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1 Abstract—In this paper, the algorithm based on graph 

learning and graph embedding framework, Speaker-Penalty 
Graph Learning (SPGL), is proposed in the research of speech 
emotion recognition to solve the problems caused by different 
speakers. Graph embedding framework theory is used to 
construct the dimensionality reduction stage of speech emotion 
recognition. Special penalty and intrinsic graphs of the graph 
embedding framework is proposed to penalize the impacts 
from different speakers in the task of speech emotion 
recognition. The original speech emotion features are extracted 
by various categories, reflecting different characteristics of 
each speech sample. According to the experiments in speech 
emotion corpus using different classifiers, the proposed method 
with linear and kernelized mapping forms can both achieve 
relatively better performance than the state-of-the-art 
dimensionality reduction methods. 
 

Index Terms—speech emotion recognition, speaker penalty 
graph learning, graph embedding framework, dimensionality 
reduction. 

I. INTRODUCTION 

The research of speech emotion recognition (SER) 
develops rapidly with the application needs. The 
applications of call center and human-computer interaction 
call for the new improvement of SER, to achieve natural 
interaction between human beings and machine or automatic 
emotion processing by computers. Because of the demands 
above, many research works have been processed[1-5]. 
However, the previous works are mostly focus on the 
choices of features based on prior knowledge or the 
experiments programmed manually, neglecting fully using 
training data. Additionally, the original extracted speech 
emotion features include too much redundant information, 
in which some acoustic features used in speakers 
recognition may mask helpful factors for emotion 
recognition. Currently, some of research works[6-8] are on 
the methods to reduce the impact from different speakers in 
the stage of feature selection, which can verify the 
corresponding only by the limited experimental results. To 
improve the recognition performance of a speech emotion 
recognition system, the information speaker labels is added 
to penalize the influence of speaker features.  

Manifold learning methods are usually adopted in the 
stage of dimensionality reduction to show the intrinsic 

structure of data. The graph learning based manifold 
learning methods[9-15], such as LE (Laplacian Eigenmaps) 
or LPP (Locality Preserving Projections)[9-10], LLE 
(Locally Linear Embedding)[11], DM (Diffusion Maps)[12], 
Isomap[13] and LDE (Locally Discriminant Embedding) or 
MFA (Marginal Fisher Analysis)[14-15] can be represented 
as the unified graph embedding framework[15], least-
squares framework[16] or their extensive forms. When those 
methods are used in the field of speech emotion 
recognition[17-18], the supervised informaition should be 
included because of the difficulties in accurately extracting 
appropriate speech emotion features without the help of 
label information. The information merely drawn from the 
feature vectors of training samples themselves may mislead 
the purpose of recognition for which we expect.  
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This paper is aim to construct a graph-learning-based 
framework to reduce the impact on speech emotion 
recognition caused by redundant speaker recognition 
features. The new effective methods, Speaker-Penalty Graph 
Learning (SPGL) and its linear and kernelized data mapping 
forms, Linear SPGL (LSPGL) and Kernel SPGL (KSPGL), 
are proposed in the paper to elevate the recognition rates in 
SER. The proposed methods can obviously raise the 
performance of a speech emotion recognition system with 
the additional speaker label of training samples. The 
intrinsic and penalty graphs in the methods of SPGL can 
inhibit the speaker-related factors which could hinder 
correct classification in speech emotion recognition.  

The rest of this paper is organized as follows. Section 2 
shows the basic theory of graph embedding learning 
methods. Then in this section, the proposed algorithm SPGL 
is described in detail. In Section 3, the experiments for 
recognition rates based on the proposed LSPGL and KSPGL 
are processed compared with some conventionally adopted 
dimensionality reduction algorithms using public speech 
emotion corpus. 

II. GRAPH EMBEDDING FRAMEWORK 

The framework of graph embedding was proposed in [15], 
in which some discriminant analysis, component analysis 
and manifold learning methods can be represented as the 
form of Graph embedding. Different from previous methods, 
graph embedding framework lets the dimensionality 
methods be a framework including 3 stages. The first one is 
construction of embedding graphs. Then, mapping forms 
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which connect training and test samples are worth 
considering. Additionally, the framework is with a relatively 
fixed optimization method. Although the thoughts of those 
different dimensionality reduction methods are not the same, 
the 3-stage framework above, including its extensive forms, 
is still enough to describe most standard ways of 
dimensionality reduction.  

The optimization of graph embedding frameworks is 
shown as (1).  
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where the adjacency matrices of intrinsic and penalty 

embedding graphs are respectively W  and pW , with the 

Laplacian matrices of L D  and W  p p pL D W   
respectively. d  is the fixed scale-controlling constant value. 

y  is the column vector with each element iy  indicating the 

feature of training sample i , where i .  is the 

number of training samples. The diagonal elements of 

diagonal matrices D  and 

1,2,..., N N

pD  are the degrees of 
corresponding sample nodes.   in (1) is the diagonal 
matrix which controls scales of .  y

In addition, some generalized forms for graph embedding 
learning can be proved to be able to signify more kinds of 
dimensionality reduction forms, such as Diffusion Maps[12] 
etc.. The coming up with least-squares frameworks[16] can 
be seen as the extension of graph embedding as well. 

III. SPEAKER PENALTY GRAPH LEARNING 

In this part, we start our proposed methods, Speaker 
Penalty Graph Learning (SPGL), with some unified 
definitions of variables. The training sample set is 

, where N  is the number of training 

samples. Each training sample  ( ) is 

with two kinds of labels, which are emotion category labels 
 and speaker labels , 

where the numbers 
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 and  indicate the categories of 

speech emotions and speakers respectively. n  is the 
dimensionality of the feature space before the stage of 
dimensionality reduction. The dimensionality-reduced 
training set can be represented as 

, where 
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( )   and 1,2,...,i N ( ) 1j Ny  ( 1,2,...,j m m ).  is the 

dimensionality of Y .  
First, because of the not obvious features in representing 

emotion factors, we hope any two samples of the training set 
with the same emotion label to be with small distance, while 
each pair of two samples with different emotion labels is far 
away from each other in the newly generated feature space. 
Suppose the adjacency matrix of the graph is:  

1
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which is the same as the intrinsic graph of graph-
embedding-form LDA (Linear Discriminant Analysis) or 

FDA (Fisher Discriminant Analysis)[15,19], where  
1c Ne   is the column vector with the elements which are 

corresponding to emotion class c  being equal to 1, 

otherwise they are equal to 0.  is the number of samples 

in class c .  is the number of emotion classes. 

cn

cN
    We hope that each pair of samples in the same emotion 

classes are with small distances:  
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where  is the element for row i  and column ( LDA ijW j  of 

. LDAW ( )k
iy  is the corresponding element of sample i  for 

the new dimension .  k
According to the derivation in [9-10], the optimization 

form of (3) can be represented as (4), with the scale 
condition.  

min T
LDAy L y                                                                (4) 

The Laplacian matrix of  obeys:  LDAW
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For the penalty part of the same speakers with different 

speech emotion labels, the element ps
ijW  of the embedding 

penalty graph is designed as (6), where the penalty element 

 are equal to 1 when the neighboring samples  and ps
ijW i j  

maintain the same speaker label while they are included by 
different emotion categories. It means that we can constrain 
the speaker-related features which are simultaneously not 
helpful in speech emotion recognition.  
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The matrix form of psW  can be consequently represented 
as (7).  
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where the ‘ ’ means the element-wise multiplication 
between two matrices. 


1Sc Ne   is the column vector with 

the elements which are corresponding to speaker class   

being equal to 1, otherwise they are equal to 0.  is an 
Sc

kNNW

N N  matrix with  when sample ( )kNN ijW W( )kNN ji 1

( )jki N  or sample ( )kj N i , otherwise the 

corresponding elements are equal to 0.  
Like what is described for W , the distance is expected to 

be large when every pair of two samples is with the same 
speaker label while their emotion labels are different. The 
original form of it can be written as (8).  
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Therefore, the standard form of the penalty part of 
speaker factors is:  

max T psy L y                                                                     (9) 
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The Laplacian matrix of the embedding graph  is 
show in (10).  
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Then, another optimization term is given to make the 
features related to different speakers with more attentions. 

Thus, the adjacency matrix  of , where the 

diagonal element i  of diagonal matrix  is 
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The graph of  can be seen as an intrinsic embedding 
graph to penalize nonemotional factors between different 
speakers. The matrix form of  can be represented as:  
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The optimization form of the intrinsic part is:  
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Noticing that maximizing of the distance between each 
two samples is adopted in PCA (Principal Component 
Analysis):  

1
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where  is the column vector with all elements 

equal to 1. 

1Ne 
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N
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The maximizing in (14) is also used in LDA as the 
penalty part. It can be seen as the form of inner product after 
removing mean value of samples. We consider it as a 
section of the final form of the proposed methods.  

Combining the two forms of optimization of (4), (9), (13) 
and (14) together, we can obtain the form of (15) with 
simultaneously minimizing the numerator section and 
maximizing the denominator section of the objective 
function in (15).  
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To keep the similar form as the embedding graph of LDA 
and to make the parameters 10 1   and 

20 1 

isD

 

balanced in representing the relationship between (4) and 
(13), as well as (9) and (14), we can also let the Laplacian 

matrix of the graphs as (16). When  and  is with 
zero diagonal elements, the non-zero subblocks can be used 
to solve this problem.  
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Supposing the intrinsic and penalty graphs of the 
proposed methods can be written as 

1 1(1 ) is
LDAL L     and 

2 2(1 )p psL H L      respectively, we can obtain the 

proposed SPGL as (17).  
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When the data mapping of SPGL is adopted as the linear 
form, the optimization form of the the proposed linear SPGL 
(LSPGL) with one-dimension situation in consideration is 
shown as:  

arg min . . 1
T T

T
T p T

a

a XLX a
s t a a

a XL X a
                                 (18) 

With the orthogonal constraint, (18) can be also written as 
(19) with multiple dimensions after dimensionality 
reduction.  

( )
arg min . .

( )

T T
T

T p T
A

tr A XLX A
s t A A I

tr A XL X A
                       (19) 

where the mapping direction matrix 1 2[ , ,..., ]mA a a a , 

whose column vectors are orthogonal between each other. 
The column vectors of A  are corresponding to a  in (18). 
Consequently, the optimization of (18) and (19) can be 
solved according to (20) as the generalized eigenvalue 
problem with eigenvalue  .  

T p TXLX a XL X a                                                   (20) 
It is noticeable that to prevent the situation of small 

sample size problems and to improve recognition 
performance as well, (20) can be processed by the prior 
stage of PCA or SVD (Singular Value Decomposition). 
Then, the generalized eigenvalue problem is modified into a 
common eigenvalue problem which is easily solved, with 
orthogonalization of the separately obtained eigenvectors.  

Compared with MFA[15], the proposed LSPGL method 
penalizes the speaker factors, which are not helpful for 
speech emotion classification in the original features, 
instead of only penalizing the neighboring marginal sample 
pairs. Compared with LDA[19], RDA (Regularized 
Discriminant Analysis)[20], SDA (Semi-supervised 
Discriminant Analysis)[21] and some other methods[22], 
weighted terms with speaker penalty information are added 
to improve performance, instead of other information.  

For the kernelized form of SPGL, KSPGL, the prior SVD 
dimensionality reduction work for Gram matrix  for the 
reasons as what exist in LSPGL and the interference when 
the generalized eigenvalue problem is solved. The 
optimization for of KSPGL is shown as (21).  

K

arg min . . 1
T

T
T p
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KLK
s t

KL K

   
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                                 (21) 

where the Gram matrix . The ( ) ( )TK X X  N  high-

dimension training samples 
1 2( ),. )]N( ) [ ( ), .., (X x x x  

X

 , 

which come from the original space .  
    The computational cost of the proposed LSPGL and 

KSPGL is the same as Frobenius-norm based graph 
embedding methods. 

IV. SPEECH EMOTION RECOGNITION USING SPGL 

We adopt the proposed SPGL, including LSPGL and 
KSPGL, in the dimensionality reduction stage of speech 
emotion recognition. The proposed SPGL methods can 
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mainly constrain the non-emotional features in the same 
speakers by the term of speaker penalty.  

Each speech emotion sample is processed by pre-
emphasizing and some basic denoising methods. Then, 
enframing stage using Hamming window is used to extract 
frame-wise information. Different kinds of original speech 
emotion features are obtained according to the frame-wise 
information above. The categories of speech emotion 
features adopted are pitch[1-5,18-19], zero-cross rate[3], 
energy[2-5,19], formant[2-3,5,19], durance[1-3,5,19] and 
MFCC(Mel Frequency Cepstrum Coefficient)[2-3] features. 
Those features are for the whole utterance of each speech 
emotion sample based on the statistical information of the 
frames in the sample.  

With the features provided, the works of normalization 
and feature selection should be adopted to improve 
performance of the system. After that, the dimensionality 
reduction stage of LSPGL and KSPGL is designed to 
achieve effective factors for speech emotion classification. 
The kernels are selected as conventional Gaussian kernels.  

The inter-embedding-graph weight parameters 1  and 2  

of the proposed methods can be drawn according to cross-
validation or some empirical methods.  

As the stage of classifiers, kNN (k-Nearest Neighbor), 
SVM (Support Vector Machine) or some other effective 
classifiers can be used in recognition.  

The overall thought of SPGL is illustrated in Figure1, 
where the shaded areas mean the information included in 
graph learning. Figure 1(a) shows the different kinds of 
information used in LDA while Figure 1(b) means the 
information adopted in SPGL.  

 

 
(a) 

 
(b) 

Figure 1. The emotion and speaker factors taken into consideration in LDA 
and proposed SPGL respectively. (a) LDA. (b) SPGL 

 

V. SPEECH EMOTION DATABASE 

Berlin speech emotion database (EMO-DB)[23] and 
eNTERFACE’05 multimodal emotion corpus[24] are 
adopted in the experiments.  

7 classes of speech emotions, which are neutral, fear, 
disgust, joy(happiness), boredom, sadness and anger, are in 
Berlin corpus. 10 speakers (5 male and 5 female) with 10 
different German sentences are included in the corpus. 494 
samples are chosen from the original database of EMO-DB 
in our experiments.  

The corpus of eNTERFACE’05 provides the emotions of 
happiness, sadness, fear, disgust, surprise and anger. Short 
English sentences are spoken by 42 persons from different 
regions of the world. We choose samples from 15 speakers 
with only the parts of speech, with the whole video or face 
expression sections. 

VI. EXPERIMENTAL RESULTS  

We use the experimental method of Leave One Speaker 
Out (LOSO)[6] to show the effectiveness of our proposed 
methods in the condition of speaker independent speech 
emotion recognition. LOSO makes the training and testing 
process divided by different speakers, without the impact of 
speaker factors connecting training and testing.  

The experiments on EMO-DB is show as follows. The 
recognition rates corresponding to the low dimensions are 
represented as Figure 2, where Figure 2(a) is the recognition 
rates when 1NN classifiers are used and SVM and 
NB(Naive Bayesian) classifiers are adopted in Figure 2(b) 
and Figure 2(c) respectively. Linear dimensionality 
reduction methods, PCA, LDA, LDE and the proposed 
LSPGL, are compared in Figure 2.  
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Figure 2. The average recognition rates in EMO-DB using LOSO in 
different low dimensions using different classifiers. (a) 1NN. (b) SVM. (c) 
NB 

 
The highest recognition rates are shown in Table I when 

the dimensionality is low in EMO-DB, with the classifiers 
of 1NN, SVM and NB respectively. The corresponding 
dimensions of the highest recognition rates for the methods 
are also attached in Table I.  

 
TABLE I. THE MAXIMUM AVERAGE RECOGNITION RATES IN 

EMO-DB AND THE CORRESPONDING DIMENSIONS 
EMO-DB(Berlin) 

Methods 1NN(%) 
/Dimension 

SVM(%) 
/Dimension 

NB(%) 
/Dimension 

Baseline 53.34/_ 69.67/_ 62.89/_ 
PCA 44.69/9 52.26/9 54.35/9 
LDA 69.00/6 69.58/6 71.06/6 

LDE/MFA 65.65/6 65.04/7 67.03/6 
LSPGL 70.77/6 71.14/10 71.94/7 
KSPGL 71.75/8 72.42/7 72.44/7 

 
Like Table I, Table II shows the highest recognition rates 

of different methods in the experiments in the corpus of 
eNTERFACE’05.  

 
TABLE II. THE MAXIMUM AVERAGE RECOGNITION RATES IN 

ENTERFACE'05 AND THE CORRESPONDING DIMENSIONS 
eNTERFACE’05 

Methods 1NN(%) 
/Dimension 

SVM(%) 
/Dimension 

NB(%) 
/Dimension 

Baseline 46.44/_ 54.22/_ 45.33/_ 
PCA 49.23/8 43.50/7 42.00/9 
LDA 50.82/5 57.82/5 49.78/5 

LDE/MFA 51.59/9 52.69/8 48.67/8 
LSPGL 53.36/5 59.78/7 51.89/8 
KSPGL 54.33/5 61.64/9 53.67/7 

 
According to the recognition results in Figure 2, Table I 

and Table II, the proposed LSPGL can achieve better 
performance than the state-of-the-art graph learning based 
dimensionality reduction methods in most conditions. 
Additionally, the algorithm KSPGL can improve the 
performance of speaker independent speech emotion 
recognition by using nonlinear kernel mappings, based on 
the proposed LSPGL.  

Figure 3 provides the recognition rates comparison of the 
algorithms with supervised information using the different 
three classifiers, 1NN, SVM and NB. According to the 
experimental results in Table I, Table II and Figure 3, the 
performance of speech emotion recognition systems turns to 
be better when SVM classifiers are adopted compared with 
using 1NN classifiers. However, computational costs may 

be higher for SVM classification since SMO (Sequential 
Minimal Optimization) is used in its iterative optimization 
in training procedures.  The performance of the classical NB 
classifiers are not stable. This is most likely due to the fact 
of the relatively fixed model selection. Based on common 
experience, a more complexed and adaptive model may be 
valid for this kind of situation.  

In conclusion, in the condition of speaker independent 
speech emotion recognition, the recognition rate of SPGL 
can achieve 72.44% in EMO-DB, while it is 61.64% in the 
corpus of eNTERFACE’05 according to the experiments. 
The recognition rates are able to be raised based on more 
effective original feature extraction, feature selection 
methods and the choices of adopting different categories of 
classifiers for the given features.   
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Figure 3. The average highest recognition rates in the corpus of EMO-DB 
and eNTERFACE’05 with different classifiers for different supervised 
dimensionality methods. (a) EMO-DB. (b) eNTERFACE’05 

 

VII. CONCLUSIONS AND FUTURE WORK 

The methods based on speaker penalty information, 
LSPGL and KSPGL, are proposed in this paper, where the 
methods provide a new perspective to constrain the useless 
information in speech emotion recognition. They are able to 
improve the performance of a speech emotion recognition 
system with the weighted speaker-penalty term added, 
according to the results of the experiments. However, the 
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methods can only improve the performance by not a large 
margin, which means that some other important categories 
of interference may also exist in the work of speech emotion 
recognition, such as the features used in automatic speech 
recognition. Therefore, a more generalized form of graph 
learning methods can be proposed to reduce the influences 
from the features which are unfavorable for speech emotion 
recognition. 
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