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1Abstract—This paper presents architecture for matrix 

multiplication optimized to be integrated as an accelerator unit 
to a host computer. Two linear systolic arrays with 
unidirectional data flow (ULSA), used as hardware 
accelerators, where synthesized in this paper. The solution 
proposed here is designed to accelerate both the computation 
and communication by employing hardware address generator 
units (AGUs). The proposed design has been implemented on 
Xilinx Spartan-2E and Virtex4 FPGAs. In order to evaluate 
performance of the proposed solution, we have introduced 
quantitative and qualitative performance criteria. For the 
ULSA with n processing elements (PEs), the speed-up is O(n/2). 
Average gain factor of hardware AGUs is about 2.7, with 
hardware overhead of 0.6% for 32-bit PEs. 
 

Index Terms—address generator units, linear systolic arrays, 
matrix multiplication. 

I. INTRODUCTION 

Matrix multiplication is often used as a kernel operation 
in digital signal processing applications. It requires 

multiply with accumulation (MAC) operations on a 

sequential computer. Significant speed-up in computation 
time can be achieved by assigning complex computation 
intensive tasks to hardware and by exploiting available 
parallelism in algorithms. This paper presents an efficient 
architecture for matrix multiplication optimized to be 
integrated as an accelerator unit to a host [1-7].  

)( 3nO

A number of dedicated circuits for matrix operations have 
been presented in [1-5]. However, the I/O bandwidth 
required by those architectures, with aim to achieve high 
processing rate, is not taken into account. In opposite with 
solutions presented in [1-5], that accelerate just matrix 
multiplication computation, the proposal presented in this 
paper has been primarily designed to speed up both 
computation and communication time. In order to achieve 
high level of independency of accelerator operation, we 
decided to implement accelerator as a stand alone 
processing unit.  

This paper carries readers through the design and 
implementation of accelerator unit intended for matrix 
multiplication using FPGA platform. We next continue this 
paper with mathematical background for designing systolic 
algorithms for unidirectional systolic arrays (ULSA). Then 
we concentrate on the synthesis of two systolic arrays of 
ULSA type. We continue with global system structure. After 
that, we dive into a detailed system structure which includes 
the role of hardware accelerators in address calculations and 
accelerator operation. Speedup, efficiency, hardware 

overhead and gain factor, as quantitative and qualitative 
performance metrics of the proposed design are considered. 
FPGA computer boards based on Xilinx Spartan2E and 
Virtex4 series were used to verify both ULSA operation and 
address generation. Concluding remarks are given in Section 
VII.  
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II. MATHEMATICAL BACKGROUND AND SYSTOLIC 

ALGORITHMS  

Let  and  be rectangular matrices of 

order 

)(= ikaA

31 NN

)(= kibB

  and 23 NN  , respectively. Denote with kA


 

and kB


 column- and row-vectors, , of 

matrices 
3,1,2,= Nk 

A  and . Their product,B BAC =  can be 
calculated using outer vector product method, defined as  
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In order to synthesize 1D systolic array (SA) that 
implements the computation defined by (1), it is enough to 
consider one iteration step only. Without affecting the 
generality, we will consider the case , i.e. the 

computation of 

= 1k

  11
(1) := BAC


. The final result is obtained 

after  iteration steps.  3N

The basic systolic algorithm for computing  

has the following form (see [6-7]) 

)(= (1)(1)
ijcC

Algorithm_1 
 for  to  do 1:=j 2N

for  to  do 1:=i 1N

{ 
,1)1,(:=,1),( jibjib  ; 

 1,1),(:=,1),( jiajia ; 

,1),(*,1),(,0),(:=,1),( jibjiajicjic  ; 

} 

 where jbjb 1)1,,0(  , , , 

, for , and . 

1)1,0,( iaia 

1,1,2, N

0=,0),( (0)
ijcjic 

2,1,2,= Nj (1),1) ijc =i,( jic

Algorithm_1 can be accompanied with directed acyclic 
graph located in 3D Euclidian space. By projecting this 

graph along direction  T011  
 on the plane 

orthogonal to this direction, a directed graph in 2D space is 
obtained. This graph directly corresponds to the ULSA 
convenient for implementation of Algorithm_1 (see for 
example [8-10]). However, the number of processing 
elements (PEs) in the obtained array is not optimal. Our goal 
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is to design an array which consists of optimal number of 
PEs, i.e. , and minimal possible execution 

time for that number of PEs. Therefore, instead of 
Algorithm_1 we consider the following two systolic 
algorithms 

},min{ 21 NN

1:=j 2N

1:= 1N

Algorithm_2 
 for  to  do 

 for  to  do  i
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2
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where , , for 

each  and . Let us note that 

Algorithms_2 and _3 are input/output equivalent to 
Algorithm_1. They are tailored to the directions 

a

j =

)0,,()0,,( 1 jtcjNtc 

1,1,2, N

1


and  1 T01


, on index variables i 

and j, respectively (see [11-13]). 

III. ULSA SYNTHESIS  

Denote with SA1 and SA2 the ULSA arrays synthesized 
according to Algorithms_2 and _3 and directions 

 and , respectively. [1  


1 0]T [ 1  


(1) (1)
1 1int( ,dG P P E 
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Directed graphs that correspond to Algorithms_2 and _3 

are  and . Vertices 

of these graphs are, respectively, defined by index sets  
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Edges in graphs G1 and G2 are determined by the column 
vectors of matrices E1, i.e. E2 

1 2

1/ 2 0 0 1 0 0

0 1 0 , 0 1/ 2 0

0 0 1 0 0 1

E E
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.  (4) 

At each vertex defined by  (i.e. ), a MAC 

operation is performed. In vertices defined by  (i.e. 

) data are delayed for one clock cycle, i.e. no 

computation is performed.  

(1)
intP (2)

intP

(1)
dP

(2)
dP

One of possible transformation matrices, S, that can be 

joined to the direction [1 1 0]T  


 (i.e. ) has 

the following form 

[ 11 0]T  


1 1 0

0 0 1
S

 
  
 

.  (5) 

This matrix maps 3D graph G1 (i.e. G2) into 2D graph which 
corresponds to the array SA1 (i.e. SA2). 
 Locations of PEs and delay elements in the x-y plane in the 
array SA1 are obtained from the following equations  

   (6) (1)1
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 Communication links in the SA1 are defined by the column 
vectors of matrix    
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 define propagation directions for 

elements of matrices B, A and C, as well.  
Similarly, the array SA2 which is obtained according to 

Algorithm_3, can be synthesized from the following 
equations  
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According to (6) and (9) it can be concluded that the 
arrays SA1 and SA2 have  and 2N  1N 

2

 PEs, 

respectively. This implies that when  the array SA1 

is optimal design choice. Otherwise, the array SA2 is 
optimal. 

1 NN

Retiming the initial data schedule 

 Initial schedule of elements of column vector 1A


, row-

vector 1B 


, and matrix  for Algorithm_2 is determined 

by the set  

(0)C

= ( ) ( ) (in in in inP P a P b P c  )   (10) 
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where  

1

1

( ) = { = [ 01] },

( ) = { = [01 1] },

( ) = { = [ 1 0] }

T
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T
in b

T
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  (11) 

for  and . This schedule does 

not provide correct execution of Algorithm_2 on SA1. 
Namely, in order to provide correct timing, it is necessary to 
involve skewing of input data in time domain (see for 
example [14]). This process can be described by the timing 
function  

1= 1,2, ,i N 2= 1,2, ,j  N
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  


  (12) 

where , and (1)
intp P   is a constant determined so that 

 for all . This function defines time 

instances of activities in each node of graph . In our case 

it is  
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Reordering of space  into , which provides correct 

execution of Algorithm_4, can be described by the 
following equation  

inP *
inP
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by  
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Finally, by mapping  using transformation , we obtain 

data schedule for elements of vectors 

*
inP S

1A


,  and matrix 

 at the beginning of the computation of 

Algorithm_2 on SA1. It is defined as 
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for  and  1= 1,2, ,i N 2= 1,2, ,j N
 
Figures 1 and 2 illustrate the arrays SA1 and SA2 for the 

case . 1 2= =N N

 
Figure 1. Data schedule in the array SA1 at the beginning of the 
computation, for . 1 2= = 3N N

 
Figure 2. Data schedule in the array SA2 at the beginning of the 
computation, for . 1 2= = 3N N

IV. STRUCTURE OF THE SYSTEM AND ROLE OF HARDWARE 

ACCELERATORS 

Numerous scientific and embedded applications, such as 
multimedia, image and speech processing, are characterized 
by complex array index manipulation and great number of 
data accesses. Those applications require specific address 
calculations that general purpose processors can not fulfill at 
a reasonable time [8], [15-16]. To speedup address 
generation, special hardware building blocks, called address 
generation units, are designed [19]. 

Address sequences, used to access data in memory, are 
generated according to the address equations (AEs). AE is a 
function obtained from the software description of the 
algorithm [17]. It is defined as: 

1 2 1 2= ( , , , , , , , )n mAE f I I I r r r  ,  (17) 

where parameters are nested loop indices ( iI ), , 

or range addresses ( ), . 

= 1, 2, ,i n

jr = 1, 2, , mj r

Our design solution is presented in Fig. 3. It is based on a 
shared system bus as an interconnection network. We have 
implemented accelerator as a stand alone processing unit in 
order to achieve high level of independency in accelerator 
operation. As shown in Fig. 3, the accelerator consists of 
three functional units: linear systolic array (ULSA), 
distributed memory (DM), and address generator unit 
(AGU). The AGU performs three functions. First, during the 
initialization, it transforms host address space into 
accelerator address space. Second, provides fast memory 
data access throughout ULSA operation. Third, performs 
efficient data transfer between accelerator and host at the 
end of the calculation. Each AGU consists of two building 
blocks: address transformer (AT) and address generator 
(AG). The AT performs mapping of host addresses into 
accelerator addresses. During the execution phase, AGs 
generate sequential addresses for accessing data.  

A detailed structure of the system based on the array SA1, 
is sketched in Fig.4. The main constituents of the accelerator 
are: ULSA composed of n PEs, address generator units 
(AGU_A, AGU_B and AGU_C) and distributed memory 
composed of memory modules MA, MB and MC. AGU_A 

3
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and AGU_B generate the addresses for accessing MA and 
MB, respectively. MC is distributed and consists of n dual-
port RAMs (DPR). Write operation into  occurs 

during initialization and execution phase. Read operation 
occurs during execution and result transfer phase. 

iDPR

During address manipulation, we assume that memory 
address is composed of three parts 

base address i j 

where the part "base address" corresponds to a starting 
memory location of an array. Parts i  and j  define the 

offset of an element ( { , ,ij })x x a b c

,i j ,i

k

 in regard to the base 

address. Address transformers modify only offset part of the 
address by converting  into  [19,21]. Accelerator 

memory base address is fixed and determined by a design. 

For the sake of simplicity we take . Consequently, 
the parts i  and  are  bits wide. 

j

n = 2k

j

 

 
Figure 3. Global structure of the system. 

 

 
Figure 4. Structure of the system based on the array SA1. 

 
Details which relate to the internal structure of the PE and 

interconnect between neighboring PEs were thoroughly 
described in [18-19].  

V. ACCELERATOR OPERATION 

Three phases characterize accelerator operation: a) Initial 
loading of input data ,A B  and , into MA, MB and MC; b) 
Execution phase, and c) Result transfer. 

C

A. Initialization phase 

Suppose that matrices A, B and C are stored in a row-
major order in the host memory. Address transformations 
performed by the corresponding AGUs during initial loading 

of MA, MB and MC can be described by the following 
address equations 

( , ) * ,A =f i j j ni      (18) 

for = 0,1, , 1i n   and = 0,1, , 1j n  . 

( , ) ( 1) m )B = ( * odf i j n n j ni    ,  (19) 

for = 0,1, , 1i n   and = 0,1, , 1j n  . 

( , ) = (( ) mod , ) = ( , ),cf i j i j n i MS LS   (20) 

where MS defines memory module MCi, i=0,1,…,n-1, and 
LS address location within it. According to (18), (19) and 
(20) direct hardware synthesis of AGUs can be performed. 

for example [19]. 

B.

 sequence perfo processing 
element

For more details see, 

 Execution phase 

During this phase, each PE executes identical program 
sequence. Functional property of PE is shown in Fig. 5. 
Program rmed by the 

iPE , = 0,1, 1i p   is given in Fig. 6.  

 
Figure 5. Functional property of PE. 

Fi

ive, P_comp, and 
active computation, A_comp (see Fig. 7). 

gure 6. Program sequence performed by the PEi during execution phase. 

The algorithm is executed in n iterations. Each iteration 
requires 2n-1 instruction cycles, and, from data-flow point 
of view, consists of two sub-phases: pass

VI. PERFORMANCE EVALUATION 

For evaluation of our design we will use quantitative and 
qualitative criteria. The former includes number of PEs, 
execution time, and PE’s and AGUs’ hardware complexity 
in terms of equivalent gate count (two input NAND gate). 
The latter includes speedup, efficiency, gain factor and 
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     41

rovide a good characterization of 
th proposed design. 

 

overhead coming from AGUs hardware implementation. 
Together, these metrics p

e 

 

The results that relate to , , ,  and number 

of PEs, 
inT exeT outT totT

 , are presented in Table I. Table I contains results 
for the arrays SA1 and SA2 of ULSA type obtained by the 
procedure described in Section III for the case of rectangular 
and square matrices. As can be seen, there is no difference 
between SA1 and SA2 when square matrices are considered. 
However, in the case of rectangular matrices, performance 
are different. Namely, when , the array denoted 

with SA2 is superior. In opposite, the array SA1 is better 
design choice. 

1 <N 2N

AGUs and systolic array, composed of multi-functional PEs 
(see [18]), were implemented on Xilinx FPGA technology. 
For hardware complexity estimation ISE 9.01 software tool 
was used. Similarly as in [21], we have analyzed hardware 
complexity in terms of equivalent gate count for 32-bit PEs, 
for various matrix dimensions, both for Spartan 2E 
xc2s100e-7ft256 and Virtex 4 xc4v1x15-12sf363. The 
obtained results are presented in Table II. 

Figure 7. Data flow in the ULSA during the first iteration. 

ultiplicati
algorithm on a uniprocessor sy

 

ere the 

execution time of the algorithm on the ULSA is 
equal to  

nin

ution time, and  flushing 

me at the end of processing. 

 

A. Quantitative measures 

We assume that execution time of matrix m
 

on 
B. Qualitative criteria stem is equal to  

1 21 =T N N N     (21) 

i.e. for the square case 31T n , time units. H

Here, we will analyze speed-up ( pS ), efficiency ( E ), gain 

factor ( ), and hardware overhead (G HWO ). 
3,

Speed-up is defined as  duration of MAC operation is taken as a time unit. 

The total 
1

=p
tot

T
S

T
,     (23) 

and efficiency as  
=t in exe outT T T   (22) 

where inT  is a start-up time at the begin g of the 

computation, exeT  active exec

toT
= .

S
E

p

p
     (24) 

 outT

ti
 

TABLE I. EXECUTION TIME AND NUMBER OF PEs OF THE ARRAYS SA1 AND SA2 

ARRAY  inT  exeT  outT  totT  

2N  3 1 2( 1N N N )   0 2 3 1 2( 1N N N N )    2N  

SA1 
2n  

22n n  0 22n  n  

1N  3 1 2( 1N N N )   0 1 3 1 2( 1N N N N )    1N  

SA2 

0 22n  n  2n  
22n n  

TABLE II. IMPLEMENTA TS FOR 32-BIT PE 

 P
TION RESUL

32-BIT E 
n AGU_A AGU_B AGU_C Overhead PE SA1 [%] 
32 469 430 2956 21057 673824 0.574 
64 514 490 5876 21057 1347648 0.9 

128 568 508 12142 21057 2695296 0.560 
256 616 556 25636 21057 5390592 0.572 
512 664 604 54598 21057 10781184 0.599 
1024 718 652 116586 21057 21562368 0.634 

S
P

A
R

T
A

N
 2

E
 

2048 783 2  43124736 700 48728 21057 0.673 
32 410 334 2848 18026 576832 0.623 
64 467 400 5756 18026 1153664 0.574 

128 512 412 11992 18026 2307328 0.560 
256 524 460 25402 18026 4614656 0.572 
512 566 508 54178 18026 9229312 0.599 
1024 691 556 115791 18026 18458624 0.634 

V
ir

te
x4

 

2048 739 604 247039 18026 36917248 0.673 
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In e case of square matrices we have   th

 
31 n

p
T

S O O
T

 
   2

1
, and

2 22

p

tot

Sn
E

nn

    
  

 (2

We define gain factor , as  

5) 

, G
TswG
Thw

  

where Tsw  ( Thw ) corresponds to time needed to transfer 

data from host to accelerator memory when address 
calculations are performed by software (by hardware 
AGUs). Transfer time was estimated by a profiler in ms as 
time units. Number of PEs was taken as a parameter. 
Reports obtained from the profiler are summar  in Table 
III. Clock frequency of the host wa z. From the 
obtained results an average gain factor avG  can be 

determined. For our design we have = 2.7avG . This means 

that the speed up achieved by implementing address 
transformations in hardware is more than two and 

ized
s 3.3 GH

compared to the software implementation. However, this 
achie

E ORT AIN M R

A  AGU_B AGU_C 

a half 
is 

ved at the cost of increased hardware overhead.  

TABL III. REP S OBT ED FRO  THE P OFILER 

N GU_A HW G 
32 0.041 0.042 0.052 0.039 1.15384 
64 0.051 0.06 0.07 0.05 1.20666 
128 0.128 0.145 0.155 0.095 1.50175 
256 0.562 0.463 0.59 0.259 2.07850 
512 2  .2846 1.769 3.05 0.915 2.58783 
1024 1 3  1.828 6.722 14.461 .186 3.45375 
2048 68.83 11.57  4.65068 67 25.665 5
4096 284 102.733 287.462 45 4.99403 

Average ga tor 2.70338avG   in fac

 
Hardware overhead, HWO , corresponds to a ratio of total 

number of equivalent gates in the ULSA with and without 
hardware AGUs. The results are presented in the last 
column of Table II. As can be seen, the overhead is about 
0.6% both for Spartan2E and Virtex4. The obtained resu
clearly justify s. 

hardwar

 hardwa
AGUs. The obtained results show that average gain factor i
.7, with hardware overhead of at most 0.623%. 

lts 
the usage of hardware AGU

VII. CONCLUSION 

We have considered the problem of matrix multiplication 
on a linear systolic arrays with unidirectional data flow 
(ULSA). First, we have described mathematical procedure 
for systolic array synthesis. In order to speed-up data 
transfer between the host and ULSA, used as an accelerator, 
we have designed hardware address generator units (AGUs). 
We have implemented ULSA and AGUs on FPGA 
technology. Performance of the ULSA and hardware AGUs 
from aspect of speed-up, efficiency, gain factor and 

e overhead, were estimated. The obtained results 
show that the speed-up of the ULSA composed of n  PEs is 

( / 2)O n  and efficiency is 0.5. Gain factor and hardware 

overhead were used to estimate performance of re 
s 

2
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