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Abstract—Class D amplifiers find new applications in RFID 

systems, because of their high efficiency. Most textbooks 
describe the case of a load directly connected to the amplifier. 
However, in most RFID systems the usage of a transmission 
line is mandatory and this may introduce some novel effects, in 
the form of an infinite series of peaks in the system frequency 
response functions. If not appropriately taken care of, these 
effects may lead to electromagnetic compatibility problems. 
The purpose of the paper is to develop the theory of the peak 
control function, which is conceived as a tool that allows the 
designer to keep the magnitude of the peaks, and hence their 
influence on the system, into well defined limits. 
 

Index Terms—Radiofrequency identification, Switching 
circuits, Power amplifiers, Transmission Lines, Frequency 
response. 

I. INTRODUCTION 

The expanding applications of RFID technology to many 
areas of industrial and social activities impose to designers 
the task of looking for high performance systems. Switching 
amplifiers [1 – 16] represent an attractive solution for RFID 
[1], [2] and, more generally, for antenna drivers [3] because 
of their high efficiency in comparison with conventional-
type amplifiers. Especially battery-powered handheld 
readers would benefit from this feature but the same would 
be true for stationary readers as the concept of a green 
environment is enforced by many standards and should be 
the concern of any system designer. 

In this paper we shall be concerned with the application 
of class D amplifiers to RFID readers. There are two types 
of such amplifiers, voltage-mode and current-mode ([4 – 6], 
[7] ch. 3 and ch. 2; also [8] for voltage-mode and [9 – 11] 
for current-mode). Fig. 1A presents the first type. Because 
of the switching action of the transistors, the voltage VMN 

imposed on the load circuit of LCR type is a square wave 
that toggles between VS and –VS, where VS is the voltage of 
the source which powers the amplifier. The LCR circuit is 
tuned to the switching frequency and is supposed to present 
a high impedance to the harmonics contained in the voltage 
square wave. In this way, the current through the load will 
be mainly composed of a sine wave, the unwanted 
harmonics in the current being significantly reduced. 

Fig. 1B presents a current-mode amplifier. Because of the 
switching action of the transistors and the property of the RF 
chokes to maintain an approximately constant current, the 
current IMN that flows between M and N is a square wave 
that toggles between IS and –IS, where IS is the constant 
current through one RF choke. Here again the LCR circuit is 
tuned to the switching frequency and is supposed to present 
a high impedance to the harmonics contained in the current 
square wave. Unlike in the voltage-mode case, there must be 
a low impedance path that can be followed by the latter 
harmonics. This path is provided by the LC filter connected 
in parallel with the load, which is also tuned to the switching 
frequency forcing thus the main Fourier component of the 
current to pass entirely through the load. 

One reason for which class D amplifiers are interesting 
for RFID is that the load in the form of a series LCR circuit 
is precisely the equivalent of the tuned antenna circuit that is 
usually connected to the reader. We see from the above 
discussion that unlike in conventional amplifiers, where the 
load is driven with a (more or less) pure sine wave, here the 
load circuit is supposed to take part in the filtering of the 
unwanted harmonic components. For the present application 
the harmonics in the load current are the relevant ones, since 
the antenna current is the source of the magnetic field that 
realizes the communication with transponders and hence any 

 
Figure 1. Class D amplifier: voltage-mode (A), current-mode (B) and voltage-mode with transmission line (C). 
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uncontrolled harmonics in the current may produce 
harmonics in the field that are outside of the limits imposed 
by electromagnetic compatibility standards. The topic of 
reducing the harmonic content of the output of a switching 
amplifier is under current research, [12 – 15]. 

In handheld readers the amplifier and the antenna circuit 
are located in close proximity on the same physical unit, 
allowing the designer to have complete control over the 
nominal antenna parameters that determine in particular the 
way in which harmonics are filtered. The main feature that 
distinguishes stationary from handheld systems is the fact 
that remote placement of the antenna renders mandatory the 
usage of a transmission line. Because of this there will be 
some new phenomena arising from the interaction of the line 
with the antenna and the amplifier that, if overlooked, might 
lead to an unexpectedly high harmonic content of the 
antenna current. If we compute the frequency response of 
the antenna circuit to a harmonic voltage excitation VMN in 
Fig. 1A, or to a harmonic current excitation IMN in Fig. 1B, 
we shall see that, in the case usually considered in textbooks 
(in particular [4 – 6]) when no transmission line is used, 
there is a rapid increase in attenuation of harmonics in the 
antenna current as frequency is increased above the 
switching frequency. Quite differently, when a transmission 
line is inserted as in Fig. 1C, the corresponding frequency 
responses for the antenna current may present sharp and 
rather high peaks at an infinite series of frequencies. If a 
harmonic in VMN, respectively IMN, happens to be close to 
any of those frequencies, the effect might be that the 
harmonic in question is not reduced, but is amplified to such 
degree that significant field outside of admitted frequency 
limits is produced, resulting in possible electromagnetic 
compatibility problems. It will be therefore the system 
designer’s task to ensure this does not happen. The designer 
should be especially concerned with a design as much as 
possible immune from this point of view to the variations in 
the antenna and transmission line characteristics, as in many 
stationary systems the reader is supposed to work with a 
multitude of antennas at the user’s choice and in some 
situations, the reader is connected in a multiplexed system 
which means that at run time it will be connected in turn to 
several antennas having different characteristics. 

One tool that may help the designer in this task is the 
upper control function defined in the present paper.  

It should be noted that in [16] one acknowledges that the 
presence of a transmission line in a switching amplifier 
circuit may introduce novel effects and one shows how these 
effects can be exploited to the benefit of the circuit in a so-
called amplifier with multi-harmonic termination. However, 
this assumes a precise control over the length of the 
transmission line, which is not the case in this paper. 

In a circuit that does not comprise transmission lines, all 
frequency responses T(jω) are rational functions of the 
frequency variable ω. However, once a transmission line is 
present, the frequency responses will in general no longer be 
rational functions but will enclose trigonometric functions of 
the product ωD,  where D is the delay introduced by the line. 
The presence of such terms makes the frequency responses 
particularly hard to deal with. For instance, if the design 
goal is to ensure that upper harmonics are not excessively 
amplified, the designer should have control over the maxima 

of |T(jω)|. In principle one could find the extrema of |T(jω)| 
by solving the equation 


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where Re (z) and z  denote respectively the real part and the 
complex conjugate of a complex number z. However, 
because of the presence of trigonometric terms, equation (1) 
is transcendent and not easy to solve exactly. 

In the following we shall use the notation T(jω, D) for the 
frequency response of a circuit enclosing one transmission 
line, emphasizing thus the parametric dependence on D of 
the response function. We shall be especially interested in 
the antenna current response to the excitation produced by 
the amplifier connected at one end of the line (such as VS in 
Fig. 3 and IS in Fig. 4) with the antenna circuit connected at 
the opposite end. The upper control function PT(ω) is 
defined as the upper bound of |T(jω, D)| for all possible 
delays D. In principle this definition applies to any response 
function of the mentioned type. Nevertheless, in this paper 
we shall be concerned with a special subclass of functions 
T(jω, D), which we have called simply controlled, for which 
PT(ω) can be computed exactly in terms of the circuit 
parameters. Since |T(jω, D)| ≤ PT(ω) by the very definition 
of  PT, we may say that PT(ω) prescribes a minimal 
attenuation at ω to all systems described by the functions 
T(jω, D). Consequently, if the designer has tuned PT to 
satisfy, on a domain of frequencies, the attenuation 
specifications of the application, he may be sure that the 
system will meet the specifications irrespective of the length 
of the transmission line. One of the aims of the paper is to 
prove that for the subclass of response functions considered, 
the prescription based on PT is, in some sense, optimal. 
Namely, we shall see that under quite general hypothesis, 
any local maximum of |T(jω, D)| at a sufficiently large 
frequency ωM will be arbitrary close to PT(ωM) and there will 
be an infinite sequence ωn → ∞ such that |T(jωn, D)| = 
PT(ωn). Observe that these statements hold for any D > 0, so 
that no single function T(jω, D) for a particular D can 
attenuate “better” than PT(ω), asymptotically. This means 
that if PT(ω) does not meet the application specifications, 
chances are that the circuit described by T(jω, D) would also 
not meet them. We say “chances are” because the peak 
control function controls the height of the peaks of |T(jω, D)| 
but not their location in frequency; the peak frequencies are 
determined by the parameter D and hence by the particular 
line inserted in the system and as such, they may or may not 
be of importance for the system. We have illustrated the 
concept with the example in Section VI for which the peak 
control function indicates that the system may fail to 
attenuate the higher harmonics in the excitation voltage 
properly and we have chosen the transmission line in such a 
way that failure indeed happens. Truly, one may think that 
the example is a bit exaggerated as it relies on an amplifier 
with zero output resistance, but we did so in order to make 
the effect clearly visible; the presence of an output 
resistance would only diminish it but the concept would still 
apply.  

The attenuation of transmission lines in this paper may be 
considered as negligible, given the line lengths usual for an 
RFID system. For instance, the above-mentioned example of 
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Section VI shows that a line delay of 6.32 ns may cause 
significant effects. For a RG-174 cable commonly employed 
in RFID and according to the producer’s description Error! 
Reference source not found., the mentioned delay would 
be achieved by 1.26 m of cable, for which the attenuation 
would be less than 0.15 dB at the standard RFID frequency 
of 13.56 MHz. Therefore all transmission lines will be 
assumed lossless.  

The organization of the paper is as follows. Section II is 
devoted to basic definitions and theory. We introduce the 
peak control function associated to a response function, we 
define the concept of a simply controlled response function 
and prove the mathematical results that support the 
assertions concerning the utility of control functions in the 
optimization of a design. In Section III we establish the 
formula for a current ratio to be used in connection with 
class D amplifiers that comprise a transmission line. In 
Sections IV and V we study some response functions arising 
in the design of class D voltage mode and current mode 
amplifiers. It turns out that those functions are simply 
controlled which allows us to compute their peak control 
functions and apply the theory of Section II. In Section VI 
we discuss the optimization of an example voltage mode 
class amplifier based on criteria derived from the peak 
control function. The results of optimizations based on such 
criteria depend in general on the selected frequency domain 
and it would be the designer’s task to make the best 
adequate choice for the application in view. In this context it 
is interesting to study the asymptotic behavior for large 
frequencies of the optimal value of a circuit component; a 
rigorous result of this kind for one of the components of the 
example circuit studied in Section VI is stated and proved in 
Section VII. 

An abbreviated version [18] of our work that included the 
main results but none of the proofs was presented at the 
SIITME conference. In the present paper we have included 
all detailed proofs in order to achieve a presentation as much 
as possible self-contained of the theory of control functions 
and their applications to circuit design. We should 
emphasize that, although the theory exposed here follows 
the lines of the overview in [18], the presentation is 
technically different as it is centered around the concept of 
biexponential function which is new with respect to the 
named paper. 

II. DEFINITION AND PROPERTIES OF CONTROL FUNCTIONS 

Consider the frequency response T(jω, D) of a circuit 
comprising one lossless transmission line with delay D. The 
peak control function PT(ω) for T(jω, D) was defined in the 
Introduction as 

),(sup)( 0 DjTP DT   . (2) 

The computation of PT(ω) is in general a difficult task. 
However there is a special class of frequency response 
functions for which the peak control function can be 
computed explicitly by means of elementary formulas. To 
this purpose we introduce first the concept of a 
biexponential function defined as a function F(ω, D) that 
admits the representation  

)exp()()exp()(),( DjbBDjaADF   . (3) 

in which a, b are real numbers, a ≠ b and neither A(ω) nor 

B(ω) depend on D. In this definition D is no longer restricted 
to be positive but can be any real number.  

The lower control function LF(ω) and the upper control 
function UF(ω) for the biexponential function F(ω, D) are 
defined by 

),(sup)(,),(inf)( 00 DFUDFL DFDF    . (4) 

A biexponential function has the advantage that the 
control functions LF and UF can be computed explicitly as 
shown by the following proposition. 

PROPOSITION 1. For any biexponential function F(ω, 
D) we have 
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Proof. Follows from the identity 
))(exp()()(),( DabjBADF    (6) 

and from the well-known relations 
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which are true for all complex numbers u, v. 
The connection with response functions arises through the 

following definition. We shall say that the frequency 
response function T(jω, D) is simply controlled if T(jω, D) 
or the inverse function 1/T(jω, D) is biexponential. 

PROPOSITION 2.  
Let T(jω, D) be biexponential as in (3). Then 
 )()()()(  BAUP TT  . (8) 

Let 1/T(jω, D) be biexponential as in (3). Then 
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By definition we have LF(ω) ≤ |F(ω, D)| ≤ UF(ω) for 

every ω. In the following we shall address the question how 
close do LF(ω) and UF(ω) approximate |F(ω, D)| when F(ω, 
D) is biexponential. We shall prove that, under suitable 
hypothesis, a local extremum of |F(ω, D)| at some frequency 
ω0 is approximated by either LF(ω0) or UF(ω0) to arbitrary 
precision. A further result shows that, again under quite 
general hypothesis, there is an infinity of points ω and ω´ at 
which |F(ω, D)| = LF(ω) and |F(ω´, D)| = UF(ω´). 

In the proofs we shall rely on the following formulas true 
for any complex function f  of the real variable x, of which 
we have already made use in (1), 
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Below we shall make use of the function 

).)(exp()()(),( Dabj
d
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d
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
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
   (11) 

THEOREM 1. Let F(ω, D) be biexponential as in (3) and 
let ω0 be a stationary point of ),( DF  , that is, a point 

satisfying the relation 0),( 0 DF
d
d 


 (in particular, any 

local extremum of ),( DF  ). Then 
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We shall of course assume that the quantities under the 
square roots are positive. 

Proof. First we observe that the leftmost inequality in (12) 
and the rightmost inequality in (13) are consequences of the 
definition of the control functions. 

We start by proving the following inequalities. 
For all complex numbers u and v, 
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Indeed, we always have the inequalities 

.1Re1 
uv

vu  (16) 

Assuming vuRe  is positive, we may multiply by it 
both sides of the leftmost inequality in (16) and obtain 
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Observing that 222
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the above inequality as 
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It follows that 
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When 0Re vu , the second inequality is obtained in a 
similar way, by multiplying the rightmost inequality in (16) 
by vuRe . 

Returning to the proof of the theorem, we first observe 
that because of the equality 

)exp()()())/(,( DjBAabDF    (20) 

it is enough to do the proof in the case a = 0, b = 1. We have 
for the derivative of F 
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and for the derivative of ),( DF   

  

Let us introduce the notations g0 = exp(jω0D), Ω0 = Ω(ω0, 
D). Since ω0 is a stationary point of |F|, we have from the 
above expression of the derivative 
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from which it follows 
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Applying now (14) to u = A(ω0) and v = B(ω0)g0 under the 

hypothesis 0)()(Re 000 gBA   and taking into account 

the (24), we obtain 
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from which (12) follows immediately. Similarly, the 
application of (15) under the hypothesis 

0)()(Re 000 gBA   leads to (13). 

 
In our applications in Sections IV – VI A(ω) and B(ω) 

will be rational functions of ω, that is, quotients of 
polynomials. Therefore one may speak about their degree in 
ω, defined as the difference between the degree of the 
numerator and the degree of the denominator. If m and n are 
the degree of A and B respectively, then assuming max(m, n) 
≥ 1 and |m –  n| ≤ 1, the quantity |Ω(ω, D)|2/|A(ω)B(ω)| 
becomes arbitrary small for large ω. Therefore, Theorem 1 
shows that if |F(ω, D)| has a local extremum at a high 
enough frequency ω0, then the extremum itself will be 
arbitrary close to either LF(ω) or UF(ω). However, if we 
know the nature of the extremum (that is, whether it is a 
minimum of a maximum), the theorem still does not tell us 
which of LF(ω0) or UF(ω0) will be close to |F(ω0, D)|. Of 
course we expect that the minimum would be approximated 
by LF(ω0) and the maximum by UF(ω0), but this has still to 
be proved. Such a proof is obtained below for the case m = 
n. 

THEOREM 2. Let F(ω, D) be biexponential as in (3) with 
A and B rational functions of equal degree m ≥ 1. Then 
there is ω0 such that (12) is satisfied at every local minimum 
ωm of |F(ω, D)| in (ω0, ∞) and (13) is satisfied at every local 
maximum ωM of |F(ω, D)| in (ω0, ∞) (ω0 in the mentioned 
relations being replaced by ωm and ωM respectively). 

Proof. As before we may assume that a = 0 and b = 1. 
Consider the functions 
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From the hypotheses on A and B it follows that each term 
in |Φ(ω, D)/A(ω)B(ω)| and |Γ(ω, D)/A(ω)B(ω)| converges to 
0 as ω → ∞. Hence there is ω0 such that  
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for ω  (ω0, ∞). Let ωM  (ω0, ∞) be a local maximum of 
|F(ω, D)| and hence of |F(ω, D)|2, the proof for a local 
minimum being similar. Let us introduce the notations AM = 
A(ωM), BM = B(ωM),  gM = g(ωM, D). At a local maximum the 
first derivative vanishes while the second derivative is 
negative, therefore by (10) 
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Dividing by |AMBM| we obtain 
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If we had ,0Re MMM gBA  the above inequality would 

imply 
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Together with  
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this would in turn imply 
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which is a contradiction. Consequently 0Re MMM gBA  

and Theorem 1 shows that (13) is satisfied. 
 
THEOREM 3. Let F(ω, D) admit the representation (3), 

let θ be any complex number of unit modulus and let I = [ω1, 
ω2] be a closed interval of length |2π/(b – a)D| such θ = 
exp(j(b – a)ω1D). Assume that for every ω in I the following 
conditions are fulfilled: 

i) A(ω) ≠ 0 and B(ω) ≠ 0; 
ii) A(ω)/|A(ω)| ≠ θB(ω)/|B(ω)|. 
Then there is ω0 in (ω1, ω2) such that |F(ω0, D)| = UF(ω0).  
A similar statement holds for LF(ω). 
Proof. As in the preceding proofs we may assume that a = 

0 and b = 1. By replacing the function B(ω) with the 
function θB(ω) we may also assume that ω1 = 0. Let C1 be 
the set of complex numbers of unit moduli from which we 
exclude the number 1. Consider the function G(ω) defined 
on I = [0, 2π/D] by 

)(/)(
)(/)()(




BA
BAG  . (33) 

Because of conditions i) and ii), G is a continuous 
function with values into C1. The function H(ω) defined on J 
= (0, 2π/D) by H(ω) = exp(jωD) establishes a bijective map 
between J and C1 whose inverse H-1 is continuous. 
Consequently, the function φ defined as the composition of 
H-1 and G maps continuously I into J and satisfies 
exp(jφ(ω)D) = G(ω) for every ω in I. The continuous 
function χ defined on I by χ(ω) = φ(ω) – ω satisfies χ(0) > 0 
and χ(2π/D) < 0; consequently there is ω0 in J such that 
χ(ω0) = 0 ([19], subsection  5.22, p. 140). For this ω0 we 
have exp(jω0D) = exp(jφ(ω0)D) = G(ω0) which implies 
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and the proof is complete. 
 
When A and B are rational functions the limit  

)(/)(
)(lim




 A
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


B
B  (35) 

always exist, hence we are certain that conditions i) and ii) 
of Theorem 3 are fulfilled for ω larger than some ω0 
provided that we choose θ ≠ l. Therefore, according to the 
theorem, in every subinterval (ω1, ω2) of (ω0, ∞) whose 
length is |2π/(b – a)D| and for which exp(j(b – a)ω1D) = θ, 

ch |F(ω, D)| = UF(ω). there will be an ω for whi
 

 

  

 

Figure 2. Upper graph: frequency response function together (lower trace) 
with its peak control function (upper trace). Lower graph: close-up of a 
detail of the upper graph. 

       19

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:35:55 (UTC) by 184.72.135.210. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 14, Number 3, 2014 

In conclusion, let us summarize the findings of this 
section that are significant for the applications we have in 
view. 

The utility of the peak control function PT(ω) of a simply 
controlled response function T(jω, D) stems from the 
following properties that are consequences of the above 
proved results.  

i) |T(jω, D)| ≤ PT(ω) for any frequency ω. Therefore if 
PT(ω) is well behaved for large frequencies, T(jω, D) will 
also be so. 

ii) Any local maximum of |T(jω, D)| at a sufficiently large 
frequency ωM will be arbitrary close to PT(ωM), under quite 
general hypothesis stated by Theorems 1 and 2. 

iii) If A and B in the representation (3) of T(jω, D) or of 
1/T(jω, D) are rational functions, there is a frequency ω0 
such that (ω0, ∞) can be partitioned into subintervals of 
equal length |2π/(b – a)D|, each of them containing an ω for 
which |T(jω, D)| = PT(ω). 

The relation between the response function and its peak 
control function is better understood with the aid of a 
graphical example. In the upper graph of Fig. 2 one sees the 
oscillating |T(jω, D)| lying below the monotone decreasing 
PT(ω) (property i) and one remarks the presence of a 
sequence of frequencies ωn  at which |T(jωn, D)| = PT(ωn) 
(property iii). The lower graph shows a close-up of a local 
maximum at ωM of |T(jω, D)|. One remarks that PT(ωM) does 
not coincide with |T(jωM, D)| but is close to it and the 
approximation becomes better as frequency increases 
(property ii). 

In order not to complicate the notations excessively, in 
the next sections we shall not write the dependence on ω of 
the various functions explicitly when this dependence will 
be clear from the context. 

III. THE CURRENT RATIO FOR A LOSSLESS 
TRANSMISSION LINE 

We shall need the ratio of the currents at the ends of a 
lossless transmission line of length l and delay D connected 
at a source providing the harmonic excitation at one end and 
terminated in a load impedance ZL at the other. 

As well known [20], the voltage and current along the line 
are represented as 
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 (36) 

where V+ and V– are constants determined by the boundary 
conditions, v is the propagation speed along the line, I+ = 
V+/Z0, I– = V–/Z0 and Z0 is the characteristic line impedance. 

At the source end (x = 0) we have 

  IIIII SS ,  (37) 

where ΓS is the reflection coefficient at the source end. 
Solving for I+ and I– we obtain at the load end (x = l) 
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The reflection coefficient ΓL at the load end is given by 
 and is related to ΓS by ΓS/ ΓL = 

exp(–2jωD). Substituting these relations in (38) we obtain 
the ratio we look for as 
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Figure 3. Model of voltage-mode class D amplifier. 

IV. THE UPPER CONTROL FUNCTION FOR A 
VOLTAGE-MODE CLASS D AMPLIFIER 

Consider the voltage-mode class D amplifier redrawn in a 
more condensed form in Fig. 3, by lumping the power 
source, the MOSFET switches and the transformer into the 
voltage source VS. For ease of notation we shall use 
impedances and admittances normalized to Z0 and denoted 
with lower case. The impedance of the load connected to the 
transmission line equals zL = rL + jxL. At the source end is 
connected an impedance zS = rS + jxS that includes the source 
impedance as well as any additional filter in series with the 
line. 

As explained in the Introduction, the source VS drives the 
circuit with a voltage square wave. Since we need to know 
the harmonic content of the current through the load, the 
frequency response of the circuit must be analyzed not only 
at the nominal frequency but also at the higher harmonics. 
To this purpose we replace VS by a harmonic voltage 
excitation Vexp(jωt) and we determine the frequency 
response T(jω, D) = Z0IL(jω, D)/V where IL(jω, D) is the load 
current (we multiplied by Z0 for having a dimensionless 
function). The current IS(jω, D) entering the line at the 
source end equals V/Z0(zS + z), where z is the impedance 
looking into the line at the source end. As well known [20], 
the latter is given by  

.
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  (40) 

The current IL that exits the line at the load is given by 
(39). Therefore the response we are interested in is 
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In order to compute the peak control function PT(ω) we 
D) is biexponential. After replacing 

in (41) tan(ωD) with sin(ωD)/cos(ωD) and using the 
relations  

shall show that 1/T(jω, 

,
2
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,
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we find after regrouping the exponentials 
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  (43) 

with 
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The peak control function PT(ω) is then computed by 
Proposition 2 ii), 
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Because |A| and |B| are large for large frequencies, it will 
be convenient to re-express PT in a form that does not 
contain differences of large quantities. For this purpose we 
write 
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and we compute the denominator as 
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The final result is 
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Assuming that xS and xL are large for large frequencies 
while rS and rL stay bounded, we find the asymptotic form of 
PT as 
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The expression for PT gets a simpler form in case rS or rL 
vanish. Assuming rS = 0, PT reduces to 
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V. THE PEAK CONTROL FUNCTION FOR A 
CURRENT-MODE CLASS D AMPLIFIER 

Consider the current-mode class D amplifier shown in 
Fig. 4. The discussion in this section parallels that of Section 
IV, with the difference that instead of VS we have now a 
current source IS that drives the circuit with a current square 
wave. The impedance of the load connected to the 
transmission line equals zL = rL + jxL. At the source end is 
connected an admittance yS = gS + jbS that includes the 
source admittance as well as any additional filter in parallel 
with the line. 

For analyzing the harmonic content of the current through 
the load, we replace IS by a harmonic current excitation 
Iexp(jω) and we determine the frequency response T(jω, D) 
= IL(jω, D)/I where IL(jω, D) is the load current. The current 

entering the line at the source end equals I y/(yS + y), where y 
is the admittance looking into the line at the source end 
given by  
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The current IL(jω, D) that exits the line at the load is given 
by (39) and the frequency response is 
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Proceeding as in the previous section we find 

).1)(1(
2
1),1)(1(

2
1

LSLS zyBzyA   (53) 

The peak control function is therefore 
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As previously we re-express PT in a form that does not 
contain differences of large quantities:  
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Assuming that yS and xL are large for large frequencies 
while gS and rL stay bounded, we find the asymptotic form 
of PT as 
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P 22 
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The expression for PT gets a simpler form in case gS or rL 
vanish. Assuming gS = 0, PT reduces to 

2

2

 
Figure 4. Model of current-mode class D amplifier. 
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VI. ANALYSIS OF AN EXAMPLE CIRCUIT 

Consider the voltage-mode amplifier of Fig. 5A. If we 
assume that VS delivers a square wave voltage as is the case 
with class D amplifiers, then the current flowing into the 
antenna coil will be nearly sinusoidal due to the intrinsic 
filtering properties of the antenna resonant circuit. In order 
to assess how effective is the antenna circuit in reducing the 
unwanted harmonics we compare the amplitude IL0 of the 
nominal current flowing into the antenna when powered by 
a source Vexp(jω0t) at the resonant frequency ω0 of the 
antenna circuit with the amplitude |IL(jω)| of the current that 
flows when we use a source Vexp(ωt) of the same amplitude 
V but at some arbitrary frequency ω. We are therefore 
interested in the response function T(jω) = IL(jω)/IL0 = 
RAIL(jω)/V that describes the attenuation of the upper 
harmonics with respect to the nominal current; we have used 
the relation IL0 = V/RA which is true because the antenna 
circuit is tuned to ω0. The Spice AC analysis has been used 
for representing T(jω) in left side of Fig. 6. The analysis has 
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swept the frequency over the interval 10 MHz – 1 GHz and 
computed the frequency response at 10000 points. One may 
see the rapid decrease of the antenna current outside 
resonance, which confirms the intrinsic filtering property of 
the circuit. 

We turn now our attention to the case represented in Fig. 
5B, where a transmission line of characteristic impedance Z0 
= 50 Ohm has been inserted between VS and the antenna 
circuit. We are again interested in comparing IL(jω, D) with 
the nominal current IL0. We observe that the amplitude of the 
latter is still given by V/RA, as at resonance the circuit 
impedance reduces to RA since the latter is matched to the 
line impedance. Therefore the frequency response of interest 
is T(jω, D) =  RAIL(jω, D)/VS. When we represent the latter 
by using an AC analysis under the same Spice settings as 
above, we obtain the result of right side of Fig. 6. We see 
that the presence of the transmission line has added a new 
effect in the form of a series of resonant peaks. Since the 
figure seems to suggest that the peak heights approach zero 
as frequency increases, one may be inclined to think, by 
analogy with left side of Fig. 6, that the filtering property 
and the removal of current harmonics are working in this 
case also. However, this turns to be completely false: not 
only the peak heights do not approach zero, but also they 
tend to infinity as the frequency increases. We may 
convince ourselves that this is the case with the aid of the 
theory of the peak control function; the fact that in our 
figure the peak heights approach zero is an artifact due to 
the finite resolution of the Spice AC analysis 

According to (50) and taking into account that in our case 
rL = 1 and zS = 0, the peak control function PT(ω) for the 
frequency response T(jω, D) is given by 

2/)(4/)(1)( 2  LLT xxP   (58) 

where   0//1)( ZCLx AAL   . From the above relation 

and the general theory of Section II we may then infer that 
the heights of the peaks of |T(jω, D)| do indeed tend to 
infinity. 

 
Figure 5. Spice simulation of voltage-mode class D amplifier without transmission line (A), with transmission line (B) and with filter at the source end of 

transmission line (C). 

     

Figure 6. Results of Spice AC analysis of schematics of fig. 5A (left) and of fig. 5B (right). 

In order to check that the behavior of |T(jω, D)| is indeed 
predicted by PT(ω) in the sense explained in Section II, we 
recalculate the peaks via separate AC analyses around each 
of them, increasing the resolution as the frequency 
increases. The results are shown in Table 1; the resolution 
has been increased by narrowing the interval (second 
column of table) around each peak on which the analysis has 
been performed while keeping the same number of points, 
10000. One remarks the very good agreement between the 
peak heights and the values of PT(ω) at the peak frequencies. 

 
TABLE 1. COMPARISON BETWEEN SPICE AC ANALYSIS AND PEAK CONTROL 

FUNCTION. 
Frequency 
(MHz) 

Analysis Interval 
(MHz) 

|T(jω, D)| 
from Spice 

PT(ω) 

40.663 40.4-40.9 22.751 22.7509 
119.012 118.8-119.2 73.819 73.8198 
197.988 197.9-198.1 123.823 123.824 
277.044 277-277.08 173.659 173.66 
356.125 356.08-356.16 223.438 223.44 
435.219 435.2-435.24 273.193 273.194 
514.319 514.3-514.34 322.93 322.935 
593.423 593.4-593.44 372.655 372.667 
672.528 672.51-672.55 422.392 422.392 
751.636 751.625-751.645 472.112 472.115 
830.745 830.735-830.755 521.83 521.835 
909.854 909.85-909.858 571.553 571.553 

 
As pointed out in the Introduction, high peaks in T(jω, D) 

may result in high harmonic content of the antenna current, 
in case the frequencies of some harmonics in the square 

 produced by VS happen to be near the peak 
frequencies. In Fig. 5B we have chosen on purpose the line 
wave voltage
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delay so that the third harmonic of the nominal frequency of 
13.56 MHz lies very close to the peak at 40.663 MHz in the 
first line of Table 1. Simulation shows (lower half of Fig. 7) 
the presence of an over-amplified third harmonic in the 
waveform of the antenna current. This is to be contrasted 
with upper half of Fig. 7 that shows the antenna current with 
the transmission line removed. 

According to (44), the term B vanish identically if zS = 1, 
that is, if the source impedance is resistive and matched to 
the line impedance. A vanishing B would mean, according 
to (3), that the transmission line is practically absent from 
the frequency response and its presence in the circuit will 
not introduce any unwanted effects. However, a source 
impedance of resistive type matched to the line impedance 
would dissipate a significant amount of power and this 
would defy the purpose of a class D amplifier as a high 
efficiency power source. The power dissipation issue may 
be alleviated if in parallel with RF we add a series LC filter 
tuned to ω0 as in Fig. 5C that would provide a zero-
impedance path for the main harmonic of the current. In 
such a situation we have  

 
Figure 7. Results of Spice analysis showing the load current in schematic 
of Fig. 5A (upper) and of Fig. 5B (lower). 
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where  FFF CLX /1)(   is the reactance of the LC 

filter. As xS(ω) → 0 and rS(ω) → RF/Z0, the presence of the 
term xL(ω)2rS(ω) in the denominator of (48) ensures that 
PT(ω) → 0 as ω → ∞ and so is well behaved. Simulation of 
the modified circuit of Fig. 5C shows that the antenna 
current has resumed its sinusoidal form.  

Fig. 8 shows the frequency dependence of PT for the 
component values of Fig. 5C and several values of rF = 
RF/Z0. One remarks that for high enough frequencies ω, the 
curve that gives the smallest value for PT(ω) does not 
correspond to rF = 1 but to rF = 2.36. In fact we shall prove 
in the next section that the value of rF which gives the 
smallest value of PT(ω) for high enough frequencies satisfies 
the equation 

0)/()1()2( 22223  AFFFF LLrrr . (60) 

The curve in Fig. 8 labeled rF = ∞ corresponds to the case 
when RF has been removed from the filter. The pure reactive 
filter will still be able to compensate for the effects of the 
transmission line, the difference being that in this case PT(ω) 
does no longer converge to 0 as ω → ∞ but to the finite 
value Z0LA/RALF according to (49). 

In the case of a current-mode amplifier, the peak control 
function may help in deciding whether the parallel LC filter 
has to be inserted at the source end or at the load end of the 
transmission line. A discussion based on (55) along the 
same lines as above shows that having the filter at the load 
end and yS = 0 results in a PT growing to infinity while 
having the filter at the source end results in a PT converging 
to a finite non-zero limit. The limit will be zero if a resistor 
is added in series with the filter. 

VII. AN ASYMPTOTIC RESULT 

Refer to the circuit of Fig. 5C for which the peak control 
function PT was shown to be given by (45) where 

 
Figure 8. Frequency dependence of peak control function. 
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In Section VI it was pointed out that for the given circuit, 

the “standard” choice of a source resistor matched to the line 
(rF = 1) does not represent the optimal choice from the point 
of view of minimizing the peak control function (45). Our 
purpose in the following is to prove the result stated in 
Section VI concerning the asymptotic behavior of the value 
of rF that minimizes (45).  

THEOREM 4. Assume that LA, CA, LF and CF are fixed. 
For every frequency ω let rω be the value of rF that 
minimizes (45) with zS and zL computed at that frequency. 
Then as ω → ∞, rω converges to the unique positive solution 
r of the equation  

0)/()1()2( 22223  AF LLrrr . (62) 

The proof will be divided into several stages. 
We start by observing that minimizing PT is equivalent to 

maximizing the function  

LSLS zzzzL  1111 . (63) 

Since Re zS ≥ 0 and Re zL ≥ 0 we have |1 + zS| ≥ |1 – zS| 
and |1 + zL| ≥ |1 – zL|, implying that we can drop the modulus 
in the expression of L, 

LSLS zzzzL  1111 . (64) 

We shall find more convenient to change from the 
variable rF to the variable g = 1/rF and perform the 
maximization with respect to this latter variable. We 
introduce the admittance y = 1/zS and write its dependence 
on g as y = g + jb, where 






F
F C

L

Z
b

1
)( 0


 . (65) 

In the following we shall assume implicitly the 
dependencies on ω and write them explicitly only when 
necessary. 

We shall maximize L by equating to 0 its derivative with 
respect to g, so we need expressions for the required 
derivatives.   

 
LEMMA 1.  
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 (66) 

The proof follows from (10). 
 
LEMMA 2. For every complex number y = g + jb we 

have 

   
.)122(4

)1(Re1)1(Re1
222
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yyyyyy
 (67) 

The proof follows by direct computation. 

 
LEMMA 3. |1 + zS| – |1 – zS| is strictly increasing as a 

function of g on )2/1,0[ 2 b  and strictly decreasing on 

],2/1( 2 b . 

Proof. By Lemma 1, the derivative of the function under 
consideration at g = 0 equals  

jbb
b
1

2
3

2
, (68) 

therefore it is strictly positive. Suppose that the derivative 
vanishes at g0. Then at such point we have 

22

11 




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
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






 SS z

dg
dz

dg
d  (69) 

and an application of Lemmas 1 and 2 yields 

. Since b ≠ 0 and g0 ≠ 0, the latter 

equality implies . Hence the derivative does 

not vanish on 

0)122(4 22
00

2  bggb

22
0  bg 2/1

)2/1,0[ 2 b and consequently must be 

strictly positive there, implying that the function is strictly 
increasing. Likewise, the derivative does not vanish on 

],2/1( 2 b ; to find its sign on that interval, observe that 

for g large enough we have g + g2 – b2 > 0 and g – g2 + b2 < 
0 which by Lemma 1 implies that the sign is negative. 

 
LEMMA 4. |1 + zS| is strictly increasing as a function of g 

on [0, min(1, b2/2)) and strictly decreasing on (|b|, ∞).  
Proof. The derivative of the function under consideration 

is given by (66). If g belongs to the first interval, then 

implying that the function is strictly 

increasing. If on the other hand g belongs to the second 

interval, then  implying that the function is 

strictly decreasing. 

22 2 bggg 

g  222 bgg 

 
LEMMA 5. For every K > 0, the equation 

0)12()1( 222  gKgg  (70) 

has a unique positive solution. 
Proof. Consider the function 

2

22

21

)1()(
g

gggf

  . (71) 

Its derivative is given by 

22

242

)21(

)136)(1()(
g

ggggf
dg
d


 . (72) 

The first factor in the numerator is negative on )2/1,0[  

while the second factor has complex roots and is negative 

everywhere. Therefore f increases to ∞ on )2/1,0[  which 

shows the existence and uniqueness of the root of (70) on 
that interval. If now g0 is any positive root of (70), then 

 which shows that g0 must 

belong to 

0/)1()12( 0
22

0
2
0  Kggg

)2/1,0[  and the uniqueness of the positive root 

is proved. 
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Proof of Theorem 4. Maximizing L is equivalent to 
maximizing L/|xA| which we write in the form 

)(
1)(,1411 2




A
ASAS x

bzbz  . (73) 

Writing the above expression as 

SSAS zzbz 





  111411

2  (74) 

shows that L/|xA| as a function of g is increasing on 

))2/,2/1min(,0[ 2b and decreasing on ],2/1( 2 b  as 

being a sum of functions with monotony properties on the 
respective intervals by Lemmas 3 and 4. Consequently there 
is gω that maximizes L/|xA| and satisfies the inequalities 

2/1)2/,2/1min( 22  bgb  . (75) 

As b → 0 when ω → ∞, in the following we shall restrict 
ω to an interval [ω0, ∞) so that b2 < 1/2. With this 
assumption it follows that gω satisfies 

12/2  gb . (76) 

In particular the above inequalities show that gω is 
bounded. Therefore all we have to prove is that all limit 
points of gω coincide and satisfy (70) with K = (LA/LF)2; 
recall that in analysis one defines a limit point as a point g0 
with the property that every interval [α, ∞) contains a point 
ω such that gω is arbitrary close to g0 ([19], subsection  4.64, 
pp. 124–125). By the uniqueness assertion of Lemma 5, it 
suffices to prove that any such limit point satisfies (70).  

Since the derivative of L/|xA| with respect to g vanishes at 
gω, we have by taking squares 
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which by Lemma 1 implies 
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This may be rewritten as  
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which by Lemma 2 gives 
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Let g0 be a limit point for gω. There is a sequence ωn → ∞ 
such that gn → g0, where gn stands for the gω corresponding 
to ωn. From the above relation it follows by dividing with 
b2gn that 
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 (81) 
where for clarity we have re-introduced the explicit 
dependencies on ω. Observe that  
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We first show that g0 > 0. Assuming the contrary, it 
would follow by passing to limit into (81) and by taking into 
account (82) and the fact that, by assumption, gn → 0, 
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Consequently, 
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which contradicts (76).  
Since g0 > 0 it now follows that  

0
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lim
4


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n

n
n g
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  (85) 

and by passing to limit into (81) we obtain that g0 satisfies 
(70) with K = (LA/LF)2.  

Finally it is seen that (70) is converted to (62) by setting g 
= 1/r. 

VIII. CONCLUSIONS 

Starting from the reality that the insertion of a 
transmission line between a switching power amplifier and a 
reactive load may introduce unexpected effects manifested 
as over-amplified higher harmonics in the current through 
the load, we have presented a computational tool in the form 
of the peak control function that would help in producing 
designs immune to the mentioned effects, irrespective of the 
transmission line length.  

We can summarize our achievements and contributions as 
follows. 

a) We have introduced the concepts of biexponential and 
of simply controlled response functions, for which a lower 
control and an upper control function could be defined and 
computed explicitly. The peak control function arose as a 
particular case of the latter two. 

b) We have proved mathematical theorems about the 
capability of the lower control and of the upper control 
function to approximate the local extrema of the moduli of 
the simply controlled functions. 

c) The peak control functions for a voltage-mode and a 
current-mode class D amplifier have been analyzed, and an 
example circuit has been used for making simulations that 
were in close agreement with the theoretical calculations. 

d) We have computed with the entire mathematical rigor 
the optimal value of a circuit component according to the 
criterion established by the peak control function. 

In the process we have recognized that the peak control 
function may explain qualitatively the necessity of the 
presence of key components at certain places in the circuit 
and may also establish quantitative criteria for optimization 
of component values, at least in an asymptotic sense. It 
would be the task of future research to establish new 
optimization criteria and algorithms related to the peak 
control function that would increase even more its utility as 
a design tool. 
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