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1Abstract—This paper presents how to search mathematical 

formulae written in MathML when given plain words as a 
query. Since the proposed method allows natural language 
queries like the traditional Information Retrieval for the 
mathematical formula search, users do not need to enter any 
complicated math symbols and to use any formula input tool. 
For this, formula data is converted into plain texts, and 
features are extracted from the converted texts. In our 
experiments, we achieve an outstanding performance, a MRR 
of 0.659. In addition, we introduce how to utilize formula 
classification for formula search. By using class information, 
we finally achieve an improved performance, a MRR of 0.690. 
 

Index Terms—Information retrieval, Formula search, 
MathML, Natural language query, Classification. 

I. INTRODUCTION 

Math search is a new area of research with many enabling 
technologies but also many challenges [1]. Until recently, 
mathematical formulae had been saved as images on the 
Web. By this reason, many users had difficulties in directly 
accessing such formulae. In a recent decade, however, there 
has been much interest in formula search. One of the 
initiatives that are created to promote the accessible 
publication of mathematical contents is MathML 
(Mathematical Markup Language, http://www.w3.org/Math).  
Since MathML helps web documents to easily include 
mathematical contents, the number of documents containing 
MathML expressions is rapidly increasing. 

In this paper, we propose how to search MathML 
formulae when given plain words as a query. We focus on 
natural language queries like those of the conventional 
Information Retrieval (IR). Of course, it is reasonable to use 
the queries written in MathML for searching for the data 
written in MathML. However, most people do not know 
about MathML. If only those who know MathML well are 
allowed to retrieve MathML formulae, most people cannot 
even have the opportunity of formula search. Although there 
are some mathematical formula input tools available, most 
of the users are not familiar with the tools.  

Therefore, the main contribution of this paper is that the 
proposed method allows natural language queries. An 
example query is as follows. We assume that a user is 
searching for a certain formula. He or she only remembers 
some part of the formula. 

 

• Target formula:  
a

acbb
x

2

42 
  

• Part that the user remembers: acb 42   

 
1This work was supported by the Dong-A University research fund. 

• Example query: “root b squared minus 4ac” 

 
As shown above, there is no grammar, no tool, and no 

math-only symbol such as root symbol; users can enter a 
query as if they speak the formula. 

There are two opposite approaches for our purpose: 1) 
converting natural language queries into MathML 
expressions, and 2) converting MathML data into plain texts. 
The former is relatively simple but it is seriously dependent 
on the query translation performance. The latter requires 
more work but can alleviate the requirement of high query 
conversion performance. The latter has one more advantage. 
Since the data consist of plain texts, it can be easily 
combined to many traditional IR techniques. It is the reason 
why this paper focuses on the latter. 

We first convert MathML data into plain sentences that 
we call ‘math-sentence’ hereafter.  

 
• Definition (math-sentence): A math-sentence consists of 

plain words. It expresses a mathematical formula. For 
example, “sigma i from 1 to n i cubed” is a math-sentence 
that indicates ∑n

i=1
 i3.  

 
Through this conversion, a wide range of mathematics 
vocabulary is constructed. In other words, we build up 
important math lexicons, e.g., a math operator lexicon, 
synonyms and polysemy. 

Next, features are extracted from the math-sentences. 
Some factors such as identifiers, operators and their order 
are employed as features to effectively reflect the 
characteristics of the math contents. These features are used 
for indexing and ranking. As an additional experiment, we 
classify formulae into several classes for performance 
improvement and search space reduction. Finally, we 
achieved a MRR of 0.690. 

The remainder of the paper is organized as follows: 
Section 2 briefly introduces the related work. Section 3 
describes the proposed features and scoring scheme in detail. 
Section 4 presents experimental results and Section 5 
discusses additional experiments. Section 6 describes the 
error analysis. Finally, Section 7 summarizes and concludes 
this paper. 

II. RELATED WORK 

The main subject of our study is math search. The 
research of Altamimi and Youssef [1] is directly related to 
our study. They studied to recognize mathematical symbols 
and structures. Their challenge is the creation and 
implementation of a math query language that enables the 
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general users to express their information needs intuitively 
yet precisely. They presented such a language and detail its 
features. Their math query language offers an alternative 
way to describe mathematical expressions that is more 
consistent and less ambiguous than conventional 
mathematical notation.  

Youssef already discussed the roles of math search in [2]. 
His research addressed that the key question is what roles 
the Math-aware fine-grain search can play in mathematics. 
This research presented the short-term goals and state of the 
art of math-aware fine-grain search. Afterwards, it focused 
on how math search can help advance and manage 
mathematical knowledge, and discussed what needs to be 
done to fulfill those roles. He also presented query-relevant 
hit-summary generation methods [3].   

Miner and Munavalli aimed at a search system that can be 
effectively and economically deployed [4]. They produced 
good results with a large portion of the mathematical content 
freely available on the Web. Their basic concept was to 
linearize mathematical notation as a sequence of text tokens, 
which are then indexed by a traditional text search engine. 
Their approach is to query for a weighted collection of 
significant sub-expressions, where weights depend on 
expression complexity, nesting depth, expression length, and 
special boosting of well-known expressions. 

Miller and Youssef proposed augmenting presentation 
MathML for math search [5]. Adeel et al. presented the 
“Math GO!” system to search and present the mathematical 
information encoded in mathematical expressions [6]. Their 
approach used the concept of template based math block 
identification, vector representation, searching from 
mathematical topic based clusters and relevance ranking 

Misutka and Galambos studied how to search for 
mathematical formulae in real-world mathematical 
documents, but still offering an extensible level of 
mathematical awareness [7]. They exploited the advantages 
of full text search engine and stored each formula not only 
once but in several generalized representations. Because it 
was designed as an extension, any full text search engine 
could adopt it. Zhao et al. reported on the user requirements 
study and preliminary implementation phrases in creating a 
digital library that indexes and retrieves educational 
materials on math [8]. They first reviewed the current 
approaches and resources for math retrieval, and then 
reported on the interviews of a small group of potential 
users to properly ascertain their needs. Yokoi and Aizawa 
proposed a similarity search method for mathematical 
equations that are particularly adapted to the tree structures 
expressed by MathML [9]. 

Ion explored the mathematics in the Web [10]. Kamali 
and Tompa proposed the mathematics retrieval [11-14], and 
Kamali et al. proposed an approach for recognizing and 
classifying math queries using large scale search logs [15]. 
Zanibbi and Blostein surveyed the recognition and the 
retrieval of mathematical Expressions [16]. Nghiem et al. 
explored the problem of semantic enrichment of 
mathematical expressions [17]. Do and Pauwels proposed an 
ontology alignment by introducing MathML [18].  

Kohlhase et al. introduced MathWebSearch version 0.5 
[19], and Kohlhase and Rabe presented two denotational 
semantics for OpenMath [20]. Lange et al. reimplemented 

the MSC (Mathematics Subject Classification) [21]. Their 
focus was concentrated on turning it into the new MSC 
authority. Sojka and Liska discussed the mathematics 
retrieval [22-23].  

The research of Ferreira and Freitas [24] is also closely 
related to our study. Their goal is to convert MathML 
expressions into representations of audio version in English 
and Portuguese. They reviewed the problem of speaking 
mathematics and presented the tool AudioMath. 

Related to the IR with class information, Liu and Croft 
showed that cluster-based retrieval can perform consistently 
across collections of realistic size [25] and Jain and 
Wadekar studied classification-based IR methods [26].  

For our formula classification, we implemented the 
system proposed by Kim et al. [27]. The authors classified 
math equations into twelve classes. They conduct 
experiments using five types of features, tags, operators, 
identifiers, string bigrams, and "identifier & operator" 
bigrams. In Section 5, we will describe their approach in 
detail. 

III. FORMULA SEARCH WITH NATURAL LANGUAGE QUERIES 

A. Converting Formulae into Math-sentences 

We convert each math formula in our corpus into a 
corresponding math-sentence. We observe a variety of math 
representations and analyze the rules of speaking formulae. 
Besides, we mainly refer to MathPlayer 
(http://www.dessci.com/en/products/mathplayer). Finally, 
we could implement a conversion system, which we call 
MConv-sys. While doing this, we could build some 
important lexicons. Among them, we briefly introduce the 
identifier lexicon and the operator lexicon as follows:  

 

• Identifier lexicon: An identifier is expressed with the tag 

<mi> in MathML. It includes all variables, e.g., “a,” “b,” 
“x,” “y,” and some promised symbols, e.g., “cos” and 
“log.” 

 

• Operator lexicon: An operator is expressed with the tag 

<mo> in MathML. 
 
Table 1 and Table 2 list identifier examples and operator 

examples, respectively. 
 

TABLE 1. EXAMPLE IDENTIFIERS 
Identifier in MathML MConv-sys 

a <mi>a</mi> a 
α <mi>&alpha;</mi> alpha 
Ψ <mi>&Psi;</mi> psi 

cosθ <mi>cos</mi><mi>&theta;</mi> cosine theta 

 
TABLE 2. EXAMPLE OPERATORS 

Identifier in MathML MConv-sys 
∫ <mo>&#x222B;</mo> integral 
∩ <mo>&cap;</mo> intersection 
ϕ <mo>&empty;</mo> empty set 
Σ <mo>&#x2211;</mo> sigma 

 
As a result, we could construct a corpus of math-

sentences using MConv-sys. An example math-sentence is 
as follow: 
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• Example formula: 
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• MathML expression:  

<math xmlns=“http://www.w3. ...”> 
<semantics>  

<mstyle displaystyle=‘true’> 
<mrow> 
<mo>&#x222B;</mo> 
<mrow> 
<msup> 

<mi>e</mi><mrow>  
<mfrac> 

 <mi>i</mi><mn>2</mn> 
</mfrac> 
<mstyle displaystyle=‘true’> 

<mrow> 
<msubsup> 

<mo>&#x222B;</mo> <mn>0</mn> 
<mi>t</mi></msubsup> 

<mrow><mo stretchy='false'>(</mo> 
<mi>p</mi> 

<mo stretchy='false'>(</mo> 
<mi>s</mi> 
... 

 
• Math-sentence (generated by MConv-sys):  

“integral e superscript i over 2 integral from 0 to t open 
parenthesis p open parenthesis s ...” 
 

B. Features and Scoring Scheme 

We define two types of features, I&N and O&S, for 
indexing and calculating ranking scores as follows: 

 
• I&N (Identifiers & Numbers): We first extract identifiers 

and numbers from each math-sentence. According to our 
observations, the order of these two elements in formulae 
is relatively consistent. By this reason, we employ 
identifiers and numbers as important features. In addition, 
the pattern of I&Ns is used to select candidate formulae. 

• O&S (Operators & Structures): The other words except 
identifiers and numbers are also used importantly. With 
the exception of a few stop words, only operators and 
some other tokens which represent the structure of the 
formula are left. We define them as O&S. 
 

TABLE 3. FEEATURES FROM AN EXAMPLE FORMULA 

Math-sentence  
(D = b2 – 4ac) 

“D equal b squared minus 4ac” 

Identifiers D, b, a, c 

Numbers 2, 4 

I&Ns (with their 
relative positions) 

D0, b1, 22, 43, a4, c5   

(count:6) 

I&N pattern i-i-n-n-i-i 

Stop word “of” 

Operators 
“equal” in front of b1, 
“minus” in front of 43 

Structures “squared” in front of 43 

O&Ss (with their 
relative positions) 

“equal1,” “squared3,” “minus3” 
(count:3) 

 
Indexing and ranking are both performed by using these 

features. We first extract all math-sentences of which I&N 
patterns contain the query’s I&N pattern, and regard the 

extracted math-sentences as relevant candidates. We then 
calculate the score of each candidate as given in Formula (1), 
(2), and (3). 

 

)(&& indexedcountNI
Score NI 

)(&

data

matchedcountNI  (1) 

 

         
)(&& indexedcountSO

Score SO 
)(&

data

matchedcountSO   (2) 

 
      (3) 

SONI ScoreScoreScoreFinal && 

 
Suppose that the formula “D = b2 - 4ac” (given in Table 

Table 3) is an indexed data, and a user enter a query that 
indicates “a2 + 4bc” as shown in Table 4. The I&N pattern 
of the indexed data (i-i-n-n-i-i) contains that of the query (i-
n-n-i-i), so the formula is extracted as a candidate. After all 
the candidates are extracted, we rank the candidates. Since 
three I&N tokens (2, 4, c) and one O&S token “squared” are 
exactly matched in both value and relative position, the 
number of matched element of I&N is 3 and that of matched 
element of O&S is 1. 

 
TABLE 4. EXAMPLE OF RANKING SCORE CALCULATION 

User’s input (a2 + 4bc) “a squared plus 4bc 

I&N a0, 21, 42, b3, c4 

I&N pattern i-n-n-i-i 
QUERY 

O&S “squared2,” “plus2” 

I&N D0, b1, 22, 43, a4, c5 (count:6) 

I&N pattern i-i-n-n-i-i 

matched I&N 2, 4, c (count: 3) 

ScoreI&N 3/6 

O&S 
“equal1,” “square3,”  
“minus3” (count:3) 

matched O&S “square” (count: 1) 

ScoreO&S 1/3 

DATA 

Final Score 3/6 + 1/3 = 5/6 

 
Finally, the score of the data, ScoreIN&OS, becomes 3/6 + 

1/3 = 5/6 by Formula (3). In this way, we extract candidates 
and rank the candidates by their scores. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS  

A. Dataset 

Our corpus consists of 1,800 formulae. First, the real 
math formulae were extracted from math manuals that have 
a high school level or more. Next, they were written again in 
MathML by a tool of MathType 
(http://www.dessci.com/en/products/mathtype). At last, 
MConv-sys converted the MathML formulae into math-
sentences.  

For evaluation, 10 assessors tested our system. As an 
evaluation measure, we employ a well-known IR measure, 
MRR, which is the average of the reciprocal ranks of results 
for a sample of queries (Q) as shown in the following 
Formula (4): 

 





Q

i irankQ
MRR

1

1

||

1    (4) 
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The assessors were given 200 formulae at random. (Thus, 

|Q| is 200 in this study.) It is assumed that those formulae 
are their target ones. 

B. Evaluation 

The math-sentences in our corpus consist of plain words, 
so we were able to use the traditional IR techniques. We 
employed TFIDF and Okapi-BM25 as the traditional 
weighting schemes. We regard these methods our baselines. 
Table 5 shows performance comparison with the baselines. 
Here, IN&OS indicates the method using I&Ns and O&Ss, 
the features introduced in Section 3. 

 
TABLE 5. RESULTS OF THE THREE SCHEMES 

Weighting scheme MRR 

TFIDF .329 

Okapi-BM25 .363 

IN&OS .508 

 
As shown in Table 5, IN&OS shows the higher 

performance than the other two methods. We found that the 
performances of TFIDF and Okapi-BM25 are very 
dependent on operators, whereas that of IN&OS is relatively 
dependent on identifiers and numbers. 

To compensate for these biased phenomena, we did 
experiments of linear combination as given in Formula (5): 

 
10,)1(&   otherOSIN ScoreScore  (5) 

 
where ScoreIN&OS denotes the score calculated by I&Ns 

and O&Ss, and ScoreOther denotes the score generated by 
TFIDF or Okapi-BM25. Fig. 1 shows the performance 
comparison with eleven α values. 

 

 
Figure 1. Performance comparison by α value 

 
As shown in Fig. 1, the overall performance was 

increased by the linear combination of IN&OS and other 
scheme. In particular, we achieved the best performance 
with α of 0.4. Table 6 summarizes the results of the 
combined system. 

 
TABLE 6. REEESULTS OF THE COMBINED SCHEMES 

Weighting scheme MRR 

IN&OS only .508 

IN&OS, TFIDF (α = 0.4)  .604 

IN&OS, Okapi-BM25 (α = 0.4) .659 

 
We achieved an outstanding performance, a MRR of 

0.659, by combining IN&OS with Okapi-BM25. As we can 

see in the above results, the proposed IN&OS can be 
effectively combined with the traditional IR techniques and 
lead to noticeable performance improvements. 

 

C. Other evaluation 

We evaluated our method using other evaluation measure, 
P@n (precision at n). In this study, P@n indicates the 
proportion of the top-n formulae that are relevant. We first 
chose five short formulae (or subformulae) and generated 
corresponding queries as shown in Table 7. 

 
TABLE 7. LIST OF THE FIVE SHORT TEST QUERIES 

No formula Query 

1  x2 + ax + 1 “x squared plus a x plus 1” 

2  A∪B∩C=D “A union B intersection C equal D” 

3  sinx + cosx “sine x plus cosine x” 

4  ∑m
k=1

 k+1 “sigma k from 1 to m k plus 1” 

5  P(A|B) “P open parenthesis A bar B close parenthesis” 

 
Using the above five queries, we retrieved relevant 

formulae. We gave the top ten retrieved formulae for each 
query to the assessors. The formulae were labeled as 
“Relevant” or “Not relevant” by the assessors. For each 
formula, if six or more assessors answered that it is relevant, 
the formula was finally classified into “Relevant.” For 
example, if only one formula is classified into “Relevant” 
among top ten formulae, P@10 becomes to 0.1. Table 8 
shows the experimental results using P@5 and P @10. 

 
TABLE 8. EVALUATION RESULTS WITH P@N 

No P@5 P@10 

1 .40 .30 

2 .60 .40 

3 .60 .40 

4 .60 .40 

5 .80 .70 

Ave 0.60 0.44 

 
As shown in Table 8, the overall value of P@5 is higher 

than that of P@10. This fact means that formulae that are 
closer to the query were successfully ranked in a higher 
ranking. That is, our system could perform well even been 
given very short queries. 

V. DISCUSSION: FORMULA SEARCH WITH CLASS 

INFORMATION 

In this section, we classify math formulae with the 
method proposed by Kim et al. [27]. The purpose of this 
classification task is to improve the search performance. 
First, twelve classes are defined referring to the math 
textbooks. 

 
• 12 classes:  “1) Set & Proposition,”  “2) Equation,”  “3) 

Inequality,”  “4) Math Function,” “5) Matrix,”  “6) 
Arithmetic progression,”  “7) Logarithm,”  “8) 
Trigonometric function,”  “9) Differential calculus,”  “10) 
Integral calculus,”  “11) Vector ,”  “12) Probability” 
 

 102 

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:45:36 (UTC) by 18.232.62.134. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 14, Number 4, 2014 

Next, five types of features are defined as follows: 
 

1. Tag:  The first feature is a tag itself. It is a basic unit that 
represents a mathematical structure. For example, <mo> 
indicates that the following token is an operator. Tags are 
surrounded by angle parentheses such as <mi> (identifier), 
<mo> (operator), <mroot> (root), and <mfrac> (fraction), 
etc.  

 
2. Operator: As explained Section 3, an operator is 

expressed with the tag <mo> in MathML. Most operators 
play an important role in classifying formulae. It is true 
that some operators such as ‘+’ and ‘=’ occur in almost all 
classes. On the other hand, there are many operators that 
mainly occur in one class. Some examples are as follow: 

 

“∅ (empty set)”              “1)  Set & Proposition,”   
“∫ (intetral)”                  “10) Integral calculus,”  
 “// (parallel, slanted)”  “11) Vector.”  

 
3. Identifier: As explained in Section 3, an identifier is 

expressed with the tag <mi> in MathML.  
 
4. String: A string is expressed with the tag <mtext> in 

MathML. We consider every word bigram as our fourth 
feature. Although string-contained MathML formulae do 
not occur frequently, they often contain crucial 
information.  

 
5. “Identifier & operator” bigram (I&O): An I&O is 

represented as one of the following three forms: “id/id,” 
“id/op,” and “op/op” (“id”: identifier and “op”: operator). 
This feature can compensate for each of the operators and 
identifiers. For example, the operator features such as 
“right arrow” or “vertical line” imply that a formula  

would belong to the “11) 

Vector” class. On the other hand, the “cosine” identifier 
implies that the formula would be assigned to the “8) 
Trigonometric function” class. Many similar cases are 
found in our corpus. After various experiments, we 
observe that these ambiguity problems can be 
considerably reduced via I&O features. In the case of the 
above formula, the “vertical line & cosine” bigram feature 
plays an important role in resolving that kind of 
ambiguity problems. 

cos||||


 OBOAOBOA

 
We investigated all the possible combination cases of the 

five feature types to find the best combination. We 
evaluated this classification method on 5-fold cross 
validation using SVM with the linear kernel and the TFIDF 
scheme. Table 9 lists the accuracy values for each feature 
combination.  

 
TABLE 9. RESULTS OF FORMULA CLASSIFICATION 

# of feature 
types / Rank 

Feature combinations Accuracy 

1 Operators .768 
One  

2 I&Os .703 

1 Tags + operators .805 
Two 

2 Tags + I&Os .787 

1 Tags + operators + I&Os .933 
Three 

2 Operators + identifiers+ I&Os .920 

1 Tags + operators + strings + I&Os .947* 
Four 

2 Tags + operators + identifiers + I&Os .935 

All five - 
Tags + operators +identifiers + strings 
+ I&Os 

.921 

 
In Table 9, * indicates statistically significant 

improvement over other values according to t-test at p < 
0.05 level (http://www.graphpad.com) [28]. 

After we classified all the formulae in our corpus, we 
added the class information to the queries. Thus the search 
space for a query is limited to its class. Finally, we could 
obtain improved performance by about 3%. Table 10 
summaries our final results. 

 
TABLE 10. FINAL RESULTS 

Weighting scheme MRR 

IN&OS only .508 

IN&OS, Okapi-BM25 .659 

IN&OS, Okapi-BM25, Class information  .690 

 
As shown in Table 10, we finally achieved an outstanding 

performance, a MRR of 0.690, using the class information 
additionally. It should be noted that the use of class 
information can provide fast processing time to formula 
search because it reduces the search space. 

VI. ERROR ANALYSIS 

Although the proposed method showed an outstanding 
performance, several challenges remain. We analyzed some 
major sources of the remaining errors as follows. 
1. When a user only remembers separated parts in an 

expression:  
Assume that the following case.  

• Target formula:  
a

acbb
x

2

42 
  

• Three short parts that a user remembers: b, , 2a 

In this case, user may enter a query as “b, root, 2a,” 
However, our system does not recognize three separated 
parts. The system will consider the query as one sub-
formula, 2b a . It is required to enhance our algorithm to 
prepare this case 
2. When a user remembers the wrong order of math 

tokens:  
Since I&N pattern is one of the major features, the order 

of math tokens in a query is very important.  If a user enters 
a query in the wrong order, e.g., “root 4ac minus b squared” 

( 24 ac b ), the system would generate “n-i-i-i-n” as I&N 
pattern and may bring wrong results. This case should also 
be considered in the future system enhancement. 
3. Length normalization:  

Most of the existing IR systems are known to perform 
length normalization. We also perform length normalization; 
the denominator values in formula (1) an (2) are almost 
determined by the length of a formula.  In the following case, 
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ormula-1 would get the higher rank com

 b squared mi s 4ac” (

for example, f pared 
to formula-2. 

• query: “root nu acb 42  ) 

• formula-1: acbD 42   

• formula-2: 
a

x
2



 This result is considered reasonable from the perspective 
of both document retrieval and formula search. However, 
there are cases where a user wants to find a very big formula 
with only a small part of the expression. Thus, one of the 
approaches we have been examining is to give users an 
option, whether to perform length normalization or not, so 
that for the users to easily find the formulae with a sub-
expression that perfectly corresponds with the query. If the 
user chooses no length normaliz

acbb 42 

ation, formula-
formula-2 will have the same ranks.  
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