
Advances in Electrical and Computer Engineering Volume 14, Number 4, 2014

Mathematical Formula Search using Natural
Language Queries

Seon YANG, Youngjoong KO
Department of Computer Engineering, Dong-A University, 604-714, Republic of Korea

youngjoong.ko@gmail.com

1Abstract—This paper presents how to search mathematical

formulae written in MathML when given plain words as a
query. Since the proposed method allows natural language
queries like the traditional Information Retrieval for the
mathematical formula search, users do not need to enter any
complicated math symbols and to use any formula input tool.
For this, formula data is converted into plain texts, and
features are extracted from the converted texts. In our
experiments, we achieve an outstanding performance, a MRR
of 0.659. In addition, we introduce how to utilize formula
classification for formula search. By using class information,
we finally achieve an improved performance, a MRR of 0.690.

Index Terms—Information retrieval, Formula search,
MathML, Natural language query, Classification.

I. INTRODUCTION

Math search is a new area of research with many enabling
technologies but also many challenges [1]. Until recently,
mathematical formulae had been saved as images on the
Web. By this reason, many users had difficulties in directly
accessing such formulae. In a recent decade, however, there
has been much interest in formula search. One of the
initiatives that are created to promote the accessible
publication of mathematical contents is MathML
(Mathematical Markup Language, http://www.w3.org/Math).
Since MathML helps web documents to easily include
mathematical contents, the number of documents containing
MathML expressions is rapidly increasing.

In this paper, we propose how to search MathML
formulae when given plain words as a query. We focus on
natural language queries like those of the conventional
Information Retrieval (IR). Of course, it is reasonable to use
the queries written in MathML for searching for the data
written in MathML. However, most people do not know
about MathML. If only those who know MathML well are
allowed to retrieve MathML formulae, most people cannot
even have the opportunity of formula search. Although there
are some mathematical formula input tools available, most
of the users are not familiar with the tools.

Therefore, the main contribution of this paper is that the
proposed method allows natural language queries. An
example query is as follows. We assume that a user is
searching for a certain formula. He or she only remembers
some part of the formula.

• Target formula:
a

acbb
x

2

42

• Part that the user remembers: acb 42

1This work was supported by the Dong-A University research fund.

• Example query: “root b squared minus 4ac”

As shown above, there is no grammar, no tool, and no

math-only symbol such as root symbol; users can enter a
query as if they speak the formula.

There are two opposite approaches for our purpose: 1)
converting natural language queries into MathML
expressions, and 2) converting MathML data into plain texts.
The former is relatively simple but it is seriously dependent
on the query translation performance. The latter requires
more work but can alleviate the requirement of high query
conversion performance. The latter has one more advantage.
Since the data consist of plain texts, it can be easily
combined to many traditional IR techniques. It is the reason
why this paper focuses on the latter.

We first convert MathML data into plain sentences that
we call ‘math-sentence’ hereafter.

• Definition (math-sentence): A math-sentence consists of

plain words. It expresses a mathematical formula. For
example, “sigma i from 1 to n i cubed” is a math-sentence
that indicates ∑n

i=1
 i3.

Through this conversion, a wide range of mathematics
vocabulary is constructed. In other words, we build up
important math lexicons, e.g., a math operator lexicon,
synonyms and polysemy.

Next, features are extracted from the math-sentences.
Some factors such as identifiers, operators and their order
are employed as features to effectively reflect the
characteristics of the math contents. These features are used
for indexing and ranking. As an additional experiment, we
classify formulae into several classes for performance
improvement and search space reduction. Finally, we
achieved a MRR of 0.690.

The remainder of the paper is organized as follows:
Section 2 briefly introduces the related work. Section 3
describes the proposed features and scoring scheme in detail.
Section 4 presents experimental results and Section 5
discusses additional experiments. Section 6 describes the
error analysis. Finally, Section 7 summarizes and concludes
this paper.

II. RELATED WORK

The main subject of our study is math search. The
research of Altamimi and Youssef [1] is directly related to
our study. They studied to recognize mathematical symbols
and structures. Their challenge is the creation and
implementation of a math query language that enables the

 99
1582-7445 © 2014 AECE

Digital Object Identifier 10.4316/AECE.2014.04015

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:45:36 (UTC) by 18.232.62.134. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 4, 2014

general users to express their information needs intuitively
yet precisely. They presented such a language and detail its
features. Their math query language offers an alternative
way to describe mathematical expressions that is more
consistent and less ambiguous than conventional
mathematical notation.

Youssef already discussed the roles of math search in [2].
His research addressed that the key question is what roles
the Math-aware fine-grain search can play in mathematics.
This research presented the short-term goals and state of the
art of math-aware fine-grain search. Afterwards, it focused
on how math search can help advance and manage
mathematical knowledge, and discussed what needs to be
done to fulfill those roles. He also presented query-relevant
hit-summary generation methods [3].

Miner and Munavalli aimed at a search system that can be
effectively and economically deployed [4]. They produced
good results with a large portion of the mathematical content
freely available on the Web. Their basic concept was to
linearize mathematical notation as a sequence of text tokens,
which are then indexed by a traditional text search engine.
Their approach is to query for a weighted collection of
significant sub-expressions, where weights depend on
expression complexity, nesting depth, expression length, and
special boosting of well-known expressions.

Miller and Youssef proposed augmenting presentation
MathML for math search [5]. Adeel et al. presented the
“Math GO!” system to search and present the mathematical
information encoded in mathematical expressions [6]. Their
approach used the concept of template based math block
identification, vector representation, searching from
mathematical topic based clusters and relevance ranking

Misutka and Galambos studied how to search for
mathematical formulae in real-world mathematical
documents, but still offering an extensible level of
mathematical awareness [7]. They exploited the advantages
of full text search engine and stored each formula not only
once but in several generalized representations. Because it
was designed as an extension, any full text search engine
could adopt it. Zhao et al. reported on the user requirements
study and preliminary implementation phrases in creating a
digital library that indexes and retrieves educational
materials on math [8]. They first reviewed the current
approaches and resources for math retrieval, and then
reported on the interviews of a small group of potential
users to properly ascertain their needs. Yokoi and Aizawa
proposed a similarity search method for mathematical
equations that are particularly adapted to the tree structures
expressed by MathML [9].

Ion explored the mathematics in the Web [10]. Kamali
and Tompa proposed the mathematics retrieval [11-14], and
Kamali et al. proposed an approach for recognizing and
classifying math queries using large scale search logs [15].
Zanibbi and Blostein surveyed the recognition and the
retrieval of mathematical Expressions [16]. Nghiem et al.
explored the problem of semantic enrichment of
mathematical expressions [17]. Do and Pauwels proposed an
ontology alignment by introducing MathML [18].

Kohlhase et al. introduced MathWebSearch version 0.5
[19], and Kohlhase and Rabe presented two denotational
semantics for OpenMath [20]. Lange et al. reimplemented

the MSC (Mathematics Subject Classification) [21]. Their
focus was concentrated on turning it into the new MSC
authority. Sojka and Liska discussed the mathematics
retrieval [22-23].

The research of Ferreira and Freitas [24] is also closely
related to our study. Their goal is to convert MathML
expressions into representations of audio version in English
and Portuguese. They reviewed the problem of speaking
mathematics and presented the tool AudioMath.

Related to the IR with class information, Liu and Croft
showed that cluster-based retrieval can perform consistently
across collections of realistic size [25] and Jain and
Wadekar studied classification-based IR methods [26].

For our formula classification, we implemented the
system proposed by Kim et al. [27]. The authors classified
math equations into twelve classes. They conduct
experiments using five types of features, tags, operators,
identifiers, string bigrams, and "identifier & operator"
bigrams. In Section 5, we will describe their approach in
detail.

III. FORMULA SEARCH WITH NATURAL LANGUAGE QUERIES

A. Converting Formulae into Math-sentences

We convert each math formula in our corpus into a
corresponding math-sentence. We observe a variety of math
representations and analyze the rules of speaking formulae.
Besides, we mainly refer to MathPlayer
(http://www.dessci.com/en/products/mathplayer). Finally,
we could implement a conversion system, which we call
MConv-sys. While doing this, we could build some
important lexicons. Among them, we briefly introduce the
identifier lexicon and the operator lexicon as follows:

• Identifier lexicon: An identifier is expressed with the tag

<mi> in MathML. It includes all variables, e.g., “a,” “b,”
“x,” “y,” and some promised symbols, e.g., “cos” and
“log.”

• Operator lexicon: An operator is expressed with the tag

<mo> in MathML.

Table 1 and Table 2 list identifier examples and operator

examples, respectively.

TABLE 1. EXAMPLE IDENTIFIERS
Identifier in MathML MConv-sys

a <mi>a</mi> a
α <mi>α</mi> alpha
Ψ <mi>Ψ</mi> psi

cosθ <mi>cos</mi><mi>θ</mi> cosine theta

TABLE 2. EXAMPLE OPERATORS

Identifier in MathML MConv-sys
∫ <mo>∫</mo> integral
∩ <mo>∩</mo> intersection
ϕ <mo>∅</mo> empty set
Σ <mo>∑</mo> sigma

As a result, we could construct a corpus of math-

sentences using MConv-sys. An example math-sentence is
as follow:

 100

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:45:36 (UTC) by 18.232.62.134. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 4, 2014

• Example formula:

),(0 0

))(),(())()()()((
2

qpdWe v

dssqsphisdpsqsdqsp
i

t t

• MathML expression:

<math xmlns=“http://www.w3. ...”>
<semantics>

<mstyle displaystyle=‘true’>
<mrow>
<mo>∫</mo>
<mrow>
<msup>

<mi>e</mi><mrow>
<mfrac>

 <mi>i</mi><mn>2</mn>
</mfrac>
<mstyle displaystyle=‘true’>

<mrow>
<msubsup>

<mo>∫</mo> <mn>0</mn>
<mi>t</mi></msubsup>

<mrow><mo stretchy='false'>(</mo>
<mi>p</mi>

<mo stretchy='false'>(</mo>
<mi>s</mi>
...

• Math-sentence (generated by MConv-sys):

“integral e superscript i over 2 integral from 0 to t open
parenthesis p open parenthesis s ...”

B. Features and Scoring Scheme

We define two types of features, I&N and O&S, for
indexing and calculating ranking scores as follows:

• I&N (Identifiers & Numbers): We first extract identifiers

and numbers from each math-sentence. According to our
observations, the order of these two elements in formulae
is relatively consistent. By this reason, we employ
identifiers and numbers as important features. In addition,
the pattern of I&Ns is used to select candidate formulae.

• O&S (Operators & Structures): The other words except
identifiers and numbers are also used importantly. With
the exception of a few stop words, only operators and
some other tokens which represent the structure of the
formula are left. We define them as O&S.

TABLE 3. FEEATURES FROM AN EXAMPLE FORMULA

Math-sentence
(D = b2 – 4ac)

“D equal b squared minus 4ac”

Identifiers D, b, a, c

Numbers 2, 4

I&Ns (with their
relative positions)

D0, b1, 22, 43, a4, c5

(count:6)

I&N pattern i-i-n-n-i-i

Stop word “of”

Operators
“equal” in front of b1,
“minus” in front of 43

Structures “squared” in front of 43

O&Ss (with their
relative positions)

“equal1,” “squared3,” “minus3”
(count:3)

Indexing and ranking are both performed by using these

features. We first extract all math-sentences of which I&N
patterns contain the query’s I&N pattern, and regard the

extracted math-sentences as relevant candidates. We then
calculate the score of each candidate as given in Formula (1),
(2), and (3).

)(&& indexedcountNI
Score NI

)(&

data

matchedcountNI (1)

)(&& indexedcountSO

Score SO
)(&

data

matchedcountSO (2)

 (3)

SONI ScoreScoreScoreFinal &&

Suppose that the formula “D = b2 - 4ac” (given in Table

Table 3) is an indexed data, and a user enter a query that
indicates “a2 + 4bc” as shown in Table 4. The I&N pattern
of the indexed data (i-i-n-n-i-i) contains that of the query (i-
n-n-i-i), so the formula is extracted as a candidate. After all
the candidates are extracted, we rank the candidates. Since
three I&N tokens (2, 4, c) and one O&S token “squared” are
exactly matched in both value and relative position, the
number of matched element of I&N is 3 and that of matched
element of O&S is 1.

TABLE 4. EXAMPLE OF RANKING SCORE CALCULATION

User’s input (a2 + 4bc) “a squared plus 4bc

I&N a0, 21, 42, b3, c4

I&N pattern i-n-n-i-i
QUERY

O&S “squared2,” “plus2”

I&N D0, b1, 22, 43, a4, c5 (count:6)

I&N pattern i-i-n-n-i-i

matched I&N 2, 4, c (count: 3)

ScoreI&N 3/6

O&S
“equal1,” “square3,”
“minus3” (count:3)

matched O&S “square” (count: 1)

ScoreO&S 1/3

DATA

Final Score 3/6 + 1/3 = 5/6

Finally, the score of the data, ScoreIN&OS, becomes 3/6 +

1/3 = 5/6 by Formula (3). In this way, we extract candidates
and rank the candidates by their scores.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Dataset

Our corpus consists of 1,800 formulae. First, the real
math formulae were extracted from math manuals that have
a high school level or more. Next, they were written again in
MathML by a tool of MathType
(http://www.dessci.com/en/products/mathtype). At last,
MConv-sys converted the MathML formulae into math-
sentences.

For evaluation, 10 assessors tested our system. As an
evaluation measure, we employ a well-known IR measure,
MRR, which is the average of the reciprocal ranks of results
for a sample of queries (Q) as shown in the following
Formula (4):

Q

i irankQ
MRR

1

1

||

1 (4)

 101

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:45:36 (UTC) by 18.232.62.134. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 4, 2014

The assessors were given 200 formulae at random. (Thus,

|Q| is 200 in this study.) It is assumed that those formulae
are their target ones.

B. Evaluation

The math-sentences in our corpus consist of plain words,
so we were able to use the traditional IR techniques. We
employed TFIDF and Okapi-BM25 as the traditional
weighting schemes. We regard these methods our baselines.
Table 5 shows performance comparison with the baselines.
Here, IN&OS indicates the method using I&Ns and O&Ss,
the features introduced in Section 3.

TABLE 5. RESULTS OF THE THREE SCHEMES

Weighting scheme MRR

TFIDF .329

Okapi-BM25 .363

IN&OS .508

As shown in Table 5, IN&OS shows the higher

performance than the other two methods. We found that the
performances of TFIDF and Okapi-BM25 are very
dependent on operators, whereas that of IN&OS is relatively
dependent on identifiers and numbers.

To compensate for these biased phenomena, we did
experiments of linear combination as given in Formula (5):

10,)1(& otherOSIN ScoreScore (5)

where ScoreIN&OS denotes the score calculated by I&Ns

and O&Ss, and ScoreOther denotes the score generated by
TFIDF or Okapi-BM25. Fig. 1 shows the performance
comparison with eleven α values.

Figure 1. Performance comparison by α value

As shown in Fig. 1, the overall performance was

increased by the linear combination of IN&OS and other
scheme. In particular, we achieved the best performance
with α of 0.4. Table 6 summarizes the results of the
combined system.

TABLE 6. REEESULTS OF THE COMBINED SCHEMES

Weighting scheme MRR

IN&OS only .508

IN&OS, TFIDF (α = 0.4) .604

IN&OS, Okapi-BM25 (α = 0.4) .659

We achieved an outstanding performance, a MRR of

0.659, by combining IN&OS with Okapi-BM25. As we can

see in the above results, the proposed IN&OS can be
effectively combined with the traditional IR techniques and
lead to noticeable performance improvements.

C. Other evaluation

We evaluated our method using other evaluation measure,
P@n (precision at n). In this study, P@n indicates the
proportion of the top-n formulae that are relevant. We first
chose five short formulae (or subformulae) and generated
corresponding queries as shown in Table 7.

TABLE 7. LIST OF THE FIVE SHORT TEST QUERIES

No formula Query

1 x2 + ax + 1 “x squared plus a x plus 1”

2 A∪B∩C=D “A union B intersection C equal D”

3 sinx + cosx “sine x plus cosine x”

4 ∑m
k=1

 k+1 “sigma k from 1 to m k plus 1”

5 P(A|B) “P open parenthesis A bar B close parenthesis”

Using the above five queries, we retrieved relevant

formulae. We gave the top ten retrieved formulae for each
query to the assessors. The formulae were labeled as
“Relevant” or “Not relevant” by the assessors. For each
formula, if six or more assessors answered that it is relevant,
the formula was finally classified into “Relevant.” For
example, if only one formula is classified into “Relevant”
among top ten formulae, P@10 becomes to 0.1. Table 8
shows the experimental results using P@5 and P @10.

TABLE 8. EVALUATION RESULTS WITH P@N

No P@5 P@10

1 .40 .30

2 .60 .40

3 .60 .40

4 .60 .40

5 .80 .70

Ave 0.60 0.44

As shown in Table 8, the overall value of P@5 is higher

than that of P@10. This fact means that formulae that are
closer to the query were successfully ranked in a higher
ranking. That is, our system could perform well even been
given very short queries.

V. DISCUSSION: FORMULA SEARCH WITH CLASS

INFORMATION

In this section, we classify math formulae with the
method proposed by Kim et al. [27]. The purpose of this
classification task is to improve the search performance.
First, twelve classes are defined referring to the math
textbooks.

• 12 classes: “1) Set & Proposition,” “2) Equation,” “3)

Inequality,” “4) Math Function,” “5) Matrix,” “6)
Arithmetic progression,” “7) Logarithm,” “8)
Trigonometric function,” “9) Differential calculus,” “10)
Integral calculus,” “11) Vector ,” “12) Probability”

 102

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:45:36 (UTC) by 18.232.62.134. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 4, 2014

Next, five types of features are defined as follows:

1. Tag: The first feature is a tag itself. It is a basic unit that
represents a mathematical structure. For example, <mo>
indicates that the following token is an operator. Tags are
surrounded by angle parentheses such as <mi> (identifier),
<mo> (operator), <mroot> (root), and <mfrac> (fraction),
etc.

2. Operator: As explained Section 3, an operator is

expressed with the tag <mo> in MathML. Most operators
play an important role in classifying formulae. It is true
that some operators such as ‘+’ and ‘=’ occur in almost all
classes. On the other hand, there are many operators that
mainly occur in one class. Some examples are as follow:

“∅ (empty set)” “1) Set & Proposition,”
“∫ (intetral)” “10) Integral calculus,”
 “// (parallel, slanted)” “11) Vector.”

3. Identifier: As explained in Section 3, an identifier is

expressed with the tag <mi> in MathML.

4. String: A string is expressed with the tag <mtext> in

MathML. We consider every word bigram as our fourth
feature. Although string-contained MathML formulae do
not occur frequently, they often contain crucial
information.

5. “Identifier & operator” bigram (I&O): An I&O is

represented as one of the following three forms: “id/id,”
“id/op,” and “op/op” (“id”: identifier and “op”: operator).
This feature can compensate for each of the operators and
identifiers. For example, the operator features such as
“right arrow” or “vertical line” imply that a formula

would belong to the “11)

Vector” class. On the other hand, the “cosine” identifier
implies that the formula would be assigned to the “8)
Trigonometric function” class. Many similar cases are
found in our corpus. After various experiments, we
observe that these ambiguity problems can be
considerably reduced via I&O features. In the case of the
above formula, the “vertical line & cosine” bigram feature
plays an important role in resolving that kind of
ambiguity problems.

cos||||

 OBOAOBOA

We investigated all the possible combination cases of the

five feature types to find the best combination. We
evaluated this classification method on 5-fold cross
validation using SVM with the linear kernel and the TFIDF
scheme. Table 9 lists the accuracy values for each feature
combination.

TABLE 9. RESULTS OF FORMULA CLASSIFICATION

of feature
types / Rank

Feature combinations Accuracy

1 Operators .768
One

2 I&Os .703

1 Tags + operators .805
Two

2 Tags + I&Os .787

1 Tags + operators + I&Os .933
Three

2 Operators + identifiers+ I&Os .920

1 Tags + operators + strings + I&Os .947*
Four

2 Tags + operators + identifiers + I&Os .935

All five -
Tags + operators +identifiers + strings
+ I&Os

.921

In Table 9, * indicates statistically significant

improvement over other values according to t-test at p <
0.05 level (http://www.graphpad.com) [28].

After we classified all the formulae in our corpus, we
added the class information to the queries. Thus the search
space for a query is limited to its class. Finally, we could
obtain improved performance by about 3%. Table 10
summaries our final results.

TABLE 10. FINAL RESULTS

Weighting scheme MRR

IN&OS only .508

IN&OS, Okapi-BM25 .659

IN&OS, Okapi-BM25, Class information .690

As shown in Table 10, we finally achieved an outstanding

performance, a MRR of 0.690, using the class information
additionally. It should be noted that the use of class
information can provide fast processing time to formula
search because it reduces the search space.

VI. ERROR ANALYSIS

Although the proposed method showed an outstanding
performance, several challenges remain. We analyzed some
major sources of the remaining errors as follows.
1. When a user only remembers separated parts in an

expression:
Assume that the following case.

• Target formula:
a

acbb
x

2

42

• Three short parts that a user remembers: b, , 2a

In this case, user may enter a query as “b, root, 2a,”
However, our system does not recognize three separated
parts. The system will consider the query as one sub-
formula, 2b a . It is required to enhance our algorithm to
prepare this case
2. When a user remembers the wrong order of math

tokens:
Since I&N pattern is one of the major features, the order

of math tokens in a query is very important. If a user enters
a query in the wrong order, e.g., “root 4ac minus b squared”

(24 ac b), the system would generate “n-i-i-i-n” as I&N
pattern and may bring wrong results. This case should also
be considered in the future system enhancement.
3. Length normalization:

Most of the existing IR systems are known to perform
length normalization. We also perform length normalization;
the denominator values in formula (1) an (2) are almost
determined by the length of a formula. In the following case,

 103

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:45:36 (UTC) by 18.232.62.134. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 14, Number 4, 2014

 104

ormula-1 would get the higher rank com

 b squared mi s 4ac” (

for example, f pared
to formula-2.

• query: “root nu acb 42)

• formula-1: acbD 42

• formula-2:
a

x
2

 This result is considered reasonable from the perspective
of both document retrieval and formula search. However,
there are cases where a user wants to find a very big formula
with only a small part of the expression. Thus, one of the
approaches we have been examining is to give users an
option, whether to perform length normalization or not, so
that for the users to easily find the formulae with a sub-
expression that perfectly corresponds with the query. If the
user chooses no length normaliz

acbb 42

ation, formula-
formula-2 will have the same ranks.

vely used for the real world math inform
re

clustering techniques, e.g., topic models, to our system.

al Knowledge Management, pp.342-355, 2007.

eung and S. H. Khiyal, “Math GO! Prototype of A

008.

wards a

athematics Library, pp. 230-245, 2013.

ledge

l Mathematics Library, pp. 37-48, 2009.

hiem, G. Y. Kristianto and A. Aizawa, “Using MathML

rtificial

s, W. Sperber, M. Kohlhase and

es,” in

ngineering, pp. 57-60, 2011.

onal, 2005.

 Wadekar, “Classification-based Retrieval Methods

rmation and
Systems, vol. E95-D, no. 10, pp. 2560-2563, 2012.

[28] P. Refaeilzadeh, L. Tang and H. Liu, “Cross-validation,”
Encyclopedia of Database Systems. pp. 532-538, 2009.

[4] R. Miner and R. Munavalli, “An Approach to Mathematical Search
Through Query Formulation and Data Normalization,” in Proc.
Mathematic

[5] B. R. Miller and A. Youssef, “Augmenting Presentation MathML for
Search,” in Proc. Mathematical Knowledge Management, pp. 536-
542, 2008.

[6] M. Adeel, H. S. Ch
Content Based Mathematical Formula Search Engine,” Journal of
Theoretical and Applied Information Technology, vol. 4, no. 10, pp.
1002-1012, 2008.

[7] J. Misutka and L. Galambos, “Extending Full Text Search Engine for
Mathematical Content,” in Proc. Towards a Digital Mathematics
Library, pp. 55-67, 2008.

[8] J. Zhao, M. Kan and Y. L. Theng, “Math Information Retrieval: User
Requirements and Prototype Implementation,” in Proc. Joint
Conference on Digital Libraries, pp. 187-196, 2

[9] K. Yokoi and A. Aizawa, “An Approach to Similarity Search for
Mathematical Expressions using MathML,” in Proc. To

1 and
[11] S, Kamali and F. W. Tompa, “Structural Similarity Search for

Mathematics Retrieval,” in Proc. Intelligent Computer Mathematics,
pp. 246-262, 2013.

Digital Mathematics Library, pp. 27-35, 2009.
[10] P. D. F. Ion, “Mathematics and the World Wide Web,” in Proc.

Towards a Digital M

[12] S, Kamali and F. W. Tompa, “Retrieving Documents with
Mathematical Content,” in Proc. Special Interest Group on
Information Retrieval, pp. 353-362, 2013.

VII. CONCLUSION

This paper has presented how to retrieve MathML
formulae using natural language queries. We first
implemented MConv-sys which converts MathML formulae
into plain sentences. We changed MathML data into math-
sentences using MConv-sys. We then extracted features,
I&Ns and O&Ss from the math-sentences, and retrieved
formulae using the features. We also used conventional
weighting schemes and combined them to our proposed
weighting scheme. In the discussion section, we conducted
the formula classification task to improve the search
performance. We achieved an improved performance by
about 3%. These results show that the proposed method can
be effecti

[13] S. Kamali and F. W. Tompa, “A new mathematics retrieval system,”
in Proc. Conference on Information and Know
Management, pp. 1413-1416, 2010.

[14] S. Kamali and F. W. Tompa, “Improving Mathematics Retrieval,” in
Proc. Towards a Digita

[15] S, Kamali, J. Apacible and Y. Hosseinkashi, “Answering Math
Queries with Search Engines,” in Proc. companion on World Wide
Web, pp. 43-52, 2012.

[16] R. Zanibbi and D. Blostein, “Recognition and Retrieval of
Mathematical Expressions,” International Journal on Document
Analysis and Recognition, vol. 15, pp 331-357, 2012.

[17] M. Ng

ation [18] C. Do and E. J. Pauwels, “Using MathML to Represent Units of
Measurement for Improved Ontology Alignment,” in Proc. Towards a
Digital Mathematics Library, pp. 310-325, 2013.

Parallel Markup Corpora for Semantic Enrichment of Mathematical
Expressions,” IEICE Transactions, vol. 96-D, no. 8, pp. 1707-1715,
2013.

trieval.
There are several interesting directions for the future

work. The first is to enhance our system to solve the
problems described in the error analysis section. The second
is to build a larger collection is an important plan, too. We
already have started to collect a large volume of
mathematical documents. The third is to conduct
experiments by converting queries into MathML
expressions not converting formula data into math-sentences.
The fourth is related to improve the performance. We will
combine our method (IN&OS) to the state-of-the-art IR
techniques beyond TFIDF or Okapi-BM25. In addition, we
will conduct experiments by applying unsupervised

[19] M. Kohlhase, B. Matican and C. Prodescu, “MathWebSearch 0.5:
Scaling an Open Formula Search Engine,” in Proc. A
Intelligence and Symbolic Computation, pp. 342-357, 2012.

[20] M. Kohlhase and F. Rabe, “Semantics of OpenMath and MathML3,”
Mathematics in Computer Science, vol. 6, pp 235-260, 2012.

[21] C. Lange, P. Ion, A. Dimou, C. Bratsa
I. Antoniou, “Bringing Mathematics to the Web of Data: The Case of
the Mathematics Subject Classification,” in Proc. European Semantic
Web Symposium, pp. 763-777, 2012.

[22] P. Sojka and M. Liska, “Indexing and Searching Mathematics in
Digital Libraries - Architecture, Design and Scalability Issu

 [24]

Proc. Mathematical Knowledge Management, pp. 228-243, 2011.
[23] P. Sojka and M. Liska, “The Art of Mathematics Retrieval,” in Proc.

ACM Symposium on Document E
 H. Ferreira and D. Freitas, “Audio-Math: Towards Automatic

Readings of Mathematical Expressions,” in Proc. Human Computer
Interaction Internati

[25] L. Liu and W. B. Croft, “Cluster-Based Retrieval Using Language
Models,” In Proc. Special Interest Group on Information Retrieval,
pp. 186-193, 2004.

[26] Y. K. Jain and S.

REFERENCES
[1] M. E. Altamimi and A. Youssef, “A Math Query Language with an

Expanded Set of Wildcards,” Mathematics in Computer Science, vol.
2, no. 2, pp. 305-331, 2008.
A. Youssef, “Roles of Math Search in Mathematics

to Enhance Information Discovery on the Web,” International
Journal of Managing Information Technology, vol. 3, no. 1, pp. 33-44,
2011

[2] ,” in Proc.
Mathematical Knowledge Management, pp. 2-16, 2006.

[3] A. Youssef, “Relevance Ranking and Hit Description in Math
Search,” Ma

[27] S. Kim, S. Yang and Y. Ko, “Classifying Mathematical Expressions
Written in MathML,” IEICE Transactions on Infothematics in Computer Science, vol. 2, no. 2, pp. 333-

353, 2008.

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 11:45:36 (UTC) by 18.232.62.134. Redistribution subject to AECE license or copyright.]

