
Advances in Electrical and Computer Engineering                                                                      Volume 16, Number 3, 2016 

       9

 
1Abstract—This paper proposes an enhanced rule-based web 

scanner in order to get better accuracy in detecting web 
vulnerabilities than the existing tools, which have relatively 
high false alarm rate when the web pages are installed in 
unconventional directory paths. Using the proposed matching 
method based on similarity score, the proposed scheme can 
determine whether two pages have the same vulnerabilities or 
not. With this method, the proposed scheme is able to figure 
out the target web pages are vulnerable by comparing them to 
the web pages that are known to have vulnerabilities. We show 
the proposed scanner reduces 12% false alarm rate compared 
to the existing well-known scanner through the performance 
evaluation via various experiments. The proposed scheme is 
especially helpful in detecting vulnerabilities of the web 
applications which come from well-known open-source web 
applications after small customization, which happens 
frequently in many small-sized companies. 
 

Index Terms—intrusion detection, access control, 
information security, web services, security.  

I. INTRODUCTION 

With the explosive growth of web-based application, a lot 
of web sites are widely used in our daily life. Many content 
providers give customers information via web site. To 
reduce the cost from their web applications, the site 
managers can use open-source web applications, such as [1]. 
By employing open-source web applications, they can 
reduce the cost of developing and installing their web 
applications. Also, they tend to customize these open-source 
web applications by modifying small portions of them 
before their use for various reasons, such as companies' 
demand and site managers' preference.  

To reduce cost, companies may not employ web security 
manager who is qualified in preventing their web pages 
from hacker's attacks. In this case, to prevent a web server 
from hacker's attack, site managers have no choice but to 
use the tools to the web applications on their web servers, 
which automatically analyze the vulnerabilities, such as 
Nikto [2], Wikto [3], N-stalker Security Scanner [4], 
Acunetix Scanner [5], and other scanners [6-9] due to 
various reasons such as insufficient security knowledge.  

According to [10], these tools are categorized into 
parameter-based validation method [4-7,11-19] and rule-
based testing method [2-3,8-9]. In this paper, we focus on 
the latter type for efficiency because our main target is 
open-source web applications. Since they are open and 
public, their vulnerabilities are easily detected, categorized, 

 
*Corresponding author: Younho Lee1 
This study was supported by the Research Program funded by the Seoul 

National University of Science and Technology.   

and distributed. Moreover, it is likely that the websites based 
on open-source applications have similar structures.  

Unfortunately, the rule-based approach makes a false 
alarm when the site manager customizes their web 
application. Because the customized file path or file name 
can obscure the vulnerability detection. Thus, an enhanced 
rule-based approach is necessary to prevent such a problem. 
This problem is non-trivial in that site managers tend to 
customize open-source web applications before deployment.   

We tackle this problem by suggesting an improved rule-
based scanner working with similarity score. The similarity 
score is defined between a target page to be tested and a rule 
page. It can be calculated by checking the difference of the 
unique characters in them. The unique characters mean the 
components of the web pages that are classified into four 
types, based on the degree of the difficulty in modification. 
The proposed scanner counts the number of the components 
that are common in both pages. The counting is executed per 
each type. The similarity score is proportional to the number 
of the common components. Also, the score varies on the 
type of the common components. I.e., the more similarity 
score is given if the more difficult-to-modify components 
are common in both pages. 

Since the proposed scanner uses the unique characteristic 
of a web page instead of using only installation paths, it 
effectively reduces the false alarm rate compared to the 
existing rule-based methods.  

We conduct various experiments in order to prove that the 
proposed scheme has better accuracy than the existing 
schemes. The result shows that the proposed scheme 
outperforms the existing in terms of 12% less false positive 
rate.  

The rest of the paper is organized as follows. In Section 
II, we review the related work. In Section III, we explain the 
operation steps of the proposed system and the proposed 
algorithm to calculate the similarity score between two web 
pages. Section IV introduces the experiments we conducted 
to test the accuracy and cost of our approach. We conclude 
our paper in Section V.  

II. RELATED WORK 

The past work on the vulnerability analysis in web 
environment can be generally grouped into two types, which 
are parameter-based method and rule-based method.  

The former relies on generating web requests that include 
hostile and attack codes. Then, it checks the response of the 
target hosts against the hostile codes. This approach focuses 
on the variables used by web application. It has an 

An Enhanced Rule-Based Web Scanner Based 
on Similarity Score 

Minsoo LEE1, Younho LEE2,*, Hyunsoo YOON1  
1Department of Computer Science, KAIST, Korea 

2ITM Programme, Dept. Industrial and Systems Engineering, SeoulTech, Korea 
mslee@nslab.kaist.ac.kr, younholee@seoultech.ac.kr,  hyoon@nslab.kaist.ac.kr   

1582-7445 © 2016 AECE

Digital Object Identifier 10.4316/AECE.2016.03002

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:12:10 (UTC) by 3.239.57.87. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 16, Number 3, 2016 

 10 

advantage over the other type in terms of detecting unknown 
vulnerabilities because most possibly-hostile data-set is 
tested to each variables of web page. However, the 
disadvantages are that the detection cost is higher than the 
latter, and false alarms can occur in some situations 
depending on the server status. The Secubat provides this 
functionality [20]. 

 
Figure 1. Conventional vulnerability detection procedure in the rule-based 
approach 

The latter uses the database containing pre-defined 
vulnerabilities, rule name, the contents of request packets 
and their responses, as in Table I. It tries to request http 
packets based on these data to the target server that is 
suspicious to run vulnerable application as in Fig. 1. This 
approach focuses on checking if vulnerable application 
exists in the server. Fingerprinting tools such as Nessus and 
Nmap are included in this category [8-9]. This approach can 
detect the known vulnerabilities well. In addition, it can 
inspect the mis-configuration in the server, and its 
performance is relatively better than former. However, it 
must have a vulnerability repository. The Wickto and Nikto, 
web vulnerability scanner, and other commercial products 
such as AWVS provide vulnerability repositories [2-3].  

TABLE  I. SAMPLE RULE  IN THE NIKTO 

Field Example 

Type Generic 

Query 
Message 

/phpwebsite/index.php?module=cale
ndar 

Response 
Message 

DB Error:syntax error 

Method GET 

Description phpwebSite 0.9x and below are 
vulnerable to SQL injection 

The rule-based approach is fast because it is pretty 
simple. Fig. 1 presents how a rule-based web scanner detects 
vulnerability of a web site by showing an example of Nikto. 
In this figure, Nikto requests a packet including a file path 
of vulnerable web application to the web server. Then, if the 
web server has the same file with the requested one, it sends 
a response packet including “200 OK”. Otherwise, it sends 
an http error packet [2]. At this point, Nikto can recognize 
vulnerability through analyzing the response.  

Some previous works pointed out the limitations of black-
box testing method for web application [21-23]. Typically, 

the rule-based method can detect only known 
vulnerabilities, and it makes a false alarm in some cases. 
Nevertheless, it is most popular and basic method to find 
vulnerability. 

III. AN ENHANCED RULE-BASED APPROACH 

Unlike the rule-based approaches that usually recognize 
the vulnerability fully depending on fixed file names and 
installation paths, our system uses a similarity score between 
two web pages on top of the file-name and installation-path 
comparison approach. Thus, the proposed scheme can 
improve the accuracy of vulnerability test. In the following 
subsections, we detail the proposed algorithm and the way 
of calculating similarity score. 

A. Proposed Scheme 

We first introduce the fields in our rule-set as follows: 
Type, Query Message, Response Message, Method 
Description, and File name including Instance Contents. The 
last field is a new field which means an xml-format file that 
saves a list of feature instances such as  'find_username' and 
'sid:hidden'. The feature instances will be addressed in the 
next subsection. 

The proposed scheme is different from the common rule-
based approach shown in Fig. 1 in that the first step (Read 
rule DB) and the second step (Send test packet) changes to 
the following algorithm, which is used to figure out whether 
the page file from the rule DB and the target page file to be 
tested are similar or not. The similarity score is used to 
represent the degree of the similarity, and the algorithm 
decides if the scanner sends a test packet based on the 
similarity score. The following is a pseudo-code description 
of the proposed algorithm. 

In the line #2, the proposed system maintains a list of all 
page names and paths. It can gain a file list that has the files 
that are possibly vulnerable after executing line #9. Then, it 
sends a test packet to these files in the target server and 
checks the responses. After that, it decides if they are 
vulnerable or not. In this algorithm, we only consider file 
names in order to make a list of test candidates. It is a 
reasonable approach because the web pages in the same web 
application have relationship with one another such as cross-
link relation. Thus, a site manager cannot easily customize 
the file names of the web pages in a web application. 

B. Similarity Score  

A web page is usually composed of HTML tags, CSS 
(Cascading Style Sheets), Scripts, and other objects such as 
flex and Active X Control. The similarity score is defined as 
a value that represents the similarity of the parts of visible 
HTML, program variables, and functions between a rule 
page and a target page.  

A web page has unique noticeable characteristics such as 
script function name, layout of web page, and image files, 
depending on the character of the developers who made the 
page. Thus, these noticeable characters can help to correctly 
recognize different HTML files. These characters should be 
considered in calculating the similarity score. The features 
we have chosen are given in Table II. The reason is 
provided as follows: 

- A different programming style is represented in the web 

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:12:10 (UTC) by 3.239.57.87. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 16, Number 3, 2016 

       11

application such as function name and variable name due to 
developer. 

- A web application composed with several web pages has 
cross-hyperlinks in their web pages. 

- A web application has a unique image file path. 

 
Figure 2. Proposed scheme 

Among the selected features, the names of the functions 
(feature # 1) and the program variables (feature # 3) are in 
the role of system, in that they are related to the functions of 
the web application. On the other hand, link elements 
(feature # 2) and Img elements (feature # 4) are used for 
representing the visual parts of a web page. All these 
features represent the characteristic of a web page in a web 
application. 

We define two types of values ii  ,  for each feature 

i# )4,3,2,1( i as in Table III, which reflects the 

difficulty of modification in a web page. Feature #1s are not 
easy to modify because they can be used through multiple 
pages in a web application. Therefore, without full 
understanding of the whole application, it requires much 
effort for a site manager to modify the name of functions if 
the site manager does not have sufficient skill in 
understanding web applications. This argument also works 
in the case of feature #2s that are usually used to link from a 
web page to another web page with relaying some input data, 
because the change of links might affect the functions of the 
whole web application. This change is also a difficult work 
for a site manager who has only a basic knowledge of a web 
application. Thus, we conclude that these features are 
relatively more difficult to customize than the other features. 
Therefore, we assign the values of 1 and 2  to two. On 

the other hand, a programming variable (feature #3) does 
not tend to be used in multiple pages as the complexity of 
the web application increases if it is used in multiple web 
pages. Thus, the low-skill site manager can relatively easily 
modify its name and the places where it is used. Also, an 
img element, i.e. feature #4, can be easily modified by a site 
manager because it is usually independent of other 
components in a web page. From this argument, we assign 

3 and 4  as one.  

Let us explain the implication of i  values. If more 

number of the instances of the high-αi features are in 
common between a target page being tested and a rule page, 
it is more highly probable that these two pages support the 

same functions than the case where those of low i  features 

are in common because it is more difficult to customize the 
features of high i values preserving the functions of the 

original page.  
TABLE II. FEATURES FOR CALCULATING SIMILARITY SCORE  

Feature Comments Role 
Function 

name 
description

The function name that is defined 
in JavaScript or VBScript 

Program 
variable 

The name property in form tags 

System 

Link 
element 

The link in <a> tags 

Img 
element 

The image path in <img> tags 

UI 

TABLE III. CLASSIFICATION RULE FEATURES 

 More relevant to 
vulnerability ( i =1) 

Less relevant to 
vulnerability   
( i =0) 

Hard to 
modify 
( i  =2) 

Function name of script 
(feature type #1 (i=1)) 

Link element 
(feature type #2 
(i=2)) 

Easy to 
modify 
( i  =1) 

Program variable 
(feature type #3 (i=3)) 

Img element 
(feature type #4 
(i=4)) 

 i  reflects the relevance of each feature to vulnerability. 

Usually the features that are related to user interface (UI) 
tend to have less relevance to the vulnerability of a web 
page. Thus, the degree that the same feature instances exist 
in both pages does not tell about the probability of sharing 
the same vulnerability. Therefore, we set 2 and 4  to zero, 

whereas the 1  and 3  set to one, because the probability 

of sharing the same vulnerability decreases as more feature 
instances of system features (#1 and #2) are different in a 
target page and a rule page. Finally, we have reached the 
following algorithm to be used for calculating a similarity 
score with the i and i  values of the features. In the 

proposed formula, we consider that a feature can have a lot 
of instances in a web page in general. For example, an 
HTML document has a lot of tag elements such as <img> 
tag and the HTML tag has internal attributes. In the case of 
the “ucp.php” file of phpBB, a HTML document, there are a 
number of <img> tags such as  <img 
src=”./imageset/n_homepage.gif”> and  <img 
src=”./imgeset/n_logo.gif”>. We verify the following 
formula with the αi and βi values, which are shown in Table 
III, through Experiment 1 in subsection IV. C.  

 
In the above algorithm and the below equation, ijx  refers 

jth feature instances of feature type number i in a rule page i 

1:Similarity_Score = 0 
2:for i = 1 to 4 do 
3:   for j = 1 to 

in do 

4:   Similarity_Score  Similarity_Score 
+ )( ijxf   

5:    end for 
6:end for

1:While visiting the all web page on a target 
server do 

2:  save the all web page names and path 
3:end while 
4:for each of the saved file names in step 2 
do 

5:  if the file name is in the rule DB then 
6:     rule_file  request the file contents  

from rule DB 
7:   instance_file  extract the instance 

list from the target server 
8:     score  the result of calculating a  

similarity score between 
rule_file and instance_file 

9:     if pre-defined threshold < score then 
10:         send a test packet 
11:    end if 
12:  end if 
13:end for 

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:12:10 (UTC) by 3.239.57.87. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 16, Number 3, 2016 

 12 

})4,3,2,1{( , and in  is the number of feature instances of 

type i in a rule page. )( ijxf  is defined based on whether the 

same feature instance )( ijxf  exists in the target page or not. 

Let's say that it is matched when the same ijx exists in both 

a rule page and the target page we are checking on. Then, 
)( ijxf  can be defined as follows: 







case) (Unmatched 

case) (Matched 
)(

ii

i
ijxf




 (1)  

The following Fig. 3 is the pseudo-code description of the 
algorithm for calculating a similarity score. The result is 
stored in score variable. 

 
Figure 3. Pseudo-code description of similarity scoring algorithm 

C. Normalizing Similarity Score  

If the number of feature instances grows, then the fully 
matched similarity score will be greater because the 
similarity score depends on the number of feature instances. 
A suitable normalization of score helps the generalized 
threshold setting. The normalized similarity score ( SSN ) is 

defined as follows: 

score) unmatchedfully (

score) (unmatched

score) matchedfully (

score) (matched


ss
N  (2) 

The matched score means that is the sum of score when 
the feature instances are matched between rule file and 
target file. And the fully matched score is the sum of score 
when the all feature instances are existed in target file.  

In contrast, the unmatched score only considers the 
unmatched feature instances. In the formula )( ijxf , if the 

instance is unmatched, then the result is ii . The 

unmatched score means the sum of ii s when the feature 

is not existed in target file. And the fully unmatched score is 
the sum of score when the all feature instances are 
unmatched with target file. After normalization, the 
similarity score has a value between 1 to -1. 

IV. EVALUATION 

We conducted four experiments to assess the performance 
of the proposed approach, as follows. 

A. Experiment 1 - Evaluation of Similarity Score 

In our approach, the detection rate of vulnerability totally 
depends on the accuracy of similarity score. We verify that 
the similarity score can be used for classifying the different 
files in this experiment. We select five web pages from five 

real web sites. Table IV presents the files used in the 
experiment. There are various types of self-programmed 
application files and open-source programs in the web pages 
that we have chosen. We regard each file as a rule file. Then, 
we compute the similarity scores between the rule file to 
each of five files, respectively.  

TABLE IV. TARGET APPLICATION LIST IN EXPERIMENTS 

Index Page name App. Name Comments 
A KF6S02To

o F00-0.jsp 
Korea Univ. 
Board  
(http://www.kor
ea.ac.kr)  

Self-
programmed 
board 

B Zboard.php zeroboard 
(www.xpressen
gine.com/)  

Open source 

C Board.php Picoboard [25] Self-
programmed 
board 

D Board.php GnuBoard [26] Open source 
E Category/1

22341 
TT Tools & 
Open source 

Open source 

Fig. 4 is the result of measuring the similarity score. Each 
bar means the similarity score. The score between the same 
files is always a positive number, while it is usually a 
negative number as Fig. 4 in comparing between two 
different files. The maximum score varies depending on the 
number of feature instances in each file. We can conclude 
that our approach obviously identifies whether two web 
pages are the same or not regardless of the difference 
between the file names and/or the file paths installed 
because it checks the content of a web page. 

B. Experiment 2 - Resiliency against installation path 
changing 

The second experiment is designed to evaluate the 
detection performance of the proposed method and the 
previous methods on the condition that the installation path 
changes from the default installation path. 
We analyzed the vulnerability on real web site using our 

system and Wikto, Nikto [2-3]. For legitimate experiment, 
we made a web site where there are a few web programs 
including vulnerable web page. The target web sites are 
composed as follows: 
- z-board: to be installed to the default directory (/bbs)  
- z-board: to be installed to the customized directory(/zb)   
- g-board: to be installed to the default directory 

(/gnuboard4) [26] 
- g-board: to be installed to the customized directory 

(/board) [26] 
- AdminTool: to be installed to the default directory(/) [27] 
 There are five vulnerabilities in the web site. I.e., each 

component has vulnerability. The same applications have 
the same vulnerabilities because they are totally the same 
program except the places where they are installed. We 
suppose that we already get knowledge about vulnerabilities 
and generate the rules based on the knowledge. Table V 
presents the summery of rules. AdminTool is included in the 
comparison to verify that both the proposed scheme and the 
other methods have good detection ability. We insert the 
above rules to web scanner and analyze the vulnerability in 
target web site. Table V shows the result of our experiment. 

1:if Name of target file is existed in the 
rule DB then 

2:  initialize that the variable score is 0 
3:  for i in the set of feature-set do 
4:      for j in each instance of rule file do 
5:         if j exists in the target file then 
6:                   score   score + 

i   

7:         else 
8:                  score   score - 

ii    

9:         end if 
10:     end for 
11: end for 
12:end if 

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:12:10 (UTC) by 3.239.57.87. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 16, Number 3, 2016 

       13

We choose major rule-based tools, Wikto and Nikto in order 
to compare our tools. 
As shown in Table VI, only our approach can identify the 

zboard2 and gboard2 vulnerabilities. Also, the existing tools 
may result in false positive in some cases due to this 
property. For example, if an application that has the same 
installed path and file name with vulnerable application 
exists, then existing tools misunderstand normal application. 
However, the proposed method does not make that kind of 
the problem. 

 
Figure 4. Similarity scores of target pages 

TABLE V. SUMMARY OF RULE USED IN EXPERIMENT 2 

Name Path Query Response 
Zboard /bbs/zboard.php Id=wave_d

efault& 
page=1&de
sc=1 

SQL 
Syntax 
error 

Gboard /gnuboard4/bbs
/ board.php 

Bo_table= 
Vulnerabilit
y_test&wr 
_id=2 

200 OK 

Admin 
Tool 

/admin.php None 200 OK 

TABLE VI. COMPARISON OF THE PROPOSED WORK WITH PREVIOUS WORK 

BASED ON EXPERIMENTS 

Name Wikto [3] Nikto [2] Ours 
Zboard1 O O O 
Zboard2 X X O 
Gboard1 O O O 
Gboard2 X X O 
Admin tool O O O 

C. Experiment 3 - Detection Rate 

The third experiment evaluates our approach by comparing 
it with Nikto in real web environment in terms of detection 
rate. For this experiment, we have collected the 110 web 
pages using a simple rule, one of the Nikto rule and Google 
search engine. We used the following rule defined in the 
rule DB of the Nikto web scanner: 

 
The phpBB is composed of a lot of web program files. The 

“/forum/viewtopic.php" file is one of the phpBB web 
application. To check the above rule, the Nikto web scanner 
sends the HTTP request “/forum/viewtopic.php” to the 
target server using GET method, then it analyzes the 

response data. If the response includes the state 200, Nikto 
recognizes the target web server has vulnerability and alerts 
the "phpBB found" message to the site manager.  On the 
other hand, the proposed approach checks the similarity 
score between the target page received and the rule page. 
We have found 110 different web servers that provide the 

“/forum/viewtopic.php” URL in the Internet. 
Then, we manually analyze the data set in all of these web 

pages in order to check if each web page is phpBB. The 
result is that 94 pages are phpBB and 16 pages are not. After 
this manual analysis, we executed the proposed method and 
Nikto with these 110 web pages. 

 
Figure 5. Comparison of false positive rate and true positive rate 

Fig. 5 shows the result of this experiment. Nikto has 15% 
false alarm rate as it concludes all the pages are those in 
phpBB. This is due to the characteristics of rule-based web 
scanners, which just checks the filename and the installation 
path of the target web page, and the responses from given 
inputs in the rules. It does not check the actual content in it. 
On the other hand, the proposed scheme only produces 2% 
false alarm rate. Our method could not detect only the web 
pages where their HTML structs were customized by a site 
manager, as the proposed scheme investigates the content of 
the target web page before applying the rules. In terms of 
the true positive, both methods work well with 100% 
accuracy. 

D. Experiment 4 - A cost of vulnerability scan 

In this subsection, we evaluate the performance of our 
approach comparing with existing method. The proposed 
approach includes additional steps. It is expected to increase 
a cost for testing vulnerability. So we estimated whether a 
cost for testing vulnerability is reasonable. 
As mentioned in the Fig. 1, the existing tool sends a 

request to the target server as much as the number of rules 
and analyzes each response. On the other hand, our 
approach collects the name of all pages in target web site 
after then uses names. So, it needs the time for analyze the 
site structure and calculating the similarity score.  
We define a formula to calculate the cost of performance 

considering these different characteristics as follows: TCS: 
0.036, RTT:0.016, TPW:0.018, and # of rules: 6400. 
The number of web pages on web server is important 

factor in this experiment because a lot of web pages 
consume the much time in order to analyze the 
vulnerabilities. In this experiment, we suppose the worst 
case that the number of vulnerable web page is same with 
the number of all web pages on target server.  

db_tests(“002390”, ”3093”, ”b”, ”/forum/view-
topic.php”, ”GET”, ”200”, ””, ””, ””, ””, ”phpBB 
found”,””,””) 

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:12:10 (UTC) by 3.239.57.87. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 16, Number 3, 2016 

 14 

Fig. 6 shows the result of our experiment. The time cost 
had increased due to the number of web pages. Until 
approximately 1400 pages, our approach is more efficient 
than Nikto. Other than that, shows the opposite result. But, 
the Innowebsoft inc., professional web programming 
company (http://www.innowebsoft.com) said that general 
web server has between 30 ~ 60 web pages in their web site. 
In efficient aspect, our approach is reasonable to analyze 
small and medium-sized sites more than existing tools. 

 
Figure 6. Cost comparison for vulnerability testing 

V. CONCLUSION 

In this paper, we proposed an enhanced web scanner in 
order to identify vulnerability on web site, based on 
similarity score. Through various experiments, we have 
shown that our web vulnerability scanner is superior to the 
existing well-known scanners. Specifically, we have 
demonstrated that the proposed scheme can detect 
vulnerabilities even if the web pages are not installed in the 
conventional paths, unlike the existing rule-based detection 
tools. The proposed scheme reduces the false-positive rate 
by more than 12% in a conventional detection case, with 
even less cost than the existing scanner when the number of 
web pages on target web server is above a certain threshold, 
which means that the proposed scheme can work well in 
practical situation, where the number of web pages is a lot. 

REFERENCES 
[1] A. Mockus, R. T. Fielding, and J. Herbsleb, “A Case Study of Open 

Source Software Development: the Apache Server,” Proc.  ACM 
International Conference on Software Engineering, pp. 263-272, 2000. 
doi:10.1109/icse.2000.870417 

[2] Y. C. Ong, and Z. Ismail. “Recent Advances in Information and 
Communication Technology”, pp. 315-324, Springer International 
Publishing, 2014. 

[3] S. Suganya, D. Rajthilak, and G. Gomathi, “Multi-Tier Web Security 
on Web Applications from Sql Attacks,” IOSR Journal of Computer 
Engineering, vol. 16, no. 2, pp. 1-4, 2014. doi:10.9790/0661-
16270104 

[4] A. Doupé, M. Cova, and G. Vigna, “Detection of Intrusions and 
Malware, and Vulnerability Assessment”, pp. 111-131, Springer 
Berlin Heidelberg, 2010.  

[5] M. Vieira, N. Antunes, and H. Madeira, “Using Web Security 
Scanners to Detect Vulnerabilities in Web Services,” Proc.  
IEEE/IFIP International Conference on Dependable Systems & 
Networks, pp. 566-571, 2009. doi:10.1109/dsn.2009.5270294 

[6] K. Ma, R. Sun, and A. Abraham, “Toward a Lightweight Framework 
for Monitoring Public Clouds,” Proc. Fourth IEEE International 
Conferences on Computational Aspects of Social Networks. pp. 361-
365, 2012. doi:10.1109/cason.2012.6412429 

[7] P. Davies, and T. Tryfonas, “A Lightweight Web-based Vulnerability 
Scanner for Small-scale Computer Network Security Assessment,” 
Journal of Network and Computer Applications, vol. 32, no. 1, pp. 78-
95, 2009. doi:10.1016/j.jnca.2008.04.007 

[8] G. F. Lyon, “Nmap Network Scanning: The Official Nmap Project 
Guide to Network Discovery and Security Scanning”, pp. 1-20, 
Insecure Press, 2009. 

[9] S. Jajodia, S. Noel, and B. O’Berry, “Managing Cyber Threats”, pp. 
247-266, Springer US, 2005. 

[10] R. J. Barnett, and B. Irwin, “Towards a Taxonomy of Network 
Scanning Techniques,” Proc. the 2008 ACM annual research 
conference of the South African Institute of Computer Scientists and 
Information Technologists on IT research in developing countries: 
riding the wave of technology, pp. 1-7, 2008. 
doi:10.1145/1456659.1456660 

[11] T. Yu, A. Sung, S. Witawas, and G. Rothermel, “An approach to 
testing commercial embedded systems,” Journal of Systems and 
Software, vo. 88, no. 2, pp. 207-230, 2014. 
doi:10.1016/j.jss.2013.10.041 

[12] A. A. Alfanookh, “An Automated Universal Server Level Solution for 
SQL Injection Security Flaw,” Proc. International Conference on 
Electrical, Electronic and Computer Engineering, pp. 131-135, 2004. 
doi:10.1109/iceec.2004.1374401 

[13] J. Chang, K. Venkatasubramanian, A. West, and I. Lee, “Analyzing 
and Defending against Web-based Malware,” ACM Computing 
Surveys, vol. 45, no. 4, article no. 49, 2013. 
doi:10.1145/2501654.2501663 

[14] N. Khocharre, S. Chalurkar, and B. Meshram, “Web Application 
Vulnerabilities Detection Techniques Survey,” International Journal 
of Computer Science & Network Security, vol. 13, no. 6, pp. 71-75, 
2013. doi:10.1016/b978-1-59749-209-6.00002-3 

[15] M. Vieira, N. Antunes, and H. Madeira, “Using Web Security 
Scanners to Detect Vulnerabilities in Web Services,” Proc. IEEE/IFIP 
Conference on Dependable Systems and Networks, pp. 566-571, Jun. 
2009. doi:10.1109/dsn.2009.5270294 

[16] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the Art: 
Automated Black-Box Web Application Vulnerability Testing,” Proc. 
IEEE Symposium on Security and Privacy, pp.332-345, 2010. 
doi:10.1109/sp.2010.27 

[17] N. Antunes, and M. Vieira, “Benchmarking Vulnerability Detection 
Tools for Web Services,” Proc. IEEE International Conference on 
Web Services, pp. 203-210, 2010. doi:10.1109/icws.2010.76 

[18] Z. Duric, “WAPTT-Web Application Penetration Testing Tool,” 
Advances in Electrical and Computer Engineering, vol. 14, no. 1, pp. 
93-102, 2014. doi:10.4316/aece.2014.01015 

[19] Y. Yun, S. Park, Y. Kim, and J. Ryou, “Information Security Practice 
and Experience”, pp 248-259, Springer Berlin Heidelberg, 2006.  

[20] S. Kals, C. Kruegel, and N. Jovanovic, “SecuBat: A Web 
Vulnerability Scanner”, Proc. the 15th International Conference on 
World Wide Web, pp. 247-256, 2006. doi:10.1145/1135777.1135817 

[21] A. Austin, and L. Williams, “One Technique is not Enough: A 
Comparison of Vulnerability Discovery Techniques,” Proc. IEEE 
International Symposium on Empirical Software Engineering and 
Measurement (ESEM), pp. 97-106, 2011. doi:10.1109/esem.2011.18 

[22] V. D. Kotov, and V. I. Vasilyev, “Detection of Web Server Attacks 
using Principles of Immunocomputing,” Proc. 2nd World Congress on 
Nature and Biologically Inspired Computing, pp. 25- 30, 2010. 
doi:10.1109/nabic.2010.5716269 

[23] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, “State of the art: 
Automated Black-box Web Application Vulnerability Testing,” Proc. 
IEEE Symposium on Security and Privacy (SP), pp. 332-345, 2010. 
doi:10.1109/sp.2010.27 

[24] S. Stefanov, “Building Online Communities with phpBB”, pp. 5-15, 
Packt Publishing, 2005. 

[25] M. Choi, H. Ju, H. Cha, S. Kim, and J. Hong, “An Efficient 
Embedded Web Server for Web-based Network Element 
Management,” Proc. IEEE/IFIP Network Operations and 
Management Symposium, pp. 187-200, 2000. doi:10.1002/1099-1190 

[26] J. Hong, M. Chung, and H. Choo, “Novel Bulletin Board System 
based on Document Object Model and Client-side Scripting for 
Improved Interaction,” Proc. IEEE International Conferences on 
Information Networking (ICOIN), pp. 511-516, 2013. 
doi:10.1109/noms.2000.830384 

[27] Å. Blomquist, and M. Arvola, “Personas in Action: Ethnography in an 
Interaction Design Team,” Proc. 2nd ACM Nordic conference on 
Human-computer interaction, pp. 197-200, 2002. 
doi:10.1145/572043.57204

 

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:12:10 (UTC) by 3.239.57.87. Redistribution subject to AECE license or copyright.]


