
Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

Social Networking of Instrumentation –
a Case Study in Telematics

Dan ROBU1, Florin SANDU1, Dorin PETREUS2, Adrian NEDELCU1, Alexandru BALICA1

1Transilvania University of Brasov, 500036, Romania
2Technical University of Cluj-Napoca, 400020, Romania

florin.sandu@unitbv.ro

1Abstract—The research work contributes to the design and

implementation of the communication part for integrating
remote instruments and drives via social networks (SN) into
instrumentation communities. It is used the virtual
instrumentation (VI) to manage objects that tweet on popular
SN platforms applying the concept of the Internet of Things
(IoT). Local and remote resource aggregation is based on
National Instruments (NI) data acquisition and distribution
hardware in a NI software environment. NI LabVIEW-for-
Twitter solutions (starting with simple authentication) are
extended, integrated with various third party services and
validated in a complete remote monitoring proof-of-concept
workbench with a closed loop for alarming-compensation.
Solutions are extendible to Machine-to-Machine
communication (M2M) IoT scenarios for telematics,
monitoring or control, and can be connected to intelligent
systems based on powerful servers for cloud computing.

Index Terms—application programming interfaces,
computerized instrumentation, data acquisition, social network
services, Twitter.

I. INTRODUCTION

IoT is a modern approach for the management of presence
and availability, translating the basic data available in the
SN model into the field of mixed hardware-software-
netware objects (personal, domotics, enterprise etc.) [1-3].

Direct M2M communication should make use of solutions
already consolidated on the Internet, in order to interconnect
an estimated number of 16 billion objects until 2020.

IoT should perform discovery, identification, localization,
monitoring and remote management of the M2M objects,
supporting a constant Real-Time (RT) information stream
between them.

IoT services can be built on-top of the information from
sensors by algorithms for RT interpretation and decision [4].

Such solutions have real perspectives to integrate
protocols like MQTT (Message Queue Telemetry Transport)
[5] and XMPP (Extensible Messaging and Presence
Protocol) [6]. These solutions could rely on Twitter but also
on open source real time collaboration server solutions (e.g.
OpenFire) for friendly user interface administration and
notifications.

Many domains can benefit from these concepts, like
distributed intelligent instrumentation for test & measure-
ment (T&M) [7-8] using industrial communications – as
well as domotic solutions (enterprise or residential) [9-10].

The telecom operators are interested, mainly, in IoT
solutions for electrical Smart Grids and utility networks
related to intelligent control and optimization [11-13].

Our research goal was to develop generic infrastructure-
independent communications that would enable the creation
of instrumentation communities.

Our approach is the use of popular SN platforms in order
to support M2M communications.

 Our task was the adaption of instrumentation control for
social networking and the objectives of our work were:
- Leveraging the existing IP infrastructure;
- Reducing platform- and language- dependencies;
- Providing a generic abstraction layer available to

different types of applications;
- Enabling real-time communication;
- Linking networked nodes based on social rules;
- Operating in a secure manner, providing features such

as authentication, authorization and encryption.
Using the social media paradigm, our research

methodology was structured as follows:
- Survey & identification of the appropriate

communication protocols and open platforms, in order
to support the interactions inside the distributed
instrumentation communities on SN principles;

- Design, develop, implement, integrate and validate
proof-of-concept solutions for telematic case-studies.

II. IMPLEMENTING INSTRUMENTATION COMMUNITIES VIA

RESOURCE AGGREGATION

There were identified the following two possible
directions for our research.
1) The XMPP approach: in order to aggregate networked
instrumentation based on social rules, our research explored
the above-mentioned XMPP [6], also known as Jabber (the
name of the company that launched it) – an open protocol
used for instant messaging. In order to support the
aggregation with XMPP of various and numerous
instrumentation devices, we have used Openfire, a RT
collaboration (RTC) server solution. Openfire incorporates a
graphical interface based on XML (eXtensible Markup
Language) – the same backbone markup language (used in
all our research) for interlayer communication. Openfire
also provides a database system and alarm control, making it
an effective and flexible monitoring solution.

In order to support the remote network configuration it
was taken into consideration the synergy of XMPP with
SNMP (Simple Network Management Protocol) via a
trapping mechanism. SNMP is based on client-server
communication – alarms are interpreted using MIB files
(Management Information Base), representing virtual
databases of status information related to the nodes under
surveillance; the result of this interpretation is wrapped
(encapsulated) in XMPP messages.

 153

Digital Object Identifier 10.4316/AECE.2014.02024

1582-7445 © 2014 AECE

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:35:10 (UTC) by 44.192.129.85. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

In our context of distributed instrumental communities, the
advantage of XMPP as an Open Source solution (under
Apache License) is the unrestricted possibility to interact
with numerous and various sources or destinations, via
social networks. The XMPP experience (e.g. Spark/Smack
clients – human/instrumental – of the Ignite open source
initiative) is enhancing the social networking paradigm with
added value transfers that are transcending the borders of
simple infotainment support into the industrial applications.

2) The VISA approach: our second approach started from
the origin of the well-known plug-and-play (PnP) concept in
modern operating systems, VXI Instrument Software
Architecture (VISA) with VXI representing VME (Versa-
Module Eurocard) eXtension for Instrumentation. Recently,
VISA is more and more associated with Virtual Instruments
(VI) software architecture. This 2nd approach was chosen to
pursue the next phases of our research, on the principle of
implementing instrumentation communities relying on
VISA aggregation of resources into T&M configurations.
 As the most suitable candidate for the generic layer
available to different types of applications we have chosen
the Representational State Transfer (“RESTful”)
Application Programming Interfaces (API) for the service-
orientation towards our objective to reduce platform- and
language- dependencies according to the SaaS (Software as
a Service) paradigm.

 As the best social network of choice, we have identified
Twitter [23], reliable intermediary for message broadcasting
with an advanced set of API and good level of security.

As VISA is service-oriented (based on event-driven
control), we have identified as one of the best VI software
development environment the National Instruments’
LabVIEW [14], together with one of the best hypervisors of
distributed configurations, the NI Measurement and
Automation Explorer (MAX).

By these two modern and powerful means offered by NI,
remote and local resources can be integrated in social
communities where they expose T&M capabilities – this is
the push side of an offer/bid scheme. Aggregation in social
partnership can also benefit from the other side of this
scheme – the pull side, used for polling and probing
available resources.

Workstations of the VISA configuration, besides their
main role as web servers, can also be used as remote
workbench servers (for resources grouping) with external
Internet connection and local Intranet connections to
instruments by Ethernet or directly by dedicated interfaces
(e.g. GPIB), standard interfaces (e.g. USB) or proximity NFC.
In our research, apart from NI-MAX and LabVIEW we have
used a Data Acquisition (DAQ) system and accessed the
Twitter services in order to integrate telematic
configurations (for remote monitoring of meteorological
stations or industrial weighing scales etc). According to our
research methodology, in order to validate our findings we
have integrated these simple proof-of-concept measurement
solutions into transmission schemes based on Twitter and
opened to third party tools for social media (e.g.
SuperTweet). The bases of our ICT development were the
NI VIs used to actuate and acquire (e.g. sensor data) and
ensure proper LAN-WAN communications. The built-in NI
Real-Time Engine meets also one of our specific objectives.

Publication of aggregated resources – that might be
considered a tree-like manner representation of an
instrumental partnership can be provided by NI MAX,
having in this case the role of a broker (Fig.1).

Figure 1. NI MAX hardware-software-netware community with details of
the data acquisition system integration including association of logical
in/out channels to the physical devices

For administration purpose, adding a new remote resource
is possible in MAX (Remote Systems menu > Create new >
Remote VISA System > configuration of properties in the
displayed PnP window. IP port forwarding can be used to
route Remote VISA data (coming through the dedicated port
3537) from the web-server to the workbench server.
Security requirements can thus be fulfilled by configuring
the access list for port 3537. Considering the first of our
research objectives, this way any client (human or machine)
of the system should only use the IP address of the web-
server for remote use of instrumental resources that were
“published” for open access.

Remote resource check uses the capability probing
function available in MAX GUI (Graphical User Interface),
by selecting the desired instrument (e.g. GPIB::4::INSTR –
see Fig.1) and then selecting Open VISA Test Panel.

Write and Read commands are sent to remote instruments
for instructions and for the display of measurement or status.

For M2M direct addressing of remote instruments, the
control sequence should invoke visa://ip_address_of_the_
webserver/ instrument_ID.

After opening a VISA session, remote instruments can be
controlled using standard SCPI (Standard Commands for
Programmable Instruments) or proprietary instrumental
directives. LabVIEW modules NI Datalogging &
Supervisory Control and Shared Variables can be used for
efficient programming of distributed IoT applications, via
NI-PSP (Publish & Subscribe Protocol).

III. SOLUTIONS FOR APPLICATIONS INTERACTION

The overwhelming spread of ergonomic graphical user
interfaces is underlining the importance of intuitive
interaction design for the industrial applications.

 154

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:35:10 (UTC) by 44.192.129.85. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

 Influenced by infotainment applications, the modern IoT
proposed user friendly controls (even from “thin clients”).

In the flow of operations of our application, different
instrumentation-related tasks can be divided into subtasks
which are assigned to the different members of the
communities, according to their capabilities.

To fulfill our research goal with the chosen methodology,
we worked on the synergy of instrumentation control with
the Twitter API-s.

In order to meet our research objective related to security,
one of the first tasks was to enable the Twitter encrypted
authentication. Twitter interacts with client applications
based on standard HTTP methods (corresponding to our
research objective of leveraging the existing IP and to the
research objective of minimizing dependencies – e.g. on
dedicated industrial communication ports or protocols).
Among the simplest HTTP methods, and the most used,
including our implementations, are GET, POST and PUT.

Twitter allows recently only advanced OAuth (Open
Authentication) that we will detail in paragraph VI.

M2M communication might yet accept – for an important
range of non-critical use-cases – the simpler Basic
Authentication (BA). There is the possibility to use third
party services of intermediation for indirect access either via
Internet, as the one mediated by the supertweet.net network
or (partner of Twitter) that still allows Basic Authentication
(BA). As one of the most important third party we have used
the services of SuperTweet. Its methods (controls) can be
invoked remotely, via API, being integrated in local
programs (e.g. the main VIs, in our case-study). Another
approach is the installation of a local SuperTweet Proxy that
would translate BA data into OAuth requests sent remotely
not via a SuperTweet server but directly to Twitter.

For our first BA approach, the APIs available in the
SuperTweet network enable the running of simple
“tweeting” applications that can be also implemented in
smaller embedded systems like low-complexity appliances,
e.g. based on the Lantronix XPort Embedded Web-Server
[18], bringing minimal telecom functionality to intelligent
sensors and transducers.

The generic specification of SuperTweet functions of the
server api.supertweet.net is <service classes>/<services>.
<format> . We used, mostly, /1/statuses/update.<format>
and /1/statuses/home_timeline.<format>. The <format>
field is replaced by the specification of a file in XML format
or in JSON (JavaScript Object Notation – recently
approached also by Google with various GSON converters
[19]). This file records readings from GET commands and
brings parameters for the POST command (main commands
accessed via afore mentioned API-s).

There are also <service classes> like account, users,
blocks, friendships, favorites, direct_messages, geo and
saved_searches.

Invoking of the respective APIs can be embedded in any
program. For example, using cURL, a robust software
package (that has to be pre-installed locally) dedicated to
simple URL commands for transferring data:

curl -u user:password http://api.supertweet.net/
1/statuses/update.xml

or
curl -u user:password http://api.supertweet.net/

1/statuses/home_timeline.xml

– for the “tweets” that update the status with information
taken from the update.xml file (as shown below),
respectively for receiving a series of accumulated tweets.
The history recorded in home_timeline will be written in the
home_timeline.xml file (also detailed below).

In the main VIs Update Status and Read Status (that are
driving Twitter social platform as measurement data broker)
– presented in the next paragraphs – we have used the sub-
VIs HTTP POST and HTTP GET having as string
parameters:

IMVA_TWT:twt_avmi
http://api.supertweet.net/1/statuses/update.xml

and, respectively,
IMVA_TWT:twt_avmi http://api.supertweet.net/1/

statuses/home_timeline.xml

For the SuperTweet account, the username is the same as
the Twitter account, but the SuperTweet password, e.g.
twt_avmi, is different from the Twitter password, e.g.
TWT_AVMI. The Twitter account password is introduced
from the beginning, as the first phase of this indirect
authentication is the login in SuperTweet where exact
Twitter username and password are required. The proper
SuperTweet password is needed only for opening the
account and is always used by the external programs
accessing SuperTweet APIs.

These HTTP calls are the most relevant for our
implementation – as in the previous example where,
http://api.supertweet.net/1/statuses/update.xml is
used to transmit the status of the authenticated user,
requesting a POST to the corresponding URL address, in
order to update the status value.

These values are encoded in Base64 (see the presentation
of the corresponding sub-VI in the next sections). This call is
similar to http://twitter.com/statuses/update.xml.
Type of the answer is null.

Another command of the previous example is
http://api.supertweet.net/1/statuses/home_timeline.xml
(see the previous example) that will provide chronologically
the “tweets” sequence. This command is similar to
http://twitter.com/ statuses/user_timeline.xml.
These URLs do not need extra parameters and the type of
answer is status.

IV. THE PROOF-OF-CONCEPT

For the first demonstrator of the proof-of-concept
implementation, we have used the NI low-cost multifunction
DAQ System NI USB-6008 [15] – that can be seen in Fig.2.
It is spectacular that such a mini-system can tweet and close
a complete telematic loop (computing and producing also
actuator feedbacks). Its integration into NI-MAX is also
flexible and forthcoming. As already visible in our particular
NI MAX community in Fig.1, in the group Devices and
Interfaces, it gets the (logical) identity Dev1; this is a
username (and an avatar associated with the role overtaken
in the social network). Dev1 capabilities are mediated by the
NI-DAQmx set of drivers and middleware aggregated by NI
MAX in the Software group (see Fig.1, center). This means
the DAQ system can be probed in a push-pull configuration
as advertised by the network.

We have created the NI-DAQmx Tasks group of tasks
containing Senzor (sensor) and Temperatura (temperature).
They are put by NI-MAX in the Data Neighbourhood

 155

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:35:10 (UTC) by 44.192.129.85. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

group, and are configured in relationship with the Voltage
task, for the acquisition inputs of Dev1. Voltages can be
checked prior to their use as logical channels in the higher
level VI by probing DAQmx (the control is visible in Fig.1
– right). These VIs are parts of our software development
for the case-study in telematics. They are implemented in
LabVIEW that is also integrated in the NI MAX Software
group – we have thus consolidated the community that
would function with social networking rules, according to
the specific SN-objective of our research.

Due to the mediation of NI MAX NI DAQmx as social
network facilitator, the instrumentation service can be built
by LabVIEW almost transparently – without detailed and
very specific controls for DAQ hardware – as in former
versions of LabVIEW [16]. This means that NI MAX & NI
LabVIEW meet the functionality of a real SCE (Service
Creation Environment) according to the IN paradigm –
“Intelligent Networks” with liberalized access to service
creation and deployment.

Figure 2. Simple and cost-effective proof-of-concept configuration: NI
USB-6008 with red/blue LEDs (the second one lights, closing the Twitter
loop by notifying an inferior temperature); LM35 sensor; 9V battery

For our case-study we benefited from the main system
characteristics of the NI 6008 USB DAQ, using one of the 8
analog inputs (12b, 10kS/s) since the resolution is enough
for the intrinsic noise of the temperature sensor LM35Z and
the acquisition speed is enough given our thermal time
constants. There are also available 2 analog outputs with
lower speed, and 12 digital I/O ports.

The temperature sensor LM35DZ belongs to the National
Semiconductor LM35 series of precision integrated-circuit
sensors [17]. The output voltage is linearly proportional to
the Celsius temperature – 0 to 1V output for 0 to 100 °C
(operating temperatures from -55° to +150°C). The sensor
does not require any external calibration or trimming to
provide typical accuracies at room temperature or over a full
temperature range making it ideal for accurate and
manageable testing device. In addition, LM35 has low
output impedance ideal for direct connection to DAQ
systems like ours. It can be used with single power supplies,
or with plus and minus supplies. We have also tested the use
of NI USB-6008 own output for the single power supply of
the sensors but, for greater accuracy, we chose separate
ground for the measurement circuit of sensor outputs and
DAQ inputs, using an extreme low noise dedicated supply –
a 9V alkaline battery. This is possible since LM35 draws
only 60 µA from its supply.

An important consequent advantage is the very low self-

heating (i.e. less than 0.1°C in still air) of LM35.

V. DATA COLLECTION AND TWEETING
VIA VIRTUAL INSTRUMENTATION

The first VI developed for DAQ performs broadcasting
temperature measurements via Twitter, using LabVIEW and
is called SuperTweet Update Status.vi, presented in Fig.3 –
the main Panel, (a) & (b), and the Diagram, (c).

It represents the LabVIEW to Twitter paradigm, with data
collected and sent.

For the purpose of onscreen monitoring and control, the
panel display contains the measured temperature, in analog
and digital format, and the HTTP POST messages sent, that
would produce the expected “tweets”.

One can note some more important XML fields, e.g.
<text>Statia Meteo nr.1 Temperatura 26.1 C @ 6/7/2011
6:02 AM</text> representing the actual “tweeted” text.
Compared with the classical Twitter service, there are also
more details between <source> and </source> markups.

Figure 3 (a). SuperTweet Update Status.vi panel

 For the api.supertweet.net/1.1/statuses/update.

json frequently used, the HTTP Answer is like in Fig.3 (b).
The “tweets” in fig.3(b) are from another case-study
collecting and transmitting the measurement of a weighing
scale sensor. The data, in this case, represents the quantity of
7.0 grame (grams) announced by Cantar (weighing-scale)
with a local time-stamp 6/30/2013 9:33AM (GMT 6:33AM).

Figure 3 (b). HTTP Answer - fragments separated by [...] - in the case of
SuperTweet Update Status.vi based on JSON

In the VI’s diagram, Fig.3 (c), the following sequence is
performed: acquisition of temperature signal from the LM35

 156

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:35:10 (UTC) by 44.192.129.85. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

 157

sensor, its multiplication with the ºC/V factor and numeric
to alphanumeric conversion of the result for temperature
value in string format (from the matrix output, only the first
string value is extracted, the one corresponding to measured
status, temperature in this case).

The resulting string is prepared for transmission via a
series of parsing and manipulation sequences. At first it is
concatenated with a preamble, (i.e. the ID of a
Meteorological Station in our case-study) and added a trailer
with the time-stamp representing the local time (format
including: date & hour) at the geographical location of the
“tweet”. Then the global assembly of the HTTP POST
message is done (also by string-concatenation). Its final
transmission is done in a TCP session via the appropriate
HTTP port 80. This includes sending the specific HTTP
fields associated with method identification (i.e. the specific
API in use api.supertweet.net/1/statuses/update.xml).
Finally, the error codes are managed via a pipeline, in order
to allow their storage for later checking.

The main sub-VIs are:
– DAQ Assistant.vi – the specific set of LabVIEW

functions & controls (a middleware that is transparently
exposing only logical acquisition & distribution channels,
whatever physical channels would be available via the
DAQmx drivers – in our case, those of NI USB DAQ 6008);

– Dynamic data converter.vi – from the DAQ Assistant,
in our case outputs of the temperature sensor LM35DZ –
into numbers (multiplied afterwards with the ºC/V factor);

– Trim Whitespace.vi – eliminates of any blank characters
(e.g. space, tab, line break), based on the whitespace.ctl.
This sub-VI and the following are parts of the specific
LabVIEW package that we have built-upon [21].

– Since Base64 is the encoding specific to Twitter,
alphanumerical conversion into Base64 must be done, by
concatenating the ASCII bytes of the input characters
(i.e. the 17 characters in IMVA_TWT:twt_avmi), resulting
a global string (in our case 17 x 8 = 136 bits), re-divided
in characters of 6 bits each – in our case, the 136/6
(≈) 23 characters of a number in Base64 (=26)
SU1WQV9UV1Q6dHd0X2F2bWk.

As in Fig.4, the “tweets” that reached Twitter servers

from the instrumentation device can be displayed
sequentially.

Figure 4. Display of tweets (sent by the VI) in Twitter timeline

The Twitter messages are completely customized,
including the avatar image for the emulated sending account
IMVA_TWT. The logo file DPR_normal.JPG is specified
in the sending and formatting part of the main-VI, the HTTP
POST message definition sections, visible in Fig.5 (a).

As shown above, the first VI was an extension of the NI
libraries [21], with our solutions to the problem of
authentication and of the integration with a DAQ
instrumental configuration. Thus, the second VI developed
represents a complete original solution.

This complete solution provides Twitter to LabVIEW side
of a complete bilateral and direct M2M communication
suitable for IoT via Twitter, without human mediation.

The Read Status.vi Panel and Diagram are presented in
Fig.5 (a) and (b).

The main version containing fixed authentication
parameters and fixed preamble can be programmed for
periodical “tweets”, as described before.

The VI allows not only direct M2M communication for
measurement, status and commands for a broad range of
control scenarios in IoT, but can also close the acquisition-
drives loop in automation, engaging actuators [10].

Figure 3 (c). SuperTweet Update Status.vi diagram

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:35:10 (UTC) by 44.192.129.85. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

In our case-study, we have programmed fixed alarm
thresholds for temperature, producing binary on/off controls
of potential heating or cooling systems. These controls are
emulated by red and blue LED-s that don’t switch on in the
programmed range of temperatures, ensuring also a
hysteresis – a margin that should prevent switching
oscillations, but switch on in alarm conditions (e.g. received
by a remote central heating system) – too warm or too cold.
The main versions of this VI easily allow modification of
these thresholds via dedicated numeric controls available in
the panel, with direct input or increment/decrement, as can
be seen in Fig.5 (a), making it viable for domotics. A
numerical display would indicate the remotely transmitted
(“tweeted”) actual value representing the actual Twitter
status – in our case-study a temperature broadcasted by a
Weather Station – without needing the periodical access of a
human operator to read thermometers or other equipment
like barometers or hygrometers. In other versions, thresholds
can be fixed (not accessible in the VI panel).

The Read Status.vi includes authentication controls and
parameters like in the SuperTweet Update Status.VI. It is
invoked by the other specific API, http://api.supertweet
.net/1/statuses/home_timeline.xml mentioned in the
previous paragraph.

The main sub-VIs used (functions and controls from
LabVIEW libraries) are:

– HTTP Request (GET).VI, that receives the HTTP
message of the “tweet”. It has a structure very similar with
the above-detailed HTTP POST; – Twitter Extract XML
from HTTP Response.vi and Twitter Parse Statuses from
XML.vi allow the string formatting and particular string
processing, besides the control display on VIs panel. The
parser is searching in the XML file the preamble <?xml to
check XML validity, then the > character that is typical
ending XML labels, extracting line by line, in an internal
shift register, the statuses, respectively the code between the
<status> and </status> labels that corresponds to a tweet.
When the length of such a sequence becomes 0, the reading
of statuses came to end, the repetitive run is stopped.

– Formatting and listing (in Reading Tables on the panel)
of sub-strings extracted from tweeted status info, grouping
alphanumeric variables user_name, user_screen_name, text,
created_at with separator characters.

It can be noticed again that time-stamping of the “tweets”
is using GMT. The variables are separated (filtered) from
the extracted XML file as in Fig.5(a).

Figure 5(a). The Read Status.VI panel

Figure 5(b). The Read Status.VI diagram

They are referred, as <name> and <screen_name> for
the <user> data, and as <text> and <created_at>. This
filtering process is enabled by searching based on labels
(keys) specific to the XML, eg. created_at, id, text,
source, truncated.

– DAQ Assistant is used this time for signal distribution
and commands in analogic format, having pre-configuration
of output channels using DAQmx. The dynamic data
converter sends alarms voltage (e.g. 0/5V quasi-binary
values), particularly by the analog outputs. The software is
adjusting LED luminosity via a series resistor.

A solution based on the above-mentioned curl tools that
is apparently simpler but indirectly using supplementary
software is presented in Fig.6, where M:\curl> is, in our
example, the path of the curl executable file.

Figure 6. Modification of Read Status.VI based on third party curl software

For easy to use IoT applications dedicated to things that
dweet (direct tweeting, by simply open broadcasting),
Twitter or SuperTweet methods can also be replaced by
recent third party online solutions like Dweet [22]. To
demonstrate this, we used IMVA_DWT as the name of the
{thing}, in a simple HTTP POST like: https://dweet.io/
dweet/for/IMVA_DWT?Temperatura=27.4C&foo=bar

 As immediately visible with json viewer or other freeware
tools, the dweet has the JSON structure:
{"this":"succeeded", "by":"dweeting", "the":
"dweet", "with": {"thing": "IMVA_DWT", "created":
"2014-04-20T 15:59:42", "content":{"Temperatura":
"27.4C", "foo":"bar"}}}

 If the name of the {thing} isn’t trivial and should be
known only be corresponding nodes in the IoT (with simple
precautions like periodical rename), individual dweets
can be retrieved with HTTP GET commands like
https://dweet.io/get/latest/dweet/for/IMVA_DWT

 158

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:35:10 (UTC) by 44.192.129.85. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

The json viewer can display, at the corresponding client, a
similar dweet – the difference is the field "by":"getting",
instead of "by":"dweeting" in the post.
We can use, for instance, cURL with a syntax like:
D:\> curl –k
https://dweet.io/get/latest/dweet/
for/IMVA_DWT{"this":"succeeded","by":"getti
ng","the":"dweets","with":[{"thing":"IMVA_D
WT","created":"2014-05-
20T15:59:42","content": {"Temperatura":
"27.4C", "foo":"bar"}}]}

Then, in a way similar to the details of Fig.6, this can be
easily embedded in an adapted LabVIEW virtual instrument.

VI. IMPLEMENTATION OF OAUTH

 For the more advanced OAuth method, a confidential
oauth_consumer_key and an oauth_token (as can be seen
in the following example) are generated by the Twitter
management service and made available only to the user (for
his/her exclusive use).

The first approach of this direct solution (without
involving third parties that still accept BA methods) is the
use of curl directives. Compared with the previous Read
Status directives, in this case we should use:
curl --get
'https://api.twitter.com/1.1/statuses/
user_timeline.json' --header
'Authorization: OAuth
oauth_consumer_key="...",
oauth_nonce="...", oauth_signature="...",
oauth_signature_method= "HMAC-SHA1",
oauth_timestamp="...", oauth_token="...",
oauth_version="1.0"' –verbose
where oauth_nonce parameter is the unique, encoding in

Base64 of a sequence with 32 bytes of random data
generated once for each request; the oauth_signature is
produced with the oauth_signature_method Hash Message
Authentication Coding (HMAC) – of all these previous
parameters by the secure hash algorithm (SHA) number 1;

oauth_timestamp represents the number of seconds since
January 1, 1970 00:00:00 GMT.

 In order to integrate these directives with the social
networking of instrumentation powered by LabVIEW, our
first solution is the straight adaption of the VI set presented
in Fig.6 – with the SysExec sub-VI for using programs like
curl that can be invoked directly from a DOS command line.

 The recently released "i3 Twitter Toolkit for LabVIEW"
[23] is using only OAuth (version 1.0a) by dedicated "i3
OAuth Toolkit for LabVIEW". It supports mainly JSON
data format (by an "i3 JSON Toolkit for LabVIEW"). It can
invoke any Twitter API v.1.1 and provides already built VIs
functionality for posting statuses, reading user's tweets and
mentions or search Twitter based on queries. These
solutions belong to the i3 "Interactive Internet Interfaces" of
recent LabVIEW versions.

 After the simple and direct integration (via curl and
SysExec sub-VI) of OAuth with our telematic demonstrator,
our next approach was based on the same principle of text
processing (segmentation, parsing etc) using the available
LabVIEV library "i3-twitter.lvlib".

 In fig.7 and 8 we present how the tweets of our proof-
of-concept weighing scale can be brought into the telematic
system, in a bilateral way.

VII. CONCLUSIONS AND FURTHER DEVELOPMENT

The present research paper describes our contribution to
the integration of distributed instrumental systems in the IoT

using consolidated social networking platforms like Twitter
for asynchronous communication.

Figure 7. Panel of the Get Tweets New.VI – one can see the JSON format
of the Tweet published by the instrument “cantar” – Weighing scale

Figure 8. Panel and Diagram of the Post New Tweet - Finite.VI, followed
by a proofing image of the Twitter timeline updated with the “Testing new
capabilities” tweet

Our case studies in telematics have included proof-of-
concept demonstrators using sensors and actuators driven by
local embedded intelligence close to Smart Dust paradigm.

We have demonstrated that Twitter RESTful APIs can
build an application interconnect layer compliant with cloud
SaaS paradigm, meeting most of the research objectives for
implementing social networks of instrumentation.
Leveraging existing IP-based technologies, these APIs
advantage was the reducing of platform dependencies as
they can be invoked using generic HTTP methods, via the
common TCP port 80 opened in most of the networks.

Any web-connected machine can tweet in order to
broadcast its process-specific messages. As the APIs are
hosted in the cloud, it is not need anymore to implement a
server-proxy infrastructure for dedicated web-services.

Our objective of supporting real-time communications
was met partially by the LabVIEW built-in Real-Time
Engine but mostly for local transfer.

As Twitter is asynchronous, we look forward to its further
developments enabling streaming features (or, at least, its

 159

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:35:10 (UTC) by 44.192.129.85. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 2, 2014

 160

permanent push capabilities) enabling integration of DSTP
(DataSocket Transfer Protocol) into faster social networking
of instrumentation. Other versions of our VIs, transforming
monitoring into alarms, might implement periodic
measurement by the LabVIEW Continuous Run function;

they should transmit (tweet) only for exceeding threshold
values (e.g. temperature limits in our case-study). In case of
reliable Internet communications and greater time-constants
accepted in industrial processes, distributed on/off actuators
(e.g. electro-valves) can be engaged for closed-loop control.
Besides project-specific solutions for various authentication
mechanisms, a main contribution was the bilateral extension
of instrumental communications in the social network.

Our objective of securing the entire communication chain
was met by various solutions of BA and OAuth (combined
with SSL encryption). Our case studies used the BA of the
service provider SuperTweet, just as the current third party
of choice, in order to validate the instrumentation
communities’ concept via a complete loop for collection,
transmission and presentation. Consolidated solutions would
need either a contractual SLA (Service Level Agreement) or
a good Risk-Management plan for any business-case based
on such intermediation – considering backup solutions in
case of interruption such of third party services. Local
round-about solutions like curl and/or BA-to-OAuth
translation proxy were presented. Further customization of
our telematic solution could easily pass from fixed
authentication parameters to variable ones, quite usual in
M2M where security and access issues remain as relevant as
the critical information transmitted.

The development of future M2M communications in IoT
will enable the successful integration of industrial and
household (domotics) applications in our daily life. As the
current paradigm of social interaction is shifting towards
mobility and permanent availability of information, the IoT
must meet the same level of demand and ergonomics.

The main guidelines for implementation represent the
unrestricted access to information and the desire for a sound
economic model. The Smart Grids and other utility networks
can even be equipped with monetizing layers, adapting the
communication to the recent prosumer (producer-
consumer) capabilities. Information exchanged between
aggregated devices can also contain counters for monetary
information – it is obvious that such “tweets” should be
even more secured. It is expected that the next years will
bring also recommendations for pre-standard interaction in
the IoT on behavioural models based on event-driven
control. We have shown how collecting “tweets” by Virtual
Instrumentation can close such control loops based on
embedded processing, local interpretation and decisions, an
important step that was emulated in our case-study.

Our study also contributes to the trend of future
aggregation of virtual colonies as IaaS (Infrastructure as a
Service) [24-26], including transactional (negotiation)
schemes like those recently introduced to cooperating robots
running ROS – Robots’ Operating Systems. Using solutions
like the ones we have proposed, implemented, tested and
validated, publish/subscribe procedures become possible for
broadcasting status, service requests, capability offers etc.
thus enabling full remote control.

Remarkable Twitter-based services were proposed by

Neoformix [27] enabling models of presence/availability in
social networks to be extended for IoT by with various
capabilities to detect similar behaviours in the cyberspace
and to suggest partnerships.

REFERENCES
[1] S. Sean Dodson, R. Van Kranenburg, The Internet of Things - A

critique of ambient technology and the all-seeing network of RFID,
Institute of Network Cultures, 2009.

[2] D. Uckelmann, M. Harrisson, F. Michahelles (editors), Architecting
the Internet of Things, Springer, 2011.

[3] K. Ashton, “That 'Internet of Things' Thing” – RFID Journal, July
2009 [Online]. Available: www.rfidjournal.com/article/view/4986

[4] A. Broering, T. Foerster, S. Jirka, C. Priess, “An intermediary layer
for linking sensor networks and the sensor web,” Proceedings of the
1st International Conference on Computing for Geospatial Research
& Application, “COM.Geo 2010”, ICPS - ACM International
Conference Proceeding Series, Article 12, pp. 12:1-12:8, 2010

[5] Message Queue Telemetry Transport, [Online]. Available:
http://mqtt.org

[6] P. Saint-Andre, K. Smith, R. Troncon, XMPP - the definitive guide,
O’Reilly Media, 2009

[7] P. Ogrutan, L. E. Aciu, “Microcontroller-based system for accelerated
reliability tests of electronic equipment,” Proceedings of the
International Conference AFASES 2013, pp. 4.1.1-6, 2013

[8] E. Coca, V. Popa, “A practical solution for time synchronization in
wireless sensor networks,” Advances in Electrical and Computer
Engineering, 12(4), pp. 57-62, 2012.

[9] B. Li, J. Yu, “Research and application on the smart home based on
component technologies and Internet of Things,” Volume 15 of the
Procedia Environmental Sciences Journal, pp. 2087 – 2092, 2011.

[10] A.C. Stanca, V. Sandu, R. Vaduva, O. Nemeth, “Distributed system
for indoor temperature control,” Proceedings of the IEEE
International Conference on Applied and Theoretical Electricity - 11th
edition - ICATE 2012, pp.6.3.1-6, 2012.

[11] Commission of the European Communities (2009-06-18), Internet of
Things – An action plan for Europe, COM(2009) 278

[12] Smart Grid Leadership Report: Global Smart Grid Implementation
Assessment, oct.2010, document no. 1021417, [Online]. Available:
http://www.smartgrid.epri.com

[13] K.C. Budka, J.G. Deshpande, T.L. Doumi, M.Madden, T.Mew –
“Communication network architecture and design principles for smart
grids,” Bell Labs Technical Journal 15(2), pp. 205-227, 2010.

[14] National Instruments Corp. - LabVIEW - www.ni.com/labview
[15] National Instruments Corp. - Multifunction DAQ for USB [Online].

Available: www.ni.com/pdf/products/us/20043762301101dlr.pdf
[16] National Instruments Corp. - Data acquisition basics manual – 2000,

[Online]. Available: http://www.ni.com/pdf/manuals/320997e.pdf
[17] National Semiconductor – Precision centigrade temperature sensor -

[Online]. Available: www.national.com/mpf/LM/LM35.html
[18] The Lantronix XPort embedded web-server – [Online]. Available:

http://www. lantronix.com/pdf/XPort_DS.pdf
[19] Google GSON [Online]. Available: https://code.google.com/p/google-

gson/
[20] cURL – Command line tool for transferring data with URL syntax

[Online]. Available: http://curl.haxx.se
[21] C. Loew, “Update Twitter status from LabVIEW”, National

Instruments Corp., Document # 3284 of the NI Developer Community
2009 [Online]. Available: https://decibel.ni.com/content/docs/DOC-
3284

[22] Simple messaging for the Internet of Things - Bug Labs Inc., 2014
[Online]. Available: https://dweet.io

[23] National Instruments Corp. – i3 Twitter Toolkit for Labview, 2014
[Online]. Available: https://decibel.ni.com/content/groups/interactive-
internet-interface-twitter-toolkit-for-labview

[24] T. Berners-Lee, J. Hendler, O. Lassila, "The Semantic Web,"
Scientific American Magazine, 284(5), pp. 34-43, 2001.

[25] M. Kranz, L. Roalter, F. Michahelles, “Things that Twitter: social
networks and the Internet of Things,” Proceedings of the 8th
International Conference on Pervasive Computing, 17-20 May 2010,
Helsinki, Finland – “ Lecture Notes in Computer Science”, Volume
6030, pp. 51-60, 2010, DOI: 10.1007/978-3-642-12654-3

[26] J.B. Waldner, Nanocomputers and swarm intelligence. London,
Wiley-ISTE. pp. 227-231, 2008.

[27] J. Clark, “Discovering and illustrating patterns of data”, [Online].
Available: http://neoformix.com/

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:35:10 (UTC) by 44.192.129.85. Redistribution subject to AECE license or copyright.]

