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Abstract—The main objective of our research is to introduce 

an approach that uses noninvasive MRI images to predict the 
conversion from mild cognitive impairment to Alzheimer’s 
disease at an early stage. It detects normal controls that are 
likely to develop Alzheimer's disease and mild cognitive 
impairment patients that are likely to establish Alzheimer’s 
disease within two years or, contrarily, their stage remains 
same. The proposed approach uses two types of features i.e. 
volumetric features and textural features. Volumetric features 
consist of volume of grey matter, volume of white matter and 
volume of cerebrospinal fluid. A total of 364 textural features 
have been calculated. To avoid the curse of dimensionality, 
textural features are reduced to 15 features using gain ratio, a 
ranking based search algorithm. All features are tested against 
four classifiers i.e. AODEsr, VFI, RBF and LBR. Leave-One-
Out cross validation strategy is used for the evaluation of 
proposed approach. Results show accuracy of 98.33% with 
volumetric features and 100% with textural features using VFI 
and LBR. Our approach is innovative because of its higher 
accuracy results as compared to existing approaches yet with a 
smaller feature set. 
 

Index Terms—computer aided diagnosis, feature extraction, 
image analysis, image classification, pattern recognition. 

I. INTRODUCTION 

Alzheimer’s disease (AD) is a threat of the 21st century 
that affects individual's mental and social wellbeing by 
damaging the structural and functional parts of brain 
resulting in cognitive decline and eventually death. The 
impact of AD comes with individuals of above 65 years age 
and risk of being affected duplicates at intervals of 5 years. 
Other risk factors include environment and genetics that 
plays a crucial role in onset and advancement of the disease. 
Deaths from heart disease have reduced by 16%, breast 
cancer  by 2%, prostate tumor by 8%, stroke by 23% and 
HIV by 42%,  though deaths by AD expanded 68% since 
year 2000 [1]. Current estimation of Alzheimer's patients is 
36 million and with expansion in future this figure will 
shoot up to more than 115 million individuals by the year 
2050 [2]. 

The diagnosis of AD incorporates examining subject’s 
history, incident history from connections and clinical 
perceptions. Mini-Mental State Examination (MMSE) and 
Clinical Dementia Rate (CDR) are used to assess and track a 
subject's intellectual decline but these methods are tedious 
and cannot catch the prior changes in brain that can be a 
pointer for the advancement of AD. Development of 
automated methods for early diagnosis of AD are crucial as 
these might help specialists to endorse prescriptions that can 

at any rate graduate down the advancement of the disease.  
In recent years, there has been a greater focus on research 

relating to identification of AD in early stages [3]. Most of 
these techniques use machine learning algorithms for 
prediction of AD and mild cognitive impairment (MCI) [4, 
5] and are based on single [6] or multiple biomarkers [7, 8] 
for the classification task. Among these biomarkers, 
neuroimages are latest addition which proves to be most 
efficient and reliable for identification of AD and MCI 
subject [9, 10]. Although use of multiple modalities is seen 
in recent studies [11] but collection of data for same subjects 
is not feasible in most cases, resulting in reduced number of 
subjects for the study. 

Despite the tremendous research done in the field of 
automatic classification of AD or MCI from normal controls 
(NC), less work has been done toward the prediction of 
conversion from MCI to AD [8, 12]. Timely prediction of 
conversion to AD from MCI is crucial for diagnosing the 
disease and for devising more effective methods of 
treatment. Previous studies are either using voxel-based 
morphometry (VBM) [13, 14], or performs analysis on 
regions of interest (ROI) by means of some discriminant 
function [15]. High dimensional pattern classification 
studies are overcoming the limitations of VBM and ROI 
based techniques [7, 16]. Although these studies are 
effective but are based on extraction of a large number of 
features resulting in increased computational time.  
Selection of most discriminating features may enhance the 
effectiveness of our proposed approach with a smaller 
feature set and eventually reduced computational time. 

The proposed approach performs classification between 
two groups of subjects i.e. AD vs. NC and MCInc (MCI-
NonConvertors) vs. MCIc (MCI-Convertors). The focus is 
to compare MCI patients who had converted to AD within 
12 months and MCI patients who had not converted to AD 
within 12 months. This is required to predict whether MCI 
patient will develop the disease in future or not. Once 
preprocessing is performed on MRI images, volumetric and 
textural features are extracted from it. Volumetric features 
help in prior identification of AD since densities of grey 
matter, white matter and cerebrospinal fluid are considered 
to reduce due to death of brain cells. A total of 306 textural 
features are extracted from MRI images. The feature set is 
then reduced to 25 features using gain ratio algorithm. The 
experimentation is performed using each type of features 
individually. It is found that reduced feature set performs 
better as compared to complete feature set, resulting in 
reduced computational cost.   
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Rest of the paper is organized as follows: A 
comprehensive literature review is presented in section II. 
Proposed layout of our research work is provided in section 
III. Results and discussions are presented in Section IV and 
the paper concludes in section V. 

II. LITERATURE REVIEW 

MCI is a transitional stage between normal aging with 
cognitive decline and development of AD [17]. It is 
considered as prodromal phase of AD because MCI patients 
are at higher risk of converting to AD. Since not all MCI 
subjects convert to AD, it is important to identify subjects 
who will convert to AD from those remaining stable or even 
improving within next years.   

Recent studies have tried to solve this problem with the 
help of biological markers [18], clinical and 
neuropsychological assessments [19] and various 
neuroimaging techniques by measuring the progression of 
MCI and probable AD. Latest neuroimaging techniques 
have facilitated analysts to estimate and evaluate various 
brain functionalities and structures that are useful in tracking 
down MCI and AD [3, 9]. A number of risk free and 
recognized techniques for brain imaging exist that are 
beneficial for the assessment of anatomical, physiological 
and pathological brain features with satisfactory outcomes. 
An extensive literature review of these techniques and 
machine learning based pattern recognition methods with 
possible advantages and limitations are presented in Table I. 
It shows dataset used in the research, preprocessing 
operations, type of features extracted and classifiers used for 
different groups of AD, MCI and NC along with achieved 
results including accuracy, specificity and sensitivity. The 
reported results can be compared to the results of proposed 
approach showing an obvious improvement. 

Early techniques utilized for AD detection make use of 
volumetric estimations and depended on manual extraction 
of ROIs [20, 21]. Pattern recognition based techniques are 
also used for regional feature extraction [7]. Region based 
features are initially extracted from brain displaying 
noteworthy group contrasts analyzed by two-example 
Hotelling's T-square measurement of tissue density and then 
neighborhood groups are framed utilizing a watershed-based 
locale developing procedure. Adaptive regional feature 
extraction and reduction method along with multivariable 
Support Vector Machine (SVM) classification technique is 
used for training the sample set. Automated techniques for 
extraction of ROIs or specific regional volumes are 
developed recently that performs with similar reliability as 
manual ROIs in MCI and AD [22].  

The problem with such region based strategies is that they 
do not indicate high affectability and specificity in 
classification of MCI and AD [23]. Such constraints are 
overcome by the utilization of VBM, which is a powerful 
technique for analysis of high resolution MRI data [14]. 
This technique allows analysis of different tissue types in an 
unbiased and automated way [24]. A VBM technique is 
presented by [25] that investigate NC with MCI, and AD 
patients, utilizing brain atlas warping methodology to 
produce tissue density maps that mirror the distribution of 
brain tissues. Tissue density maps are analyzed to 
distinguish group differences between AD, MCI and NC for 

cross sectional as well as longitudinal studies [26-28]. 
Although VBM is used to accurately classify NC and AD 
patients, and to predict conversion from MCI to AD [27, 
29], however, small sample size in longitudinal studies 
prevents VBM to be used for prediction of MCI to AD 
conversion. VBM based statistical approach is used for 
group comparisons, that involves voxel wise t-tests.  

The limitations of the ROI, voxel of interest and VBM 
based techniques are overcome by multivariate 
methodologies which takes entire image for analysis. A 
high-dimensional pattern classification technique that 
inspects spatial patterns of brain atrophy, rather than 
applying separate segment by segment brain assessments is 
used by [30]. Hence it is proven to be helpful for detection 
of prodromal Alzheimer s’ disease.  

In the field of medical imaging, there has been a growing 
interest in machine learning and computer aided diagnosis 
techniques. A machine learning algorithm can be trained to 
classify a subject as AD, MCI or NC based on a number of 
features like tissue density, voxel intensity or shape features. 
These techniques are either ROI based [31, 32] or whole 
brain based methods [6]. ROI based methods do not use 
complete information available in the brain image and 
requires a priori knowledge regarding which brain regions to 
asses. 

A pattern recognition based high dimensional 
classification method is presented in [23] that measures 
atrophic spatial patterns of brain using baseline and 
longitudinal scans to predict MCI to AD conversion. The 
idea is to predict future MCI to AD transformation with the 
help of baseline and longitudinal scans of regional brain 
tissues [33]. A medical image classification technique is 
presented by [34], that utilizes machine learning and 
deformation based morphometry. A morphological 
representation of the anatomical system of interest is 
initially acquired utilizing high dimensional template 
warping and the classification features are separated 
utilizing a watershed division. An SVM Recursive Feature 
Elimination (RFE) strategy is then used to rank figured 
elements from the separated areas. Finally, SVM is applied 
utilizing the best arrangement of features. 

The fundamental principle to pattern recognition based 
approaches for AD is feature extraction from various brain 
imaging techniques. Although a wide variety of features 
exist that can be used for this purpose, we have explored 
textural and volumetric features for prediction of probable 
conversion of MCI to AD. A number of textural and 
volumetric features, along with their mathematical models, 
for classification of MCI and AD are presented in Table II. 
A substantial number of strategies exist in literature for 
feature extraction and classification with good accuracy. 
MRI, because of its non-invasiveness is widely used in AD 
detection [35-37]. Pattern recognition and machine leaning 
algorithms have shown high precision in detecting 
Alzheimer disease [38, 39]. Although these procedures 
perform well, high dimensionality of the feature vector and 
label uncertainty emerges as real problems in medical 
imaging. The proposed approach is based on the reduction 
of feature set without compromising accuracy. 

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 00:03:53 (UTC) by 108.162.241.245. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 17, Number 2, 2017 

TABLE I. COMPARISON OF RECENT STUDIES INVESTIGATING POTENTIAL OF MRI TECHNIQUE FOR CLASSIFICATION OF NC, MCI AND AD 
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TABLE II. VARIOUS TYPES OF FEATURES AND ASSOCIATED MATHEMATICAL MODELS USED FOR AD, MCI AND NC CLASSIFICATION  

Feature Type and Name Mathematical Model 

Mean 0 ( )n
j jr j  

Variance 0
2 ( 1) (n

j j r  )j  

Skewness  0
3 3( ) ( )n

jvariance j mean r j
   ( )  
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vector and n is 
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Kurtosis 
4
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4 ( () n
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Gradient Mean ,(1 )) ( ,k l roiN g k  l  
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2
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44
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x xL L
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1
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Image 
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bk and ck  are wavelet coefficients and t[m] and s[m] are 
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s u v Tl u v       Volumetric 

Features 
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III. MATERIALS AND METHOD 

Dataset: Data used in this research work are obtained 
from ADNI (Alzheimer’s disease Neuroimaging Initiative) 
database. The primary goal of ADNI is to inspect biological, 
clinical and neuropsychological assessments for finding the 
effects in advancement of MCI and pre-AD. The dataset 
includes T1 weighted MRI images obtained through 3-plane 
localizer protocol that includes 120 subjects with their 
baseline, 6 months, 12 months and 24 months scans.  

 
This includes 30 NC, 30 AD patients, and 60 MCI 

patients of which 30 patients are considered as MCIc based 
on their MMSE and CDR scores. The rest 30 of MCI 
patients are considered as MCInc. The dataset is divided 
into two groups each with 60 individuals. First group is used 
for classification between NC and AD subjects whereas 
second group is used for classification between MCInc and 
MCIc. Table III presents dataset details including number of 
subjects in each group, sex, age, CDR and MMSE scores. 
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TABLE III. DEMOGRAPHIC DATA OF SUBJECTS USED IN THE RESEARCH 
Group NC MCInc MCIc AD 

No of 
subjects 

30 30 30 30 

Sex(M/F) 12/18 18/12 18/12 15/15 
Age 77.61±5.33 76.46±7.90 76.48±7.89 76.45±7.95 
CDR 0.022±0.18 0.544±0.325 0.547±0.32 0.907±0.476 
MMSE 28.95±1.24 25.79±3.47 25.7±3.49 21.70±4.382 

 
Proposed Approach: The proposed approach includes 

four stages as shown in Fig. 1. In first stage MRI images are 
preprocessed for further study and analysis. In second stage, 
textural and volumetric features are extracted from 
preprocessed MRI images. Third stage reduces textural 
feature set to minimize the curse of dimensionality. In fourth 
and final stage, MRI images are classified. 

 

Skull StrippingMRI

Preprocessing

Tissue 
Classification

Non-uniformity 
Correction

Non-linear Noise 
Reduction

Feature Extraction

Volumetric 
Features

Textural Features

Feature Reduction

Classification

NC vs. AD
or

MCInc vs. MCIc

Gain Ratio with 
Ranking Search 

Algorithm

LBR

RBF

VFI

AODEsr

 
 

Figure 1. Detailed work flow of the proposed approach 

 
Stage 1: Image Preprocessing: During image acquisition 

certain noise and inhomogeneity distortions are possible. To 
overcome such artifacts and to increase the quality of 
images certain image preprocessing steps are vital. For our 
proposed approach, preprocessing stage includes skull 
stripping, non-linear noise reduction, non-uniformity 
correction and tissue classification (see Section IV, Fig. 2 
for details). 

1.  Skull Stripping: The existence of non-brain voxels 
may decrease the reliability and accuracy of concerned brain 
regions. To avoid this, skull stripping algorithm is required 
that best separates the brain voxels from non-brain voxels, 
e.g. skull bones. We perform skull stripping using brain 
surface extractor (BSE) algorithm [45]. 

2. Non-linear Noise Reduction: Non-linear noise 
reduction is required to minimize noise and inhomogeneity 
distortions present in MRI image while preserving edges 
and corners by averaging a voxel with its neighboring 
voxels that have uniform intensity [46].  

3. Non-uniformity Correction: Structural MRI images 
often involve problems like non-uniformity in intensity or 
biasness due to the magnetic field disparity or a fault in the 
coils of the used system. Non-uniformity correction is 
performed using bias field correction (BFC) [45].  

4. Tissue Classification: Tissue classification is 
performed by partial volume classifier (PVC) [47], where 
each voxel is assigned an integer label. These integer labels 
correspond to different tissue types of the brain e.g. grey 

matter, white matter, cerebrospinal fluid and background 
voxels.  

Stage 2: Feature Extraction: According to recent studies 
different types of features, like ROI based, wavelet based 
and voxel based have been extracted from MR images for 
AD identification and recognition. In this research work, 
two types of features have been extracted from T1 weighted 
MR images namely textural features and volumetric features 
(see Section II, Table II for details). 

1. Textural features: For neuroimaging, texture image 
analysis is a vital task because it portrays inside patterns of 
human tissues and organs. Three types of features, 
categorized as statistical features, model based features and 
image transforms are extracted from MRI. The first category 
includes histogram features, gradient maps, co-occurrence 
matrix, and run length matrix features. Whereas second and 
third category includes auto-regressive model and haar 
wavelet features respectively. 

2.  Volumetric features: Various studies have reported 
that change in volumes of different tissue types in entire 
brain, or at specific regions of the brain exhibits the severity 
of AD. Volumes of three types of brain tissues i.e. grey 
matter, white matter and cerebrospinal fluid have been 
extracted using PVC algorithm [47] for tissue classification. 

Stage 3: Feature Reduction: The textural feature 
extraction stage returns 364 features. In order to estimate the 
discriminating power of individual features and to use most 
discerning features, feature selection/reduction is performed. 
The target of feature selection/reduction is to reduce the 
dimensionality of feature vector, which ultimately results in 
lower computational cost. Feature reduction method applied 
here is gain ratio, which uses ranking based search 
algorithm. Gain ratio is used to solve the multi class 
problem by settling down information gain. It is designed to 
classify the reliability of features by calculating the gain 
ratio of each involved class with the information gain value. 
Top 15 ranked features are selected for both groups of 
subjects.  

Stage 4: Classification: For classification, publicly 
available data mining tool weka [48] has been used. The 
classifiers selected are Averaged One-Dependence 
Estimators with subsumption resolution (AODEsr), Voting 
Feature Interval (VFI), Radial Basis Function (RBF) and 
Lazy Bayesian Rule (LBR). Each of the classifiers is 
selected from a different algorithmic paradigm to evaluate 
the reliability of the proposed approach. AODEsr is a 
Bayesian method that works by identifying specializations 
between two attribute values at the time of classification and 
ignores the generalization attribute value. VFI is one of the 
miscellaneous classifier which is simple, fast and generates 
intervals between each class and classifies test cases using 
voting mechanism. RBF is a popular type of feedforward 
network that comprises of two layers; one covered up and 
one yield layer. LBR uses lazy learning method to ignore the 
small disjoint problem by constructing a rule for each test 
using unique method. 

IV. RESULTS AND DISCUSSION 

In this research work, MRI images have been used for 
prediction of conversion or non-conversion from MCI to 
AD within one year time. The images are preprocessed, 
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features are extracted, most discriminating features are 
selected and classification is performed. All preprocessing 
operations on sample NC, AD, MCInc and MCIc images are 
shown in Fig. 2. Four different types of classifiers i.e. 
AODEsr, VFI, RBF and LBR are used to evaluate the 
performance of our proposed approach. Leave-one-out 
(LOO) cross-validation strategy is applied for the 
performance evaluation of different classifiers. The purpose 
of using LOO strategy is that it works best for linear model 
classifiers such as RBF network.  

The experimentation is performed in three phases. In 
phase 1, classification is performed individually on each of 
the seven textural feature sets, i.e. Auto Regression (AR), 
Geometrical Features (GF), Histogram Features (HF), Run-
Length Matrix (RLM), Haar Wavelet (HW), Co-occurrence 
Matrix (COM) and Gradient Map (GM). This classification 
is done for both groups of subjects i.e. NC vs. AD and 
MCInc vs. MCIc. In phase 2, all seven textural feature sets 
are combined resulting in 364 features. The combined 
feature set is then reduced using gain ratio and first 15 
features from reduced feature set (RFS) are used for 
classification task. The classification task in phase 2 is 
applied on both groups of subjects i.e. NC vs. AD and 

MCInc vs. MCIc as is done in phase 1.  
The results of phase 1 and phase 2 for group 1 i.e. NC vs. 

AD and for group 2 i.e. MCInc vs. MCI are presented in 
Table IV and Table V respectively. The results are reported 
as accuracy, sensitivity and specificity and are expressed as 
percentage values. The graphical presentation of accuracy, 
sensitivity and specificity for group 1 are provided in Fig. 3, 
Fig. 4 and Fig. 5 respectively, whereas for group 2, these are 
provided in Fig. 6, Fig. 7 and Fig. 8 respectively. 

Receiver operating characteristic (ROC) values for group 
1 and group 2 for all textural feature sets as well as RFS are 
provided in Table VI and Table VII respectively. The 
graphical presentation is provided in Fig. 9 and Fig. 10 for 
group 1 and group 2 respectively. 

In the third phase, volumetric feature set is considered 
which consists of grey matter, white matter and 
cerebrospinal fluid values and their ratios. Again the 
classification task is performed on both groups as is done in 
phase 1 and phase 2. The results reporting accuracy, 
sensitivity, specificity and ROC for group 1 are presented in 
Table VIII whereas the same results for group 2 are 
provided in Table IX. 
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Figure 2. Showing preprocessing steps applied on (1) NC (2) AD (3) MCInc and (4) MCIc. 
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The graphical presentations of accuracy, sensitivity, 
specificity and ROC for group 1 (NC vs. AD) are shown in 
Fig. 11, whereas graphical presentations for same measures 
for group 2 (MCInc vs. MCIc) are shown in Fig. 12. 

For the first group of subjects (NC vs. AD), using textural 
features it can be observed that AODEsr presented best 
results on RLM features (100%). On average, HF produced 
better results on all four classifiers. The results produced by 
RBF using HW and GM are not of satisfactory level 
(<60%). When the textural feature set is reduced, VFI and 
LBR remained good classifiers with an accuracy of 98.33%. 
Similarly when volumetric features are considered, an 
accuracy of 98.33% is achieved with AODEsr, VFI and 
LBR classifiers. 

For the second group of subjects (MCInc vs. MCIc), 
considering the results using textural features, AR and HF 
remained the best feature sets producing an accuracy of 
98.33% with all classifiers. The results produced using GM 
are not up to the mark. When textural features are reduced, a 

substantial improvement in results can be observed with VFI 
and LBR classifier (100%). When volumetric features are 
used, an accuracy of 98.33% is achieved with all classifiers.  

Overall analysis of results shows that VFI and LBR 
perform better than other classifiers in most cases. Among 
seven textural features sets AR, GF, HF and RLM 
performed good as well as volumetric features. It can also be 
observed that GM alone does not produce satisfactory 
results. By reducing textural features, it is observed that VFI 
and LBR still are better than other classifiers. From these 
results, it can be concluded that LBR and VFI are good 
options for overall classification between MCI to AD and 
NC to AD due to its higher accuracy rates. Similarly it can 
be witnessed that the proposed approach is equally effective 
for the classification between MCInc and MCIc, which can 
eventually help in early identification of MCI subjects that 
are at risk of developing AD. A comparison of existing 
approaches with designed approach is presented in Table X. 

 
 

TABLE IV. TEXTURAL FEATURES BASED CLASSIFICATION RESULTS FOR NC VS. AD 
Classifier Results AR GF HF RLM HW COM GM RFS 

Accuracy 98.33 95.00 98.33 100.00 98.33 85.00 81.67 80.00 

Sensitivity 98.40 95.10 98.40 100.00 98.40 85.00 81.70 80.00 AODEsr 

Specificity 98.30 95.00 98.30 100.00 98.30 85.00 81.70 80.00 

Accuracy 98.33 85.00 98.33 96.67 98.33 91.67 81.67 98.33 

Sensitivity 98.40 85.00 98.40 96.67 98.40 91.70 81.70 98.00 VFI 

Specificity 98.30 85.00 98.30 96.67 98.30 91.70 81.70 98.00 

Accuracy 95.00 83.33 98.33 91.67 50.00 78.33 56.67 83.33 

Sensitivity 95.10 83.35 98.40 92.10 50.00 78.33 56.70 85.00 
RBF 

 
Specificity 95.00 83.30 98.30 91.70 50.00 78.60 56.70 83.00 

Accuracy 98.33 85.00 98.33 96.67 98.33 85.00 81.67 98.33 

Sensitivity 98.40 85.00 98.40 96.67 98.40 85.00 81.70 98.00 LBR 

Specificity 98.30 85.00 98.30 96.67 98.30 86.00 81.70 98.00 
 

TABLE V. TEXTURAL FEATURES BASED CLASSIFICATION RESULTS FOR MCINC VS. MCIC 
Classifier Results AR GF HF RLM HW COM GM RFS 

Accuracy 98.33 88.33 98.33 86.67 91.67 91.67 30.00 78.33 

Sensitivity 98.40 89.40 98.40 87.30 92.10 91.70 30.00 80.00 AODEsr 

Specificity 98.03 88.33 98.30 86.70 91.70 91.70 30.00 78.00 

Accuracy 98.33 95.00 98.33 73.33 91.67 98.33 30.00 100.00 

Sensitivity 98.40 95.10 98.40 73.33 92.10 98.30 30.00 100.00 VFI 

Specificity 98.30 95.00 98.30 73.33 91.70 98.40 30.00 100.00 

Accuracy 98.33 91.67 98.33 66.67 55.00 70.00 51.67 90.00 

Sensitivity 98.40 91.70 98.40 67.00 56.70 90.00 51.70 90.00 
RBF 

 
Specificity 98.30 91.70 98.30 66.70 55.00 90.02 51.70 90.00 

Accuracy 98.33 95.00 98.33 73.33 91.67 98.33 30.00 100.00 

Sensitivity 98.40 95.10 98.40 73.30 92.10 98.30 30.00 100.00 LBR 

Specificity 98.30 95.00 98.30 73.30 91.70 98.40 30.00 100.00 

 
TABLE VI. TEXTURAL FEATURES BASED ROC VALUES FOR NC VS. AD 
Classifier AR GF HF RLM HW COM GM RFS 

AODEsr 99 94 99 100 96 86 96 66 

VFI 99 77 99 94 96 89 72 99 

RBF 92 76 99 88 32 74 51 83 

LBR 99 77 99 94 96 75 69 99 
 

TABLE VII. TEXTURAL FEATURES BASED ROC VALUES FOR MCINC VS. MCIC 

Classifier AR GF HF 
RL
M 

HW 
CO
M 

GM RFS 

AODEsr 99 80 99 79 86 87 48 65 

VFI 99 93 99 59 86 99 47 100 

RBF 99 88 99 56 61 86 46 89 

LBR 99 93 99 59 86 99 90 100 

TABLE VIII. VOLUMETRIC FEATURES CLASSIFICATION FOR NC VS. AD 
Classifier Accuracy Sensitivity Specificity ROC 

AODEsr 98.33 98.00 98.00 100.00 

VFI 98.33 98.00 98.00 100.00 

RBF 60.00 78.00 60.00 100.00 

LBR 98.33 98.00 98.00 100.00 
 

TABLE IX. VOLUMETRIC FEATURES CLASSIFICATION FOR MCINC VS. MCIC 
Classifier Accuracy Sensitivity Specificity ROC 

AODEsr 98.33 98.00 98.00 99.00 

VFI 98.33 98.00 98.00 99.00 

RBF 98.33 98.00 98.00 99.00 

LBR 98.33 98.00 98.00 99.00 
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Figure 3. Accuracy achieved using textural features for NC vs. AD 

 

 
Figure 4. Sensitivity achieved using textural features for NC vs. AD 

 

 
Figure 5. Specificity achieved using textural features for NC vs. AD 

 

 
Figure 6. Accuracy achieved using textural features for MCInc vs. MCIc 

 

 
Figure 7. Sensitivity achieved using textural features for MCInc vs. MCIc 

 

 
Figure 8. Specificity achieved using textural features for MCInc vs. MCIc 

 

 
Figure 9. ROC values using textural features for NC vs. AD 

 

 
Figure 10. ROC values using textural features for MCInc vs. MCIc 
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Figure 11. Classification results using volumetric features for NC vs. AD 

 

 
Figure 12. Classification results using volumetric features for MCInc vs. 

MCIc 
 

TABLE X. COMPARISON OF PROPOSED APPROACH WITH EXISTING 

APPROACHES 
Approach Features Group Classifier Accuracy 

NC vs. AD 83.00 

MCI vs. AD 68.00 

HC vs. MCI 67.00 [49] 

Volumetric, 
intensity 
and cortical 
thickness HC vs. MCI vs. 

AD 

Random 
Forrest 

54.00 

1-NN 89.70 
[50]  Textural AD vs.NC 

ANN 98.50 

[51]  Textural AD vs. NC L-SVM 80.76 

[52]  
Volumetric 
and shape 

AD vs. NC SVM 84.00 

MCIc vs. MCInc 78.33 

AD vs. NC 
AODEsr 

80.00 

MCIc vs. MCInc 100.00 

AD vs. NC 
VFI 

90.00 

MCIc vs. MCInc 98.33 

AD vs. NC 
RBF 

83.33 

MCIc vs. MCInc 100.00 

Textural 

AD vs. NC 
LBR 

98.33 

MCIc vs. MCInc 98.33 

AD vs. NC 
AODEsr 

98.33 

MCIc vs. MCInc 98.33 

AD vs. NC 
VFI 

60.00 

MCIc vs. MCInc 98.33 

AD vs. NC 
RBF 

98.33 

MCIc vs. MCInc 98.33 

Proposed 
Approach 

Volumetric 

AD vs. NC 
LBR 

98.33 

V. CONCLUSION 

In this research work, we have introduced a pattern 
recognition based MRI classification approach for the 
prediction of NC that are likely to develop AD and MCI 
patients that are likely to establish AD within two years or, 
contrarily, their stage remain same. It is based on extraction 
of textural and volumetric features from MRI which will 
help specialists in early detection and diagnosis of AD. 
Leave-One-Out cross validation strategy is used to evaluate 
the performance of our designed approach. Machine leaning 
algorithms are used to classify images as NC, MCInc, MCIc 
and AD. Both type features are tested using four different 
classifiers i.e. AODEsr, VFI, RBF and LBR. It is concluded 
that textural and volumetric features can be equally used for 
prediction of conversion from NC/MCI to AD. Comparison 
of our results with existing approaches shows the accuracy 
and effectiveness of our designed approach. 
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