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1Abstract—This article presents an analysis of different 

cepstral normalization techniques in automatic recognition of 
whispered and bimodal speech (speech+whisper). In these 
experiments, conventional GMM-HMM speech recognizer was 
used as speaker-dependant automatic speech recognition 
system with special Whi-Spe corpus containing utterance 
recordings in normally phonated speech and whisper. The 
following normalization techniques were tested and compared: 
CMN (Cepstral Mean Normalization), CVN (Cepstral 
Variance Normalization), MVN (Cepstral Mean and Variance 
Normalization), CGN (Cepstral Gain Normalization) and 
quantile-based dynamic normalization techniques such as QCN 
and QCN-RASTA. The experimental results show to what 
extent each of these cepstral normalization techniques can 
improve whisper recognition accuracy in mismatched train/test 
scenario. The best result is obtained using CMN in 
combination with inverse filtering which provides an average 
39.9 percent improvement in whisper recognition accuracy for 
all tested speakers. 
 

Index Terms—automatic speech recognition, cepstral 
analysis, hidden Markov models, speech analysis, whisper. 

I. INTRODUCTION 

Verbal communication can be carried out through 
different speech modalities that can be generally classified 
into seven categories based on the modes of speech 
production: whispered speech, quiet speech, normal or 
neutral speech, expressive speech (such as affective and 
emotional speech), singing, loud speech (e.g. speech with 
Lombard effect) and shouted speech [1]. Due to a relatively 
frequent utilization of whisper in everyday communication, 
automatic whisper recognition becomes an ongoing research 
topic. Current research studies in speech technologies are 
more than ever before focused on atypical speech modes and 
their improvement in automatic speech recognition (ASR) 
[2-5]. However, so far there are only a few studies regarding 
whisper recognition [2], [6-10] and this paper presents one 
of them. 

In contrast to other speech modes, whisper production is 
characterized by a lack of regular vibration at the vocal folds 
[11]. This absence of glottal vibrations affects and greatly 
degrades the performance of traditional ASR systems that 
are primarily designed for normally phonated speech. The 

lack of voicing and specific way of articulation during 
whispering causes differences in energy and spectral 
characteristics, by which whisper in contrast to other speech 
modalities drastically differs from the normal speech [2], 
[3], [12], [13]. These differences can also be easily observed 
from the statistical properties of cepstral distributions, such 
as mean, variance, kurtosis and skewness. Therefore, an 
occurrence of whisper alone or in combination with normal 
speech (bimodal speech production) impacts the accuracy of 
conventional ASR systems, which are built on statistically-
based acoustic models. This negative impact is particularly 
noticeable in mismatched train/test scenarios [2], [3], [13], 
where ASR systems are trained on normal speech and tested 
with some other speech mode — in this case with whispered 
speech. However, in theory, this adverse effect of talking 
style variability can be partially reduced with the application 
of cepstral normalization. This study introduces for the first 
time comparison of different cepstral normalization 
techniques in automatic recognition of whispered speech. 
The experimental results demonstrate to what extent certain 
cepstral normalization technique can improve automatic 
recognition of isolated words when conventional GMM-
HMM recognizer is tested with whisper and bimodal speech 
(whisper + normal speech) from Whi-Spe corpus [14]. The 
following cepstral normalization techniques are considered 
in this article:  
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1) Cepstral Mean Normalization (CMN),  
2) Cepstral Variance Normalization (CVN), 
3) Mean and Variance Normalization (MVN), 
4) Cepstral Gain Normalization (CGN), 
5) Quantile-based Cepstral dynamics Normalization 

(QCN), and 
6) Quantile-based Cepstral dynamics Normalization with 

RASTALP filtering (QCN-RASTALP).  
The results of these experiments point out that certain 
cepstral normalization techniques are better than others in 
reducing and alleviating differences between normal speech 
and whisper in mismatched train/test scenarios. This study 
as well introduces a new method, known as inverse filtering 
[13], that can be applied in combination with cepstral 
normalization techniques, thus enhancing further their 
performance. Namely, inverse filtering reduces spectral 
differences between normal speech and whisper, normalizes 
the shape of their cepstral distributions, and thus improves 
the effect of cepstral normalization. The best result is 
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obtained with the combination of CMN and inverse filtering 
which provides an average 39.9% improvement in whisper 
recognition accuracy for all tested speakers. 

  The reminder of this paper is organized as follows: The 
next section presents Whi-Spe corpus containing audio 
recordings of isolated words in normal speech and whisper 
that was used in the experiments of this paper. With 
examples from Whi-Spe corpus, Section III introduces the 
most important acoustical characteristics of whispered 
speech and its differences compared to normal speech as 
well as statistical properties of cepstral distributions in 
whispered and normal speech. Section IV presents several 
common and state-of-the-art cepstral normalization 
techniques. The experimental setup is described in Section 
V, followed by the results of word recognition accuracy in 
different train/test experiments and comparison of different 
cepstral normalization techniques. Section VI discusses 
additional improvement of cepstral normalization by inverse 
filtering. The last section comprises the conclusions. 

II. WHI-SPE CORPUS 

For research purposes of automatic whisper recognition, 
the special speech corpus entitled "Whi-Spe" (acronym of 
Whisper-Speech) was developed, containing audio 
recordings of isolated words in two speech modes — in 
normal speech and whisper. The database consists of a total 
of 10,000 audio recordings that were collected from 10 
native Serbian speakers (5 male and 5 female) with proper 
articulation and correct hearing. Each speaker had read set 
of 50 phonetically balanced words ten times in both speech 
modes. In order to obtain comparable sound pressure levels 
(SPL) in normal speech and whisper, during whispering the 
microphone position was set close to the speaker's mouth (at 
distance of about 5 cm) while all along the normal speech 
recordings the microphone was at approximately 25 cm 
from the speaker's mouth. The recording sessions were 
carried out under quiet laboratory conditions in a sound 
booth with professional recording equipment and strict 
quality control procedure. The Whi-Spe is one of the few 
existing, systematically collected databases of parallel 
neutral and whispered speech [2], [6], [15], [16]. Most of 
them have a small or medium-sized vocabulary, while only 
some of them are transcribed and phonetically balanced. 
Moreover, the Whi-Spe corpus is publicly available for 
research purposes and allows future database upgrades. 
More pieces of information about Whi-Spe corpus can be 
found in [14]. 

III. ACOUSTICAL CHARACTERISTICS OF WHI-SPE CORPUS 

As a result of different vocal tract shape and articulation 
organ's specific behavior, whisper has acoustical 
characteristics that are quite different from those of normal 
speech. These differences are noticeable both in time and 
frequency domain and the most important ones are: lower 
energy, flatter spectral slope and the shift in formants' 
locations [9]. Taking in mind the fact that whisper does not 
have glottal vibrations and thereby voicing, amplitudes of 
voiced phonemes (vowels at the first place) are considerably 
lower in whisper, while the amplitudes of unvoiced 
phonemes have similar intensity as in normal speech [2]. 

Because of these characteristics, whisper has significantly 
lower energy and more sensitive signal-to-noise ratio 
(SNR). However, under clear conditions with good SNR, the 
low energy level in whisper recordings can be simply 
amplified by closer microphone position. Nevertheless, the 
spectral differences between speech and whisper still 
remain. Due to the lack of periodic excitation and harmonic 
structure, whisper does not have fundamental frequency thus 
either the most prosodic features. Also, in spectral domain 
whisper is characterized by upward shifts of the first three 
formants, noisy structure and flatter spectral slope [17]. As 
an illustration, Fig. 1 shows long-term average speech 
spectrums (LTASS) of normal speech and whisper 
recordings from Whi-Spe database.  
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Figure 1. Long-term average speech spectrums (LTASS) of normal speech 
and whisper recordings from Whi-Spe database, showing the difference in 
spectral slope. 

 
It is clear that normal speech has the much steeper 

spectral slope at frequencies up to 5 kHz, i.e. at the range 
where the first few formants and voicing are dominant. On 
the other side, whisper has almost flat spectrum. These 
spectral differences are the main cause of mismatch in 
train/test scenarios between normal speech and whisper, and 
they can be further analyzed in cepstral domain. Fig. 2 and 
Fig. 3 on the next page present cepstral distributions of the 
first two cepstral coefficients, c0 and c1, in normal speech 
and whisper. 

When comparing distributions of c0 in normal speech 
training data and whisper test data (Fig. 2), it can be seen 
that these distributions are centered around similar positions, 
but they do not ideally match. Since c0 coefficients 
represent the energy of the speech signal, these distributions 
suggest that normal speech and whisper have similar energy 
level. Of course, this phenomenon is caused by a close 
microphone position during the whisper recording sessions 
(see reference [14]). Analysis of voiced and unvoiced 
speech segments from Whi-Spe database show that voiced 
sounds are dominant in normal speech (62.35%), and 
unvoiced sounds are dominant in whisper (99.2%). It is clear 
that in normal speech low energy components (lower c0 

values) correspond to unvoiced speech segments, and high 
energy components (higher c0 values) represent voiced 
speech. In contrast to c0 distributions, the difference 
between c1 distributions in normal speech and whisper is 
much more noticeable (Fig. 3). In normal speech, 
distribution of c1 coefficients is shifted to the right (higher 
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c1 values) compared to c1 distribution in whispered speech. 
In whisper, voiced sounds are not dominant, so distribution 
of c1 coefficients has lower c1 values. Based on the fact that 
c1 is related to the spectral slope of the speech signal, it is 
clear that normal speech has steeper spectral slope than 
whisper. 

 
c0 distributions

-60 -50 -40 -30 -20 -10 0 10 20
0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 f
re

qu
en

cy
 o

f 
oc

cu
rr

en
ce

 

 

Normal speech
Whispered speech
Voiced speech
Unvoiced speech
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Figure 2. Distributions of c0 cepstral coefficients in normal speech and 
whisper recordings from Whi-Spe database. 
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Figure 3. Distributions of c1 cepstral coefficients in normal speech and 
whisper recordings from Whi-Spe database, showing a mismatch in their 
positions. 

ove whisper recognition in 
mismatched train/test scenarios. 

l normalization techniques are 
 in this study:  

A.

tterance) and then subtracted from each 
cepstral sample: 

 
Since current ASR features are mostly in form of cepstral 

coefficients extracted from a short-time spectrum, especially 
spectral slope, formant and energy variations will directly 
impact ASR performance, introducing a degrading 
mismatch between input whisper data and neutral trained 
acoustic models [18]. However, this mismatch between 
cepstral distributions can be alleviated to a certain extent 
with the application of cepstral normalization. The 
following sections describe and compare several cepstral 
normalization techniques, and investigate how and to what 
extent these techniques can impr

IV. CEPSTRAL NORMALIZATION TECHNIQUES 

The following cepstra
considered

 CMN 

Cepstral mean normalization (CMN) or cepstral mean 
subtraction (CMS) is widely used technique compensating 

for the speech signal variability in cepstral domain [19]. It is 
used as standard feature normalization technique for most 
large vocabulary ASR systems. The main focus of CMN is 
on convolutional distortions caused by characteristics of 
different communication channels or recording devices [20]. 
However, CMN is also partially effective in reducing the 
effects of additive environmental noise and talking style 
variability [20]. From this aspect, CMN could be useful in 
normalization of variability that appears in mismatched 
train/test scenarios with normal speech and whisper. In this 
study, CMN is applied in per-utterance fashion, meaning 
that cepstral mean, μ, is estimated from long time window 
(length of an u
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1
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where n is the n-th cepstral dimension, and t is the index of 
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er are also applied in per-utterance fashion. 
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of each cepstral dimension and normalizes it to unity: 

in this pap

 CVN 

Cepstral variance normalization (CVN) [21] is popular 
supplement technique to CMN, that estimates variance, 
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ension, and t is the index of 
ple in the window. 

C.

 MVN [21], and it is 
applied by the following equation: 

cepstral sam

 MVN 

CVN is often used in conjunction with CMN, where it 
contributes to robustness by scaling and limiting the range 
of deviation in cepstral features. This technique is known as 
mean and variance normalization

,
, ,

CMN
n tMVN

n t
n

where CM

c
c                         (3) 

N
tnc ,  and σn are cepstral sample after CMN and 

viation, respectively. 

D.

alizes it to unity. It 
is calculated by the following equation: 

standard de

 CGN 

Recently proposed cepstral gain normalization (CGN) 
[21] showed better performances than CVN and MVN in 
noisy ASR tasks. CGN incorporates CMN and instead of 
variance estimates the sample dynamic range in each 
cepstral dimension directly from the maximum (cnmax) and 
minimum (cnmin) sample values and norm

,
,

max min

.
( )

CMN
n tCGN

n t
n

c
c

c c



                      (4) 

E.

n

 QCN and QCN-RASTALP 

Quantile-based cepstral dynamics normalization (QCN) is 
recently established normalization technique that reduces 
the impact of Lombard effect on ASR [5], [18]. Since some 
speech variations under Lombard effect are similar to 
whisper's variations, such as convolutional distortions 
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(spectral slope flattening, formant shifts and intensity 
changes) [18], it is expected that QCN will also have 
success in automatic whisper recognition. QCN method is 
inspired by older normalization techniques such as CMN, 
CVN, and CGN, whereby QCN estimates cepstral dynamic 
range using quantile intervals obtained from the sample 
histograms. In the following step, the histograms (cepstral 
distributions) are centered to the quantile mean and their 
variance is normalized to a unit inter-quantile interval:  

, 100
,

100
n nn t c c

j jq q 
where cn

jq  and cn
jq 100  are j-th and (100-j)-th quantile 

estimates in the n-th cepstral dimension. In this way, QCN 
provides more accurate alignment of cepstral distributions in 
mismatched train/test scenarios in terms of their dynamic 
ranges. Another superiority to CMN, CVN, and CGN 
techniques is that QCN is more ro

( ) / 2
,

n nc c
n t j jQCNj c q q

c  
                       (5) 

bust to different shapes of 
th

of cepstral 
coefficients to additive noise and reverberation. 

NORMALI HISPERED SPEECH 

ECOGNITION 

A.

esented in the following subsection. 

B.

lly acceptable by terms of nowadays ASR 
standards. 

 

e sample distribution contours.  
QCN can also be combined with a temporal filtering 

strategy RASTALP that is inspired by the popular RASTA 
filter. This combination is called QCN-RASTALP [5], [18] 
which additionally increases the robustness 

V. EXPERIMENTAL COMPARISON OF CEPSTRAL 

ZATION TECHNIQUES IN W

R

 Experimental setup 

Our experiments on isolated word recognition were 
performed using a conventional GMM-HMM speaker-
dependent ASR system that was trained and tested with 
Whi-Spe database. As an input speech features, 13-
dimensional Mel-frequency cepstral coefficients (MFCC) 
were used (including c0), which were later normalized with 
different normalization techniques and applied in training 
and testing procedures. Feature extraction was performed 
using 24 ms window size with a frame shift of 8 ms, 
Hamming window and preemphasis coefficient of 0.97. 
Three different train/test scenarios were analyzed. In each 
scenario, GMM-HMM was trained with normal speech and 
then tested with: normal speech, whisper, and bimodal 
speech. Bimodal speech dataset was created by randomly 
taking 50% of normal speech recordings and 50% of 
whisper recordings from Whi-Spe corpus. The obtained 
results are pr

 Results 

As expected, in matched train/test scenarios, i.e. when 
recognizer was trained and tested with normal speech, the 
performance of ASR was very high. The results of word 
recognition accuracy illustrated in Fig. 4 show that average 
word error rate (WER) ranges from 0.6% to 2.4% depending 
on a particular cepstral normalization technique that was 
applied. The smallest WERs are obtained with QCN and 
QCN-RASTA techniques, while the highest are noted in the 
case of CVN and MVN. It is also worth mentioning that 
depicted standard errors (SE) present standard deviation 
between results of different speaker-dependent systems 
divided by the square root of the sample size. All these 
values in matched train/test scenarios, including average 

WER and their SE, are small enough to be considered as 
commercia
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Figure 4. Average word error rate (WER) and standard error (SE) bars in 
matched train/test scenarios
n
 

However, in mismatched train/test scenarios, i.e. when 
recognizer was trained with normal speech and tested with a 
whisper, the performance of ASR drastically dropped down. 
The results of word recognition accuracy in this scenario are 
presented in Fig. 5, from which we can see the big increase 
in WER during whisper recognition. In the case when 
MFCC are applied without any normalization technique, the 
average WER is 87.3% for all tested speakers (this result is 
taken as a reference value for a
o
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Figure 5. Average word error rate (WER) and standard error (SE) bars in 
mismatched train/test scenarios fo

 
Clearly, different bars in Fig. 5 illustrates that all 
normalization techniques improve word recognition rate in 
mismatched train/test scenarios except CVN. One more 
thing is important to be noticed. Beside WER, there is also 
obvious increase in standard deviation which suggests that 
there is some noticeable difference between the results of 
different speakers. This difference is caused by individual 
speaker’s whispering style. Namely, there are two types of 
whisper based on vocal effort: hard whisper also known as 
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also called soft whisper (low-energy whisper) [22], [23]. 
Since high-energy whisper is by some characteristics more 
similar to normal speech than a low-energy whisper, it is 
obvious that speakers who tend to use forced whispering 
show better results in mismatched train/test scenarios. The 
average WER for all speakers in different test scenarios are 
presented in Table I. 
 
TABLE I. PERFORMANCES OF DIFFERENT NORMALIZATION TECHNIQUES IN 

SPEECH, WHISPER AND BIMODAL SPEECH RECOGNITION 
WER (%) Normalization 

techniques Speech  Whisper (Speech +Whisper) 
CMN 1.5 53.9*** 27.7*** 
MVN 2.2 66.0** 34.1** 
QCN 0.9* 67.1** 34.0** 

QCN-RASTALP 0.6* 68.2** 34.4** 
CGN 1.5 70.3** 35.9** 

without 
normalization 

1.4 87.3 44.4 

CVN 2.4 92.9 47.7 
 (p < 0.05 *; p < 0.01 **; p < 0.005 ***; Confidence interval = 95%) 

 
As we can see, the best word recognition rate has CMN 

technique, which decreases WER from 87.3% to 53.9% and 
thus improves whisper recognition by 33.4%. Similarly, 
CMN proportionally improves recognition of bimodal 
speech and achieves 27.7% WER. On the other side, the 
only normalization technique that additionally degrades 
whisper recognition and thus bimodal speech is CVN. While 
variance represents well the sample dynamic range in the 
case of normal distribution, its accuracy reduces as the 
distribution skewness and shape deviate from normal [17], 
which happens in our case (see Fig. 3). MVN shows less 
recognition rate than CMN, because of applied variance 
normalization, and once again approves the statement that 
CVN has an adverse effect in whisper recognition. Although 
it is claimed that QCN and QCN-RASTALP are robust to 
different shapes of the sample distribution contours and 
variability of Lombard effect, these techniques show the 
lower performance in whisper recognition than CMN and 
MVN. QCN and QCN-RASTALP have 67.1% and 68.2% 
WER respectively, so they improve whisper recognition by 
19% and bimodal speech by 10%. It is interesting that QCN-
RASTALP technique additionally improves word 
recognition in matched train/test scenarios, and reduces 
WER to 0.6%. In the end, CGN technique has 70.3% WER 
and provides a modest improvement of 17% in whisper 
recognition and 8.5% in bimodal speech recognition. 

The two-tailed Wilcoxon signed-rank test proves 
statistical significance of these improvements (see asterisks 
in Table I) and once again highlights that CMN technique is 
the one that best alleviates mismatch in speech/whisper 
scenario. The subtracting sample mean from the incoming 
test samples and thus removing slow varying cepstral 
component will assure that their dynamic range will match 
the one in the data used to train the ASR acoustic models. In 
this way, dynamic ranges of cepstral distributions in normal 
speech (training set) and whisper (test set) will be centered 
around the same mean value and the space between their 
positions depicted in Fig. 2 and Fig. 3 will be removed. 
However, the shape of cepstral distributions will still remain 
the same. The next section describes a new method based on 
inverse filtering which can reduce this difference in spectral 

shapes between whispered and normal speech and thus 
additionally improve cepstral normalization effect. 

VI. FURTHER IMPROVEMENT OF CEPSTRAL 

NORMALIZATION BY INVERSE FILTERING  

Having in mind the fact that cepstral normalization 
techniques are most effective when distributions' contours 
have symmetrical and Gaussian shape [18], this paper also 
analyses inverse filtering as a method that can additionally 
improve cepstral normalization techniques. Inverse filtering, 
also known as spectral whitening [13], flattens spectral 
slope, normalizes the shape of multimodal distributions in 
terms of their skewness and kurtosis and makes them more 
similar to a normal distribution. Fig. 6 illustrates LTASS of 
normal speech and whisper recordings from Whi-Spe 
database after inverse filtering. 
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Figure 6. Long term average speech spectrums (LTASS) of normal speech 
and whisper recordings from Whi-Spe database after inverse filtering. 

 
As it can be seen, inverse filtering suppressed voicing in 

speech as well as spectral slope, so the LTASSs of normal 
speech and whisper became more similar. However, these 
spectral changes didn't harm the formant structure, so there 
was no essential information loss. The impact of inverse 
filtering on cepstral distributions is presented in Fig. 7 and 
Fig. 8 on the next page. There are two important 
observations to be noticed. Firstly, due to voicing 
suppression, distribution of c1 coefficients in normal speech 
is shifted to the left (lower c1 values). The dynamic ranges 
and peaks of c0 and c1 distributions in both speech modes 
are now more precisely aligned. Secondly, multimodality of 
distributions is alleviated. The contours of distributions 
became more symmetrical, Gaussian shaped and similar to 
each other. After such modifications, MFCC features were 
again extracted, normalized and applied to GMM-HMM 
training. The new test results are presented in Table II.  

 
TABLE II. PERFORMANCES OF DIFFERENT NORMALIZATION TECHNIQUES IN 

SPEECH, WHISPER AND BIMODAL SPEECH RECOGNITION AFTER INVERSE 

FILTERING 
WER (%) Normalization 

techniques Speech  Whisper (Speech +Whisper) 
CMN 1.2 47.4 24.3 
MVN 1.2 61.1 31.1 
QCN 0.7 63.9 32.3 

QCN-RASTALP 0.1 64.1 32.1 
CGN 0.9 66.9 33.9 
CVN 0.7 77.9 39.3 

 
Inverse filtering enhanced all normalization techniques 

and improved accuracy in whisper and bimodal speech 
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recognition by average 5% and 2.5% respectively. Once 
again, CMN showed the best performance in whisper 
recognition (47.4% WER) and reduces WER by 39.9%. 
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