
Advances in Electrical and Computer Engineering Volume 17, Number 3, 2017

Enhanced Interrupt Response Time in the
nMPRA based on Embedded Real Time

Microcontrollers

Nicoleta Cristina GAITAN1,2
1Stefan cel Mare University of Suceava, 720229, Romania

2Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies,
and Distributed Systems for Fabrication and Control (MANSiD), Suceava, 720229, Romania

cristinag@eed.usv.ro

1Abstract—In any real-time operating system, task switching

and scheduling, interrupts, synchronization and
communication between processes, represent major problems.
The implementation of these mechanisms through software
generates significant delays for many applications. The
nMPRA (Multi Pipeline Register Architecture) architecture is
designed for the implementation of real-time embedded
microcontrollers. It supports the competitive execution of n
tasks, enabling very fast switching between them, with a usual
delay of one machine cycle and a maximum of 3 machine
cycles, for the memory-related work instructions. This is
because each task has its own PC (Program Counter), set of
pipeline registers and a general registers file. The nMPRA is
provided with an advanced distributed interrupt controller
that implements the concept of "interrupts as threads". This
allows the attachment of one or more interrupts to the same
task. In this context, the original contribution of this article is
to presents the solutions for improving the response time to
interrupts when a task has attached a large number of
interrupts. The proposed solutions enhance the original
architecture for interrupts logic in order to transfer control, to
the interrupt handler as soon as possible, and to create an
interrupt prioritization at task level.

Index Terms—architecture, operating systems, registers,
scheduling, software.

I. BACKGROUND AND MOTIVATION

The most important features of the RTOS (Real Time
Operating System) are predictability and response time
guarantee to external or internal events. The use of RTOS
implemented in software can generate higher response times
to treat interrupts when they occur one immediately after the
other. In this case, ISR (Interrupt Service Routine) are used,
which must be implemented by the user. Due to the jitter
generated by ISR routines, the response time can greatly
increase, if the microcontroller does not allow nested
interrupts. This could lead to missed deadlines. The problem
occurs when a task waits the occurrence of different events
(message, semaphore, mutex, etc.), because most RTOS
allow waiting for a single event at a time (e.g. μC-OS/III,

FreeRTOS, eCos, Keil RTX, and so on). In this case, events
in loop must be expected, each one with a waiting timeout.
Therefore, because of the jitter generated by waiting for the
other events, the response time to certain events can greatly
increase. The same problem occurs if a task waits for more
than one interrupt. The task should adopt the interrupt type
and, according to this, perform specific operations. This
generates a jitter, due to the time needed to determine the
type of interrupt and the routine that treats it.

1This work was supported by a grant of the Romanian National

Authority for Scientific Research and Innovation, CNCS/CCCDI-
UEFISCDI, project number PN-III-P2-2.1-PED-2016-1473, within PNCDI
III. The infrastructure used for this work was partially supported by the
project “Integrated Center for research, development and innovation in
Advanced Materials, Nanotechnologies, and Distributed Systems for
fabrication and control”, Contract No. 671/09.04.2015, Sectorial
Operational Program for Increase of the Economic Competitiveness co-
funded from the European Regional Development Fund.

Currently, for the development of the embedded systems,
general purpose processors are used [1]. Nevertheless, these
systems can have a non-deterministic behavior, and are not
effective in developing real-time systems. Because of these
problems, and in order to easily ensure the deadline in the
WCET (Worst-Case Execution Time), the developers of
embedded systems can oversize the computing needs and
use processors with a computing power higher than
necessary. The embedded systems can also have a very high
consumption in relation to the performance offered by these
processors. On the other hand, the increased progress of
FPGA devices [1], [2] has enabled the development of
specialized controllers which can guarantee meeting the
deadlines at low energy rates [3], [4]. Furthermore, it allows
the development of SoC (System on Chip) which has the
primitives (inter task communication and synchronization)
of a real-time operating system implemented in hardware [1]
- [6].

The nMPRA architecture is presented in [5]. This
architecture tries to solve the aforementioned issues at
hardware level. In [7] and [8], the authors defined the first
version of the nMPRA, called Multi Pipeline Register
Architecture (MPRA). This architecture is based on the
MIPS architecture which was changed in order to implement
in software the primitives of a RTOS. The initial
architecture has a PC register and a set of pipeline registers
for each task. These resources are used to save the state of
the task when a task context switch operation is performed.

In [5], the MPRA was developed for n tasks and,
therefore, the name was changed to nMPRA. This new
version is provided with hardware support for static and
dynamic scheduling, for unitary handling of events and
interrupts and for the RTOS primitives implemented in
software (mutexes, semaphores, messages, interrupt
handling). Furthermore, this architecture allows interrupts to
be attached to the task, and the task can wait for several

 77
1582-7445 © 2017 AECE

Digital Object Identifier 10.4316/AECE.2017.03010

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:58:14 (UTC) by 3.224.147.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 3, 2017

interrupts at the same time. It also improves the response
time and the predictability of a real-time operating system in
the context of time-critical application.

The original contribution of this paper relates to present a
solution to improve the response time to interrupts in real
time embedded microcontrollers based on the nMPRA. The
logic of the nMPRA concerning interrupts consists in
allowing their distribution to any of the possible n tasks,
inheriting the priority of the attached task ("interrupts as
threads"). If multiple interrupts are attached to the same
task, the question which arises is what interrupt should be
treated first and, if the interrupt is not the first one in the
established priority chain (hardware or software), how fast is
the control transferred to this interrupt?

Furthermore, this article is structured as follows: Section
II presents some comparisons with the RTOS hardware
presented in the specialized literature. The nMPRA
architecture and the nHSE (Hardware Scheduler Engine) are
presented in Section III and Section IV. Section V presents
the interrupt behavior in the nMPRA while the proposed
enhancements of the interrupt system are presented in
Section VI. The conclusions are drawn in Section VII.

II. RELATED WORK

Because nMPRA is a new architecture, the literature of
the field has not addressed this issue so far. As a general
solution, in [5] a comparison with well-known architectures
is made. Thus, we have chosen, as comparison criteria, the
following questions (Table 1): if the interrupt controller is
specialized or distributed (1); if the interrupts are treated as
execution threads (2); if the interrupts can be attached to any
task (3); if the interrupt inherits the task priority (4); if the
interrupt affects the pipeline (5); if the interrupt requires
context software saving (6). There are four main
architectures presented in Table 1, namely ARPA-MT [9],
PRET [6], [10], [11], Kuacharoen [12], and hthreads [12].

TABLE I. COMPARISON CRITERIA OF NMPRA WITH FOUR MAIN

ARCHITECTURES

Fea-
tures

nMPRA

hthreads

[12]

ARPA-
MT [9]

Kuacha-
roen [12]

PRET
[6][10]

[11]

(1)
Distri-
buted

Bypass
Interrupt

Scheduler
(CBIS) -

specialized

Co-
process

or
(Cop0-
MEC)

Specializ
ed

No

(2) Yes Yes - - No

(3) Yes

Yes, but a
task can

have
attached a

single
interrupt

- - No

(4) Yes Yes - - No
(5) No Yes - - No
(6) No Yes - - Yes

Not all these systems have a mechanism for improving
the response time to interrupts; they are designed to
implement in hardware the directives of a RTOS and to
improve the switching time between tasks.

The solution for prioritization and treatment of interrupts
presented in this article improved significantly the response
time to events.

III. THE nMPRA ARCHITECTURE

Fig. 1 presents the nMPRA architecture. Within this
architecture, an instance of the CPU (Central Processing
Unit) is named semi CPU for the task i (sCPUi). This
hardware instance includes its own resources (such as PC
registry, general register, pipeline registers and control logic
in the Hardware Scheduler Engine (nHSE)), which share
resources with other entities (combinational logic allows
execution of instructions placed between pipeline registers
and the joint nHSE) while task i runs task i instructions (i =
0,..., n-1).

The sCPU0 is different from others sCPUi because it is
the sCPUi unit active after reset and that can activate the
others sCPUi units. Furthermore, this unit has the highest
priority in the system and has access to the configuration
and the monitoring register associated to each sCPUi or to
nHSE.

The nMPRA has two schedulers, one for scheduling tasks
with static priorities and one for scheduling tasks with
dynamic priorities, both being preemptive. The sCPU0 is the
priority task in the system and its priority cannot be changed
even by the dynamic scheduler. It also performs the
selection of the active scheduler when the application is
starting execution. The schedulers can achieve fast
switching between tasks (1-3 processor cycles) at the
occurrence of external or internal events. This architecture
can allow a task to wait for several types of events using a
single instruction. In the case of the dynamic scheduler, it is
allowed to change task priority using a single register
attached to each task (except for the sCPU0 task). This
enables the implementation of various scheduling policies,
depending on application requirements.

The nMPRA architecture does not have a specialized
hardware interrupt controller; instead it allows the
attachment of hardware interrupts and of events to the tasks
in the system (an interrupt or event can be attached to a
single task). Tasks must execute a single instruction in order
to get in line to wait for the attached events and interrupts.
Furthermore, the interrupts may be attached to another task
during application execution.

The noticeable fact about the nMPRA architecture, shown
in Fig. 1, is that each sCPUi has its own set of pipeline
registers (ID / EX, MEM / WB, EX / MEM, IF / ID), its
own set of general registers, a Program Counter (PC), and a
set of special registers used by the nHSE for planning and
treating interrupts and events. Because of these
characteristics, task switching can be performed in less than
1.5 processor cycles or 3 processor cycles, if the currently
running task executes a memory work instruction. The other
architecture resources are the ones shared by the sCPUi.

IV. THE nHSE ARCHITECTURE

The nHSE architecture is shown in the Fig. 2. It is
actually a hardware block within a microprocessor that
implements the primitives of a real-time operating system.
As input, it has all the events (message, deadline, interrupts,
timer, etc.) which can determine the change of the running
task and, as output, it generates a signal that can validate a
single sCPUi to enter or continue execution.

 78

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:58:14 (UTC) by 3.224.147.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 3, 2017

Figure 1. The nMPRA architecture: PC – program counter, IFID – Instruction Fetch Instruction Decode stage, ID/EX – Instruction decode–execute stage,
EX/MEM – execute-memory stage, MEM/WB – memory-write back stage [5]

The identifier from the ID register selects the active
sCPUi if there is an active event. Otherwise the system is
idle and will come out of this state when an event occurs. If
the sCPUi associated task, which experienced the event,
clears it, the task stops itself. If its execution is to be
continued, the task must enable the self-sustaining event.

The solution has some drawbacks such as the limited
number of possible levels of nesting, which is limited to the
number of sCPUi. Another disadvantage is the lack of
interrupt handler vectorization. If more than one interrupt is
attached to a sCPUi, their order of treatment is determined
by software, which may introduce additional delays. The
logic of events at each sCPUi, and the level of each sCPUi
are shown in Fig. 3.

The scheduler is constantly monitoring the events
addressed to the sCPUi. The possible sCPUi events are:
timer interrupts (TEvi), watchdog timer (WDEvi), two
interrupts used for preventive signaling of the deadline

(D1Evi and D2Evi), attached interrupts (IntEvi), mutexes
used for handling shared resources (MutexEvi),
synchronization and inter-task communication events
between sCPUi (SynEvi), self-sustaining execution
information for the current sCPUi (lr_run_sCPUi). The
events can be validated with lr_enTi, lr_enWDi, lr_enD1i,
lr_enD2i, lr_enInti, lr_enMutexi and lr_enSyni signals (see
Fig. 3 and Fig.4a). There is one exception, namely
lr_run_sCPUi.

Each sCPUi has a register called Event Register (EVi)

which allows reading active events as shown in Fig.4c
without sCPUi blocking. The instructions proposed for the
TRi and EVi registers are: movcr TRi, Rj; movcr Rj, TRi
movcr EVi, Rj; movcr Rj, EVi.

nHSE

n Static
scheduler

en_pipe_sCPU0

en_pipe_sCPU1

en_pipe_sCPUi

en_pipe_sCPUn‐1

E

D
ECO

D
E

n Dynamic
scheduler

ID
register
block

nn

n

n

With effect for the sCPUi
(PCi, pipeline registers i,

and registers file i, i=0..n‐1)

Enable static scheduler

interrupts

timers
watchdog
timer

dealine 1

mutex

dealine 2

events

EVENTS COMMANDS

n Events
Block
MRF
ERF

Enable
dynamic
scheduler

Inhibit by the lw
and sw instructions

Figure 2. The nHSE architecture [5]

 79

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:58:14 (UTC) by 3.224.147.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 3, 2017

lr_enTi

TEvi

lr_enWDi

WDEvi

lr_enD1i

D1Evi

lr_enInti
IntEvi

lr_enMutexi

lr_enD2i

D2Evi

MutexEvi

lr_enSyni
SynEvi
lr_run_sCPUi

sCPUEvi

mr_stopCPUi

sCPU_Evi

/sCPU_Evi‐1

/sCPU_Evi

/sCPU_Ev0

sCPUi_ready

ENB

n nsCPUi_ID

i = 0 ...n‐1

/sCPU_Ev1

sCPUi_ID_TS

lr_TEvi

lr_sCPU_Evi

lr_WDEvi

lr_D1Evi

lr_D2Evi

lr_IntEvi

lr_MutexEvi

lr_SynEvi

sCPUi_ready

D Q

QCLK

S

R
CLK↑

a)

events_i

priority_i sCPUi_ready

14
run_sCPUi

n
sCPUi_ID

n
sCPUi_ID_TS

/sCPU_Evi

i‐1

b)

Figure 3. The sCPUi level hardware scheduler (block of nHSE) – (a) digital logic for ready state, (b) block diagram [5]

31..8 7 6 5 4 3 2 1 0
0 lr_run_sCPUi lr_enSyni lr_enMutexi lr_enInti lr_enD2i lr_enD1i lr_enWDi lr_enTi

a)

31..8 7 6 5 4 3 2 1 0
0 lr_run_sCPUi lr_SynEvi lr_MutexEvi lr_IntEvi lr_D2Evi lr_D1Evi lr_WDEvi lr_TEvi

b)

31..8 7 6 5 4 3 2 1 0
0 lr_run_sCPUi SynEvi MutexEvi IntEvi D2Evi D1Evi WDEvi TEvi

c)
Figure 4. The structure of the: a) TRi register, b) Rj register at the return from the wait instruction, c) EVi register

V. INTERRUPTS IN nMPRA

The model suggested in [5] is similar to the "interrupts as
threads" approach. The model is illustrated in Fig. 5. The
interrupts in nMPRA are treated as events attached to the
real-time executive or to tasks thus borrowing the priority of
the tasks they are attached to. Assuming that there are p
interrupts in the system for each interrupt, a global register
is provided (accessible to all sCPUi), called
INT_IDi_register with n1 useful bits; this register allows the
storage of the tasks IDs which are attached to the interrupt.

The enabling of the INTi interrupt (Fig. 5) validates the
DEMUX demultiplexer which will activate one of the
INT_i0, ..., INT_in-1 signals. The OR gate (see Fig. 5) can
collect all interrupts in the system. They can be attached to
sCPUi, if all the INT_IDi_register (i = 0 ... p-1) global
registers are written with i value. The D flip-flop is designed
to synchronize the random occurrence of the INTi event
producing the IntEvi signal (Fig. 3).

Fig. 6 shows how the proposed and implemented solution
on Virtex7 works. In this case, 4 sCPUs are presented with
TRi registers and 4 external interrupts. The values in Fig. 6
are expressed as hexadecimal numbers. The 4 interrupts are
attached as follows: 0 to task 0, 1 to task 1, 2 to task 2, and 3
to task 3. At moment T1 interrupt 1 appears attached to task
1. Assuming that task 0 also expects an interrupt, task 1 is
released in execution and the value of crEV1 register is 10H
(the value of bit 4 from Fig.4c, named IntEvi, is 1). At
moment T2 the interrupt attached to task 3 appears/occurs; if
tasks 0 and 1 are suspended, task 3 is being launched in
execution and the value of crEV3 register is 10H (the value
of bit 4 from Fig.4c, named IntEvi, is 1). At moment T3
time, the interrupt attached to task 0 occurs, and no matter
what task is running, task 0 is launched in execution and the

value of crEV0 register is 10H (the value of bit 4 from
Fig.4c, IntEvi, is 1).

The nMPRA architecture has some disadvantages, such as
the fact that the nested level of the interrupts is limited to the
number of tasks and that there is no interrupt handler vector.
If more interrupts are attached to the same sCPUi, and if
they occur simultaneously, then the software establishes the
order in which the interrupts will be handled; this can lead to
additional delays.

Instruction wait validates the expected events and its
format is instruction wait. The instruction format of wait is
wait Rj. It blocks the pipeline until the event selected by
setting Rj register occurs. The Rj register is automatically
transferred to the task register (TR). Each sCPUi has a TRi
register with a structure shown in Fig.4a. A more efficient
method involves the use of mnemonics which imply an
immediate value (expected events) in the instruction body,
in the following form: wait Rj, events. The events expected
by the wait instruction are loaded in the TRi register and,
during return, the expected and occurred events are loaded
into the Rj register as shown in Fig.4b.

Figure 5. Association of the interrupts with the sCPUi (task i) [5]

 80

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:58:14 (UTC) by 3.224.147.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 3, 2017

Figure 6. The implementation of the proposed solution on Virtex 7

As specified in [5],[7],[8], and in [14] - [24], this
architecture has several interesting features, such as: it does
not use a specialized interrupt controller, the interrupts
inherit the priority of the tasks (sCPUi), a task can attach
none, one, several or even all the p interrupts in the system,
the priority of the interrupts that are attached to the same
task is established by the programmer, an interrupt that is
attached to a task can interrupt a lower priority task but
cannot interrupt the execution of the task to which it is
attached, or a higher priority task, one interrupt can be
attached only to a single task, the interrupt can be a task, all
the interrupts can be attached to a single task.

VI. ENHANCED INTERRUPT RESPONSE TIME IN THE nMPRA

A first improvement concerning the response time of
interrupts, without taking into account other types of events,
is proposed in [14]. This article examines the response time
of interrupts when other events, such as mutexes,
semaphores, messages, interrupt handling, are taken in
consideration. Furthermore, the original contribution and
scientific merit of this paper by comparing to other scientific
papers [5],[7]-[8],[14]-[24], is a solution, obtained from the
synthesis with ChipScope analyzer, for improving the
handling time of interrupts when the other types of events
are active and validated.

An extreme scenario is the one in which a sCPUi waits
for all 7 types of events. The question is: which event is
handled first and what is the order of event handling? An
initial answer can be provided by the application
programmer, depending on the objectives the task has to
accomplish. A simple solution would be to prioritize the
events through the software. An extremely possible scenario
is shown in Program1. This extreme scenario shows that
even though the occurrence of an event is associated with
the highest priority task in the system, it switches the task to
the next machine cycle (unless memory access instructions
are run). The event handling can be delayed, especially in
the unfortunate situation when the expected events occur
simultaneously and when the task expects all of them.

The Program 1 presented above is a software solution for
the prioritization of the events and the interrupts associated

with a task. The proposed solution is versatile because it
requires no additional hardware support and allows the easy
modification of the program priorities. The major
disadvantage, however, is the delay introduced for low
priority events. Even if it is the only event which occurs, the
low-priority event has to wait for all tests meant to identify
the higher priority events to be completed; this may cause a
delay that cancels the hardware speed of task switching.
Assigning events (and therefore interrupts) to task i in a
system with i tasks must be done carefully in order to
preserve system performances.

A first improvement in the response time to the
occurrence of interrupts and their prioritization [14] regards
the use of a priority encoder at each sCPUi level, as shown
in Fig. 7. Depending on the total number of interrupts, each
sCPUi is has a register with [log2 pi] bits. This register
provides the number of the highest priority interrupt, in case
more than 2 simultaneous interrupts occur, or when more
interrupts are attached to the same sCPUi. The truth table for
the priority encoder is shown in Table 2. In such cases, the
IntEvi procedure becomes like in Program 2. This solution
requires additional hardware support for each sCPUi. The
advantages of this solution include:
 The start time of the interrupt handler is the same for

all interrupts, if at one point a single interrupt is active.
In the case of the software solution, this time depends
on the position of the interrupt in the decision chain
(further the test done by the IntEvi software is from the
start of the procedure, the greater delay).

 The procedure for solving the cause for the interrupt is
faster when dealing with a small number of interrupts
which occur simultaneously.

TABLE II. THE PRIORITY ENCODER

Most Interrupts for sCPUi Least IntRegi
INT
_0i

INT_
1i

… INTii … INTpi [log2

pi]
… b1 b0

0 0 0 0 0 0 0 0 0 0
1 x x x x x 0 0 0 1
0 1 x x x x 0 0 1 0
… … … … … … … … … …
0 0 0 0 0 1 1 1 1 1

 81

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:58:14 (UTC) by 3.224.147.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 3, 2017

Program 1 – pseudo-code for the software prioritization of the events and the interrupts associated with a task
sCPUi_taski:
 Initializing the task i

main_sCPUi_loop:
 Load Rj register with all events and interrupts
 Waits all sCPUi possible events and interrupts
 Take the events and interrupts occurred

Select Inti interrupts
Test if at least one interrupt occurred (if it is active)
Jump if no interrupt occurred (jump test_D2Evi)
Call interrupt handler procedure (Call IntEvi)

test_D2Evi:

Take the events
Select D2Evi event
Test if the event it is active
Jump if the D2Evi event it is not active (jump test_D1Evi)
Call event handler procedure (call D2Evi)

test_D1Evi:
 …….. ………………………..

test_TEvi:
 …….. ……………………….

test_WDEvi:
 …….. ……………………….

test_MutexEvi:
 …….. ……………………….

test_SynEvi:
 // Main body of the task
 ……. ………………………..
 Jump main_sCPUi_loop

IntEvi:

// The procedure for interrupt
 Save the interrupts

Take base address of the peripheral
Take peripheral status for the higher priority interrupt
Take the interrupt i1 status
Test if interrupt i1 it is active
Jump if interrupt i1 is not active (jump test_inti2)
Call interrupt handler procedure for the most priority interrupt i1 (call int_handler_i1)

test_inti2:

…….. …………………………

test_intipi1:

Test the least important interrupt ip1
…….. …………………………
Return from procedure

D2Evi:

// The procedure for the D2Evi event
…… …………………………

SynEvi:

// The last and the least priority event procedure for SynEvi
……… ………………………

int_handler_i1:

// Interrupt handler for i1 the most priority interrupt
………. ……………………...

Int_handler_ip1:

// Interrupt handler for ip1 the least priority interrupt
……… ………………………

 82

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:58:14 (UTC) by 3.224.147.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 3, 2017

Priority
encoder

INT_0i

INT_1i

INT_pi

INT_ii

i = 0 ...n‐1

IntRegi

log2log2

Figure 7. The priority encoder

Program 2 - pseudo-code for the prioritization of the events
and the interrupts associated with a task using a hardware
priority encoder

jIntTable:
IntH0, IntH1, …, IntHp1i
// Interrupts table with p1 =< pi

IntEvi:
 // Starting the procedure for interrupt

Save the events
loop_IntEvi:

Select Inti interrupts
Test if at least one interrupts occurred
Jump if no interrupt occurred (jump
 exit_IntEvi)
Take the most priority interrupt that it is active
Call interrupt handle (call IntH0)
Take actual interrupts
Loop to test if exist more interrupts (jump
 loop_IntEvi)

exit_IntEvi:
 Return from procedure
…………………..
IntH0:

// First interrupt most priority one
Jump to interrupt 0 handler procedure

IntH1:
// The second interrupt the next most priority
Jump to interrupt 1 handler procedure

…………………..
IntHp1:

// The last interrupt least priority one
Jump to interrupt p1 handler procedure

…………………..
interrupt_handler0:

TODO
…………………..
 Return from interrupt handler
interrupt_handlerp1i:

TODO
………………….
 Return from interrupt handler
The disadvantages of the solution (presented in Program

2) are that requires additional hardware for each sCPUi and
the priorities are fixed at sCPUi level (int_0i has the highest
interrupt priority and int_pi has the lowest interrupt
priority). The priority is transferred to the sCPUi, according
to the interrupts attached. A second improvement, which
requires additional hardware, promotes the idea that once
the interrupt-type events gain the highest priority, the
transfer of the control to the interrupt handler would be
made directly by loading the PC with the start address of the
interrupt handler. In this case, the return instruction from the
interrupts will either return to the interrupt program, if there
are no more active interrupts, or it will return to the starting
address of the interrupt handler associated to the next
priority interrupt attached to a sCPUi. The block diagram is

illustrated in Fig. 8. The main problem of this solution is the
generation of the Dec_En signal. The pseudo code for
generating this signal is presented in Program 3. This
hardware solution is designed to eliminate the delays
introduced by the loop in Program 2 (about 10 instructions).
As one of the advantages, this solution improves the
response time to interrupts, from the moment when control
is transferred to the interrupt handler. Returning from an
interrupt, the handler switches quickly, through the
modification of jr $ ra’s behavior instruction, to the next
interrupt handler if there are active interrupts for sCPUi. The
disadvantage of this solution is that it requires additional
hardware resources (address decoder, registers with trap
cells and the generating logic for the Dec_En signal).

Program 3 - pseudo code for Dec_En signal

It is called the IntEvi procedure
IntEvi:
 Repeat while they are active interrupts

 Enable the scheme for automatic jump to an interrupt
handler (Dec_En = 1)

 The content of the registers that contain the cell trap
for the interrupt handler corresponding to the higher priority
interrupt is taken and transferred to the PC.

 Disable the Dec_En = 0, and transfers control to the
interrupt handler

 Execute the interrupt handler routine
 If the jr $ra instruction is executed and there are no

longer active interrupts
 (IntEvi = 1)
 then Exit
Exit (execute normal jr $ra with return from IntEvi routine)

VII. CONCLUSION

The nMPRA has a very good switching time between
tasks, when an event associated with a higher priority task
occurs. Because the nMPRA allows simultaneous
synchronization for up to seven events, a major issue is the
time in which events can be treated if they occur all at the
same time. The nMPRA architecture may become less
efficient if there are no low cost solutions found for this
problem. This article attempted to perform an analysis of
this issue in the case of interrupts and only the interrupt
routine has been taken into account. The last solution
proposed is a very high speed one (low response time) but
which implies a significant consumption of hardware
resources. The proposed solution interrupts the sCPUi if the
IntEvi procedure is active. From the author’s point of view,
this is an improvement of the sCPUi behavior to interrupts.

ACKNOWLEDGMENT

This work was supported by a grant of the Romanian
National Authority for Scientific Research and Innovation,
CNCS/CCCDI-UEFISCDI, project number PN-III-P2-2.1-
PED-2016-1473, within PNCDI III. The infrastructure used
for this work was partially supported by the project
“Integrated Center for research, development and innovation
in Advanced Materials, Nanotechnologies, and Distributed
Systems for fabrication and control”, Contract No.
671/09.04.2015, Sectorial Operational Program for Increase
of the Economic Competitiveness co-funded from the
European Regional Development Fund.

 83

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:58:14 (UTC) by 3.224.147.211. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 17, Number 3, 2017

 84

Priority
encoder

INT_0i

INT_1i

INT_pi

INT_ii

i = 0 ...n‐1

IntRegi Decoder_i

Sel_0

Sel_1

Sel_i

Sel_pi

Interrupt handler 0

Interrupt handler 1

Interrupt handler i

Interrupt handler pi

Load PC
bus

Dec_En

Enable

These registers contains trap
cells for interrupts handlers

Figure 8. The priority encoder

[13] D. Andrews, W. Peck, J. Agron, K. Preston, E. Komp, M. Finley, R.
Sass, "hthreads: a hardware/software co-designed multithreaded
RTOS kernel", Emerging Technologies and Factory Automation,
2005. ETFA 2005. 10th IEEE Conference on, vol.2, pp.338, 19-22
Sept. 2005. doi:10.1109/ETFA.2005.1612697.

REFERENCES
[1] J. Shawash, D. R. Selviah, “Real-Time Nonlinear Parameter

Estimation Using the Levenberg–Marquardt Algorithm on Field
Programmable Gate Arrays,” IEEE Trans. Ind. Electron., vol. 60, no.
1, pp. 170–176, Jan. 2013. doi:10.1109/TIE.2012.2183833.

[14] N. C. Gaitan, V. G. Gaitan, E.-E. (Ciobanu) Moisiuc: "Improving
Interrupt Handling in the nMPRA", In Development and Application
Systems (DAS), 2014 International Conference on. IEEE, pp. 11-15,
15–17 May, 2014. doi:10.1109/DAAS.2014.6842419.

[2] M. Shahbazi, P. Poure, S. Saadate, M. R. Zolghadri, “FPGA-Based
Reconfigurable Control for Fault-Tolerant Back-to-Back Converter
Without Redundancy,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp.
3360–3371, Aug. 2013. doi:10.1109/TIE.2012.2200214.

[15] C. Kyrkou, T. Theocharides, "A Parallel Hardware Architecture for
Real-Time Object Detection with Support Vector Machines," in IEEE
Transactions on Computers, vol. 61, no. 6, pp. 831-842, June 2012.
doi:10.1109/TC.2011.113.

[3] M. Shahbazi, P. Poure, S. Saadate, M. R. Zolghadri, “Fault-Tolerant
Five-Leg Converter Topology With FPGA-Based Reconfigurable
Control,” IEEE Trans. Ind. Electron., vol. 60, no. 6, pp. 2284–2294,
Jun. 2013. doi:10.1109/TIE.2012.2191754.

[16] N. C. Gaitan, I. Zagan, V. G. Gaitan, “Predictable CPU Architecture
Designed for Small Real-Time Application - Concept and Theory of
Operation,” International Journal of Advanced Computer Science and
Applications – IJACSA, vol. 6, no. 4, 2015.
doi:10.14569/IJACSA.2015.060406.

[4] T. T. Phuong, K. Ohishi, Y. Yokokura, C. Mitsantisuk, “FPGA-Based
High-Performance Force Control System With Friction-Free and
Noise-Free Force Observation,” IEEE Trans. Ind. Electron., vol. 61,
no. 2, pp. 994–1008, Feb. 2014. doi:10.1109/TIE.2013.2266081.

[5] V. G. Gaitan, N. C. Gaitan, I. Ungurean, “CPU Architecture Based on
a Hardware Scheduler and Independent Pipeline Registers,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol.
23, no. 9, pp. 1661–1674, Sept. 2015.
doi:10.1109/TVLSI.2014.2346542.

[17] L. Andries, G. Gaitan, "Dual priority scheduling algorithm used in the
nMPRA microcontrollers: Subtitle as needed (paper subtitle)," 2014
18th International Conference on System Theory, Control and
Computing (ICSTCC), Sinaia, 2014, pp. 43-47.
doi:10.1109/ICSTCC.2014.6982388.

[18] E. E. C. Moisuc, A. B. Larionescu, I. Ungurean, "Hardware event
handling in the hardware real-time operating systems," 2014 18th
International Conference on System Theory, Control and Computing
(ICSTCC), Sinaia, 2014, pp. 54-58.
doi:10.1109/ICSTCC.2014.6982390

[6] M. Zimmer, D. Broman, C. Shaver, E. A. Lee, “FlexPRET: A
processor platform for mixed-criticality systems,” in 20th IEEE Real-
Time and Embedded Technology and Applications Symposium -
RTAS, pp. 101–110, Apr. 2014. doi:10.1109/RTAS.2014.6925994.

[7] E. Dodiu, V. G. Gaitan, A. Graur, “Custom designed CPU
architecture based on a hardware scheduler and independent pipeline
registers – architecture description”, in IEEE 35’th Jubilee
International Convention on Information and Communication
Technology, Electronics and Microelectronics, Croatia, pp. 859-864,
24 May 2012. INSPEC Accession Number: 12865464.

[19] I. Zagan, V. G. Gaitan, "Improving the Performances of the nMPRA
Processor using a Custom Interrupt Management Scheduling Policy,"
Advances in Electrical and Computer Engineering, vol.16, no.4,
pp.45-50, 2016, doi:10.4316/AECE.2016.04007.

[20] E. E. Moisuc, A. B. Larionescu, V. G. Gaitan, “Hardware Event
Treating in nMPRA,” in 12rt International Conference on
Development and Application Systems – DAS, Suceava, Romania,
pp. 66-69, 15–17 May, 2014. doi:10.1109/DAAS.2014.6842429.

[8] E. Dodiu, V. G. Gaitan, “Custom designed CPU architecture based on
a hardware scheduler and independent pipeline registers – concept
and theory of operation,“ in IEEE EIT International Conference on
Electro-Information Technology, Indianapolis, USA, pp. 1–5, May
2012. doi:10.1109/EIT.2012.6220705.

[21] A. Kalyansundar, R. Chattopadhyay, "A Novel Approach to
Hardware Architecture Design and Advanced Optimization
Techniques for Time Critical Applications," 2008 IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing,
Shanghai, 2008, pp. 9-15. doi:10.1109/EUC.2008.113.

[9] A. S. R. Oliveira, L. Almeida, A. B. Ferrari, "The arpa-mt embedded
smt processor and its rtos hardware accelerator", IEEE Trans.
Industrial Electronics, vol. 59, no. 3, pp. 890-904, August 2009.
doi:10.1109/TIE.2009.2028359.

[22] I. Zagan, V. G. Gaitan, "Schedulability analysis of nMPRA processor
based on multithreaded execution," 2016 International Conference on
Development and Application Systems (DAS), Suceava, 2016, pp.
130-134. doi:10.1109/DAAS.2016.749256.

[10] I. Liu, J. Reineke, D. Broman, M. Zimmer, E.A. Lee, "A PRET
microarchitecture implementation with repeatable timing and
competitive performance," Computer Design (ICCD), 2012 IEEE
30th International Conference on, vol., no., pp.87-93, Sept. 30 2012-
Oct. 3 2012, doi:10.1109/ICCD.2012.6378622.

[23] L. Andries, V. G. Gaitan, E. E. Moisuc, "Programming paradigm of a
microcontroller with hardware scheduler engine and independent
pipeline registers - a software approach," 2015 19th International
Conference on System Theory, Control and Computing (ICSTCC),
Cheile Gradistei, 2015, pp. 705-710.
doi:10.1109/ICSTCC.2015.7321376.

[11] S.A. Edwards, E.A., Lee, "The Case for the Precision Timed (PRET)
Machine," Design Automation Conference, 2007. DAC '07. 44th
ACM/IEEE, vol., no., pp.264-265, 4-8 June 2007.

[12] P. Kuacharoen, M. Shalan, V.J. Mooney III, "A Configurable
Hardware Scheduler for Real-Time Systems", in Proc. Engineering of
Reconfigurable Systems and Algorithms, pp.95-101, 2003.

[24] I. Zagan, V. G. Gaitan, "Improving the Performances of the nMPRA
Processor using a Custom Interrupt Management Scheduling Policy,"
Advances in Electrical and Computer Engineering, vol.16, no.4,
pp.45-50, 2016, doi:10.4316/AECE.2016.04007.

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:58:14 (UTC) by 3.224.147.211. Redistribution subject to AECE license or copyright.]

