in sparsely 
representing curve-like features [14]. So in section III, we 
consider use the combined sparsifying transforms in order to 
improve the sparsity of the input images.  

 

Figure 1. The framework of compressive image fusion 

B. Compressive measurements 

In CS, we take the compressive measurements via: 
       y x                                     (2) 

where Φ is a Μ×N measurement matrix and y is a vector 
with length M. Although Μ<N makes the recovery of x 
from the compressive measurements y an ill-conditional 
problem, it is shown that a sparse signal can be recovered 
perfectly if Φ satisfies the restricted isometry property (RIP) 
[1- 2]. 

There exist different ensembles of matrices that satisfy 
the RIP, for example the random Gaussian matrix [1], the 
uniform Spherical ensemble [2] and partial Fourier matrix 
[10-12] etc. In this paper, we adopt the star-shaped sampling 
pattern in the 2D Fourier plane as in [12]. An example of the 
star-shaped sampling pattern is shown in Fig. 2. White lines 
here indicate the locations to be sampled. We choose more 
samples near the centre and fewer samples near the corner 
owing to the fact that input images usually contain much 
more low-frequency information than high-frequency 
information. For obtaining different measurement numbers, 
we can easily change the density of the sampling lines. 

 
Figure 2. Star-shaped sampling pattern 

C. Fusion rule  

After having taken the compressive measurements of 
input images, we should choose a fusion rule to fuse the 
compressive measurements into a composite one. 

 Maximum of absolute value (MAV) is used as the fusion 
rule in [10-11]. Although the MAV fusion rule has been 
successfully used in the transform-based image fusion 
framework, it doesn’t work very well in the compressive 
image fusion application. That is because in compressive 
image fusion framework, after sampling the input images 
via a compressive measurement matrix, coefficient with 
larger value does not mean it contains more information as 
in the traditional transform-based image fusion framework. 
To overcome the drawbacks, weighted linear fusion rule is 
proposed in [12-13], which proves to be more reasonable. In 
[12], the weights are calculated based on standard deviation 
(SD) of the compressive measurements. Meanwhile, a 
different fusion rule is adopted in [13], where the weights 
are calculated based on entropy metrics of the compressive 
measurements. 

In this paper, we adopt the weighted linear fusion rule 
based on SD of the compressive measurements. An image 
with larger SD has more dispersed grey scale and usually 
contains more information accordingly [12]. For 
compressive measurements y1,……,yn, we first calculate the 
weights  

1

/
n

i i
k

w sd sd


  k
                               (3) 

where sdi is SD of the compressive measurements yi defined 
as 

            
1 1

1 1
( [ ] [ ])

M M

i i
k j

isd y k y
M M 

   j

y

             (4) 

Then, the composite measurements y can be acquired via  

                                                               (5) 
1

n

i i
i

y w




D. Reconstruction algorithm 

Although M<N makes the recovery of the fused image 
from the composite measurements y ill-posed, it is possible 
to solve it with efficient algorithms recently developed in 
CS literatures. In previous compressive image fusion papers, 
[10-12] use the Min-TV optimization algorithm [1] and the 
gradient projection for sparse reconstruction (GPSR) 
algorithm [15] is employed in [13] to solve the Min-L1 
problem. In this paper, we use the reconstruction algorithm 
based on the nonlinear conjugate gradient to solve the 
combined Min-TV and Min-L1 problem, which will be 
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introduced in section III. 

III. OUR PROPOSED SCHEME 

A. Combined sparsifying transforms 

In previous compressive image fusion work, the spatial 
finite-difference and the wavelet transform are used as the 
sparsifying transform in [10-12] and [13], respectively. 
However, single sparsifying transform cannot sparsely 
represent all features of the input images, which limits the 
reconstruction quality of the fused image. The spatial finite-
difference transform can sparsely represent piecewise 
smooth images, but for natural images this assumption does 
not always exist. The wavelet transform is good at sparsely 
representing point-like features but fails in sparsely 
representing curve-like features [14].  

Combined sparsifying transforms are proposed in [14] for 
CS based MR imaging to improve sparsity of the MR 
images. Following this line, we propose a new compressive 
image fusion method based on combined sparsifying 
transforms to improve the quality of the fused image. 
Because the contourlet transform [16-17] is good at sparsely 
representing curve-like features and has been successfully 
used in transform-based image fusion framework [18], we 
consider using it as a complement transform. So In this 
paper, we combine the spatial finite-difference transform, 
the wavelet transform and the contourlet transform 
simultaneously to improve the reconstruction quality of the 
fused image.  

B. Reconstruction model 

When using the spatial finite-difference transform, the 
reconstruction model to get the fused image is Min-TV [10-
12]  

                                  (6) 
x

arg min ( ) st.TV x x y 

where TV(x) is defined as  

       2
1 2,

( ) ( ) ( )ij iji j
TV x D x D x  2            (7) 

where D1 and D2 denote the forward finite-difference 
operators on the row and column directions, respectively. 

For wavelet transform, the reconstruction model is Min-
L1, which is defined as 

               
1x

arg min st.x x y                  (8) 

where Ψ denote the wavelet transform. 
In this paper, with the combined sparsifying transforms, 

we use the following reconstruction model  

 1 1 2 21 1

1
argmin ( )

2x
TV x x x x y        

2
 (9) 

where Ψ1 and Ψ2 denote the wavelet transform and the 
contourlet transform, respectively. β, λ1 and λ2 are all 
parameters that trade the signal sparsity with data 
consistency.  

C. Reconstruction algorithm 

To get the fused image x via the composite measurements 
y, we should use reconstruction algorithm to solve the 
reconstruction model. An algorithm based on the nonlinear 
conjugate gradient descent with backtracking line search 
technique is proposed for CS based MR imaging [19-20]. 
Here, we modify it to solve the reconstruction model 

defined in (9). Details of the algorithm are shown in 
Algorithm 1. 
Algorithm 1 
Input parameters: 
f (x)-- cost function defined as (9) 
maxIter--stopping criteria by number 

of iterations 
α,δ--line search parameters 
μ--positive smoothing parameter 

Initialization: 

0k   

0 0x   

0 0( )g f x   

0 0x g    

Iterations: 

while( maxk Iter  ) 
{  

t=1;  
while( *( ) ( ) Re (k k k k )kf x t x f x t al g x      ) 

{ 

t t  
} 

1k k kx x t x     

1 1( )k kg f x   
2 2

1 2 2
/k kg g   

1 1k k kx g x       

    1k k   
} 

outputs: the fused image x 
In Algorithm 1, the conjugate gradient of the cost 

function f (x) is defined as  

  
2

* * 1 *

1

( ) ( ) ( )i i i i i i i
i

1f x x y W x D D  



         x (10) 

where superscript * of a matrix denotes the adjoint operator, 
Wi  is a diagonal matrix with diagonal elements defined as 

*( ) ( )i i iw x x                        (11) 

and Λi is also a diagonal matrix with diagonal elements 
defined as 

                            *( ) ( )i i iD x D x                       (12) 

The convergence property of the nonlinear conjugate 
gradient descent has been given in [21]. Moreover, when 
incorporating backtracking line search technique, update 
step-size can be adaptively determined in each iteration. 
However, the number of iterations for nonlinear conjugate 
gradient descent method also varies with different factors, 
such as initial solution, problem size, desired accuracy, line 
search parameters, sampling ratio [19], and in our problem, 
also the speed of FFT, wavelet and contourlet transforms. 
An experiment test showed that, with our algorithm carried 
out in MATLAB on a laptop with 4GB memory, images of 
size 256×256 can be fused within 25 seconds, and images of 
size 512×512 can be fused within 40 seconds. 

D. Compressive image fusion procedure 

The whole procedure of the presented compressive image 
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fusion framework based on combined sparsifying transforms 
is summarized as follows: 

Step 1: taking the compressive measurements yi of input 
image xi via 

                                      (13) 1,i iy x i  ……，n

where matrix Φ denotes the star-shaped sampling pattern in 
the 2D Fourier plane. 

Step 2: fusing the acquired compressive measurements 
y1,……,yn into a composite measurements y using the 
weighted linear fusion rule based on SD of the compressive 
measurements via (3), (4) and (5). 

Step 3: reconstructing the fused image x from the 
composite measurements y with Algorithm 1.  

IV. SIMULATION AND RESULTS 

Two sets of test images are employed for fusion 
performance evaluation. For the multi-focus images Clock 
(512×512), one image focuses on the small clock while the 
other focuses on the big clock. For medical images Med 
(256×256), one is a CT image while the other is captured by 
MRI. 

In our simulations, parameters used in Algorithm 1 are set 
as: maxIter=100, α=0.01, δ=0.6, μ=1×10-15, β=1×10-3, 
λ1=λ2=1.5×10-3.  We compare our presented algorithm with 
the single sparsifying transform based compressive image 
fusion algorithm. When using only a single spatial finite-
difference transform (TV), we generally set λ1=λ2=0 in 
Algorithm 1. And we set β=λ2=0 for single wavelet 
transform based compressive image fusion method.  

Fig. 3 and Fig. 4 illustrate the compressive image fusion 
results of the two test image sets with only 30% of the 
Fourier coefficients. We can see that all compressive 
sensing based image fusion methods can give faithful fusion 
performance using only 30% of the Fourier coefficients of 
input images, which demonstrates the potential of the 
compressive sensing based image fusion framework for 
lighting the complexity on the sensor side. However, fused 
image obtained by our presented method contains more 

detailed information and has higher contrast compared with 
a single sparsifying transform based compressive image 
fusion method. 

     
 (a)                                            (b)                                             (c)                                                (d)                                              (e)  

Figure 3. Fusion results for Med (M/N=30%): (a) and (b) input source images, (c) fused image of finite-difference transform method, (d) fused images of 
wavelet transform, (e) fused image of our presented method 

 

      
                     (a)                                            (b)                                               (c)                                             (d)                                                (e) 
Figure 4. Fusion results for Clock (M/N=30%): (a) and (b) input source images, (c) fused image of finite-difference transform method, (d) fused images of 

wavelet transform, (e) fused image of our presented method

In addition to visual comparison, we also compare the 
compressive image fusion performance with two objective 
metrics: mutual information (MI) [22] and edge preservation 
(EP) [23].  

MI [22] evaluates the mutual information between the 
fused image x and input images a and b, which is defined as 

                  ( , ) ( , )MI I x a I x b                         (14) 

where I(x,a) and I(x,b) is given by 

         
2

( , )
( , ) ( , ) log

( ) ( )

p x a
I x a p x a

p x p a
              (15) 

        
2

( , )
( , ) ( , ) log

( ) ( )

p x b
I x b p x b

p x p b
                  (16) 

where p(x) is the normalized histogram of the fused image x, 
p(x,a) are the joint distribution of the fused image x and the 
input image a, and p(x,b) are the joint distribution of the 
fused image x and the input image b. Larger values of MI 
indicate better image fusion quality that the fused image can 
pick up more information from input images.  

EP [23] assessments the relative amount of edge 
information conveyed from input images into the fused 
image, which is defined as 

1 1

1 1

( , ) ( , ) ( , ) ( , )

( ( , ) ( , ))

N M a a b b

n m
N M a b

n m

Q n m w n m Q n m w n m
Q

w n m w n m
 

 





 

 
    (17) 

where  

                        (18) ( , ) ( , ) ( , )a a a
e oQ n m Q n m Q n m

where  and  denote the edge strength and 

orientation preservation values at the pixel (n,m), 
respectively. The definition of  is the same 

as , which uses the values of the input image b 

instead of the values of the input image a in (17) and (18). 
 and  denote the significance of  

( , )a
eQ n m

( , )Q n m

)m b

( , )a
oQ n m

)m

( , )bQ n m
a

( ,aw n ( ,w n ( , )aQ n m
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and , respectively. The range of Q is in [0, 1]. 

Larger values of EP imply that the fused image preserves 
more edge information. 

( , )bQ n m

The fused performances of Fig. 3 and Fig. 4 in terms of 
MI and EP metrics are tabulated in Table 1. It is shown that 
compressive image fusion scheme achieves better 
performance when using combined sparsifying transforms 
than using only a single sparsifying transform. Meanwhile, 
we can also see that, for a single sparsifying transform, the 
spatial finite-difference transform get better performance 
than the wavelet transform, which coincides with the results 
in [12].  

 
(a) 

                                                                      (b) 
Figure 5. Objective metrics results of different methods for Med: (a) mutual 
information (MI), (b) edge preservation (EP) 

 
We also test the fused performance of different image 

fusion methods with different sampling ratio in terms of MI 
and EP. Results of Med and Clock are shown in Fig.5 and 
Fig.6, respectively. Again, we can see clearly that our 
presented method outperforms single sparsifying transform 
based methods and the spatial finite-difference transform 
(TV) based method gives better results than the wavelet 
transform based method. We also notice that, with the 
increasing sampling ratio, all the compressive image fusion 
methods achieve better results. When the sampling ratio 
grows up to 60%, the differences between all the 
compressive image fusion methods become negligent, which 
can also be observed in conventional compressive sensing 

studies. As stated in [1-2], a K sparse signal can be exactly 
reconstructed by more than 3K measurements. It implies 
that 60% sampling ratio is sufficient for all the compressive 
image fusion algorithms. However, for lower sampling ratio, 
our presented method can give significantly better results 
than single sparsifying transform based methods because of 
the sparser representation of input images that benefit from 
the combined sparsifying transforms. 

V. CONCLUSION AND FUTURE WORK 

In this paper, we present a compressive image fusion 
scheme based on combined sparsifying transforms. First, we 
provide a brief introduction of the framework of 
compressive image fusion. Then, combined sparsifying 
transforms are presented to enhance the sparsity of images. 
Finally, a reconstruction algorithm based on the nonlinear 
conjugate gradient is presented to get the fused image. 
Simulations demonstrate that compressive sensing based 
image fusion framework can effectively fuse the images 
from fewer measurements without any prior information 
about the input images. Therefore, compressive image 
fusion framework provides great potential for lightening the 
complexity on the sensor side. Moreover, our presented 
algorithm achieves better results than compressive image 
fusion methods using only a single sparsifying transform in 
terms of both the subjective visual effect and objective 
evaluation metrics.   

However, the compressive image fusion framework is just 
at its early stage. There are still many aspects to be further 
investigated. For example, we can see that the wavelet 
transform based compressive image fusion algorithm gives 
worse performance than the spatial finite-difference 
transform based algorithm. This observation may be because 
of the fact that weighted linear fusion rule based on the SD 
cannot provide an optimal composite measurements for the 
wavelet transform based compressive image fusion 
framework. So more advanced fusion rule for different 
sparsifying transform may be exploited by examining the 
underlying structure of the compressive measurements. 
Moreover, images contain many other features besides 
point-like and curve-like features. Thus we should find a 
dictionary that may sparsely represent all the features of 
images, using a dictionary training method such as K-SVD 
[24]. Finally, our algorithm may be accelerated by 
incorporating optimization techniques such as smoothing 
and more efficient line search. 

 
TABLE 1 QUANTITATIVE ASSESSMENT OF FUSION RESULTS 

(M/N=30%) 
Image Method MI EP 

our presented 3.3018 0.4388 

TV 3.1035 0.4084 

 
Med 

wavelet 2.7769 0.3868 

our presented 6.5759 0.5167 

TV 6.4920 0.4864 

 
Clock 

wavelet 6.2392 0.4545 
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(a) 

 
(b) 

Figure 6. Objective metrics results using different methods for Clock: (a) 
mutual information (MI), (b) edge preservation (EP) 
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