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1Abstract—In any real-time operating system, task switching 

and scheduling, interrupts, synchronization and 
communication between processes, represent major problems. 
The implementation of these mechanisms through software 
generates significant delays for many applications. The 
nMPRA (Multi Pipeline Register Architecture) architecture is 
designed for the implementation of real-time embedded 
microcontrollers. It supports the competitive execution of n 
tasks, enabling very fast switching between them, with a usual 
delay of one machine cycle and a maximum of 3 machine 
cycles, for the memory-related work instructions. This is 
because each task has its own PC (Program Counter), set of 
pipeline registers and a general registers file. The nMPRA is 
provided with an advanced distributed interrupt controller 
that implements the concept of "interrupts as threads". This 
allows the attachment of one or more interrupts to the same 
task. In this context, the original contribution of this article is 
to presents the solutions for improving the response time to 
interrupts when a task has attached a large number of 
interrupts. The proposed solutions enhance the original 
architecture for interrupts logic in order to transfer control, to 
the interrupt handler as soon as possible, and to create an 
interrupt prioritization at task level. 
 

Index Terms—architecture, operating systems, registers, 
scheduling, software. 

I. BACKGROUND AND MOTIVATION 

The most important features of the RTOS (Real Time 
Operating System) are predictability and response time 
guarantee to external or internal events. The use of RTOS 
implemented in software can generate higher response times 
to treat interrupts when they occur one immediately after the 
other. In this case, ISR (Interrupt Service Routine) are used, 
which must be implemented by the user. Due to the jitter 
generated by ISR routines, the response time can greatly 
increase, if the microcontroller does not allow nested 
interrupts. This could lead to missed deadlines. The problem 
occurs when a task waits the occurrence of different events 
(message, semaphore, mutex, etc.), because most RTOS 
allow waiting for a single event at a time (e.g. μC-OS/III, 

FreeRTOS, eCos, Keil RTX, and so on). In this case, events 
in loop must be expected, each one with a waiting timeout. 
Therefore, because of the jitter generated by waiting for the 
other events, the response time to certain events can greatly 
increase. The same problem occurs if a task waits for more 
than one interrupt. The task should adopt the interrupt type 
and, according to this, perform specific operations. This 
generates a jitter, due to the time needed to determine the 
type of interrupt and the routine that treats it. 
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Currently, for the development of the embedded systems, 
general purpose processors are used [1]. Nevertheless, these 
systems can have a non-deterministic behavior, and are not 
effective in developing real-time systems. Because of these 
problems, and in order to easily ensure the deadline in the 
WCET (Worst-Case Execution Time), the developers of 
embedded systems can oversize the computing needs and 
use processors with a computing power higher than 
necessary. The embedded systems can also have a very high 
consumption in relation to the performance offered by these 
processors. On the other hand, the increased progress of 
FPGA devices [1], [2] has enabled the development of 
specialized controllers which can guarantee meeting the 
deadlines at low energy rates [3], [4]. Furthermore, it allows 
the development of SoC (System on Chip) which has the 
primitives (inter task communication and synchronization) 
of a real-time operating system implemented in hardware [1] 
- [6]. 

The nMPRA architecture is presented in [5]. This 
architecture tries to solve the aforementioned issues at 
hardware level. In [7] and [8], the authors defined the first 
version of the nMPRA, called Multi Pipeline Register 
Architecture (MPRA). This architecture is based on the 
MIPS architecture which was changed in order to implement 
in software the primitives of a RTOS. The initial 
architecture has a PC register and a set of pipeline registers 
for each task. These resources are used to save the state of 
the task when a task context switch operation is performed.  

In [5], the MPRA was developed for n tasks and, 
therefore, the name was changed to nMPRA. This new 
version is provided with hardware support for static and 
dynamic scheduling, for unitary handling of events and 
interrupts and for the RTOS primitives implemented in 
software (mutexes, semaphores, messages, interrupt 
handling). Furthermore, this architecture allows interrupts to 
be attached to the task, and the task can wait for several 
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interrupts at the same time. It also improves the response 
time and the predictability of a real-time operating system in 
the context of time-critical application. 

The original contribution of this paper relates to present a 
solution to improve the response time to interrupts in real 
time embedded microcontrollers based on the nMPRA. The 
logic of the nMPRA concerning interrupts consists in 
allowing their distribution to any of the possible n tasks, 
inheriting the priority of the attached task ("interrupts as 
threads"). If multiple interrupts are attached to the same 
task, the question which arises is what interrupt should be 
treated first and, if the interrupt is not the first one in the 
established priority chain (hardware or software), how fast is 
the control transferred to this interrupt? 

Furthermore, this article is structured as follows: Section 
II presents some comparisons with the RTOS hardware 
presented in the specialized literature. The nMPRA 
architecture and the nHSE (Hardware Scheduler Engine) are 
presented in Section III and Section IV. Section V presents 
the interrupt behavior in the nMPRA while the proposed 
enhancements of the interrupt system are presented in 
Section VI. The conclusions are drawn in Section VII. 

II. RELATED WORK 

Because nMPRA is a new architecture, the literature of 
the field has not addressed this issue so far. As a general 
solution, in [5] a comparison with well-known architectures 
is made. Thus, we have chosen, as comparison criteria, the 
following questions (Table 1): if the interrupt controller is 
specialized or distributed (1); if the interrupts are treated as 
execution threads (2); if the interrupts can be attached to any 
task (3); if the interrupt inherits the task priority (4); if the 
interrupt affects the pipeline (5); if the interrupt requires 
context software saving (6). There are four main 
architectures presented in Table 1, namely ARPA-MT [9], 
PRET [6], [10], [11], Kuacharoen [12], and hthreads [12].  
 

TABLE I. COMPARISON CRITERIA OF NMPRA WITH FOUR MAIN 

ARCHITECTURES 

Fea-
tures 

 
nMPRA 

 
hthreads 

[12] 

 
ARPA-
MT [9] 

 
Kuacha-
roen [12] 

PRET 
[6][10] 

[11] 

(1) 
Distri-
buted 

Bypass 
Interrupt 

Scheduler 
(CBIS) - 

specialized 

Co-
process

or 
(Cop0-
MEC) 

Specializ
ed 

No 

(2) Yes Yes - - No 

(3) Yes 

Yes, but a 
task can 

have 
attached a 

single 
interrupt 

- - No 

(4) Yes Yes - - No 
(5) No Yes - - No 
(6) No Yes - - Yes 

 

Not all these systems have a mechanism for improving 
the response time to interrupts; they are designed to 
implement in hardware the directives of a RTOS and to 
improve the switching time between tasks.   

The solution for prioritization and treatment of interrupts 
presented in this article improved significantly the response 
time to events. 

III. THE nMPRA ARCHITECTURE 

Fig. 1 presents the nMPRA architecture. Within this 
architecture, an instance of the CPU (Central Processing 
Unit) is named semi CPU for the task i (sCPUi). This 
hardware instance includes its own resources (such as PC 
registry, general register, pipeline registers and control logic 
in the Hardware Scheduler Engine (nHSE)), which share 
resources with other entities (combinational logic allows 
execution of instructions placed between pipeline registers 
and the joint nHSE) while task i runs task i instructions (i = 
0,..., n-1). 

The sCPU0 is different from others sCPUi because it is 
the sCPUi unit active after reset and that can activate the 
others sCPUi units. Furthermore, this unit has the highest 
priority in the system and has access to the configuration 
and the monitoring register associated to each sCPUi or to 
nHSE. 

The nMPRA has two schedulers, one for scheduling tasks 
with static priorities and one for scheduling tasks with 
dynamic priorities, both being preemptive. The sCPU0 is the 
priority task in the system and its priority cannot be changed 
even by the dynamic scheduler. It also performs the 
selection of the active scheduler when the application is 
starting execution. The schedulers can achieve fast 
switching between tasks (1-3 processor cycles) at the 
occurrence of external or internal events. This architecture 
can allow a task to wait for several types of events using a 
single instruction. In the case of the dynamic scheduler, it is 
allowed to change task priority using a single register 
attached to each task (except for the sCPU0 task). This 
enables the implementation of various scheduling policies, 
depending on application requirements.  

The nMPRA architecture does not have a specialized 
hardware interrupt controller; instead it allows the 
attachment of hardware interrupts and of events to the tasks 
in the system (an interrupt or event can be attached to a 
single task). Tasks must execute a single instruction in order 
to get in line to wait for the attached events and interrupts. 
Furthermore, the interrupts may be attached to another task 
during application execution. 

The noticeable fact about the nMPRA architecture, shown 
in Fig. 1, is that each sCPUi has its own set of pipeline 
registers (ID / EX, MEM / WB, EX / MEM, IF / ID), its 
own set of general registers, a Program Counter (PC), and a 
set of special registers used by the nHSE for planning and 
treating interrupts and events. Because of these 
characteristics, task switching can be performed in less than 
1.5 processor cycles or 3 processor cycles, if the currently 
running task executes a memory work instruction. The other 
architecture resources are the ones shared by the sCPUi. 

IV. THE nHSE ARCHITECTURE  

The nHSE architecture is shown in the Fig. 2. It is 
actually a hardware block within a microprocessor that 
implements the primitives of a real-time operating system. 
As input, it has all the events (message, deadline, interrupts, 
timer, etc.) which can determine the change of the running 
task and, as output, it generates a signal that can validate a 
single sCPUi to enter or continue execution. 
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Figure 1. The nMPRA architecture: PC – program counter, IFID – Instruction Fetch Instruction Decode stage, ID/EX – Instruction decode–execute stage, 
EX/MEM – execute-memory stage, MEM/WB – memory-write back stage [5] 
 

The identifier from the ID register selects the active 
sCPUi if there is an active event. Otherwise the system is 
idle and will come out of this state when an event occurs. If 
the sCPUi associated task, which experienced the event, 
clears it, the task stops itself. If its execution is to be 
continued, the task must enable the self-sustaining event. 

The solution has some drawbacks such as the limited 
number of possible levels of nesting, which is limited to the 
number of sCPUi. Another disadvantage is the lack of 
interrupt handler vectorization. If more than one interrupt is 
attached to a sCPUi, their order of treatment is determined 
by software, which may introduce additional delays. The 
logic of events at each sCPUi, and the level of each sCPUi 
are shown in Fig. 3. 

The scheduler is constantly monitoring the events 
addressed to the sCPUi. The possible sCPUi events are: 
timer interrupts (TEvi), watchdog timer (WDEvi), two 
interrupts used for preventive signaling of the deadline 

(D1Evi and D2Evi), attached interrupts (IntEvi), mutexes 
used for handling shared resources (MutexEvi), 
synchronization and inter-task communication events 
between sCPUi (SynEvi), self-sustaining execution 
information for the current sCPUi (lr_run_sCPUi). The 
events can be validated with lr_enTi, lr_enWDi, lr_enD1i, 
lr_enD2i, lr_enInti, lr_enMutexi and lr_enSyni signals (see 
Fig. 3 and Fig.4a). There is one exception, namely 
lr_run_sCPUi. 

 
Each sCPUi has a register called Event Register (EVi) 

which allows reading active events as shown in Fig.4c 
without sCPUi blocking. The instructions proposed for the 
TRi and EVi registers are: movcr TRi, Rj; movcr Rj, TRi 
movcr EVi, Rj; movcr Rj, EVi. 
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Figure 2. The nHSE architecture [5] 
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Figure 3. The sCPUi level hardware scheduler (block of nHSE) – (a) digital logic for ready state, (b) block diagram [5] 

 
 

31..8 7 6 5 4 3 2 1 0 
0 lr_run_sCPUi lr_enSyni lr_enMutexi lr_enInti lr_enD2i lr_enD1i lr_enWDi lr_enTi 

a) 

31..8 7 6 5 4 3 2 1 0 
0 lr_run_sCPUi lr_SynEvi lr_MutexEvi lr_IntEvi lr_D2Evi lr_D1Evi lr_WDEvi lr_TEvi 

b) 

31..8 7 6 5 4 3 2 1 0 
0 lr_run_sCPUi SynEvi MutexEvi IntEvi D2Evi D1Evi WDEvi TEvi 

c) 
Figure 4. The structure of the: a) TRi register, b) Rj register at the return from the wait instruction, c) EVi register 

 

V. INTERRUPTS IN nMPRA 

The model suggested in [5] is similar to the "interrupts as 
threads" approach. The model is illustrated in Fig. 5. The 
interrupts in nMPRA are treated as events attached to the 
real-time executive or to tasks thus borrowing the priority of 
the tasks they are attached to. Assuming that there are p 
interrupts in the system for each interrupt, a global register 
is provided (accessible to all sCPUi), called 
INT_IDi_register with n1 useful bits; this register allows the 
storage of the tasks IDs which are attached to the interrupt. 

The enabling of the INTi interrupt (Fig. 5) validates the 
DEMUX demultiplexer which will activate one of the 
INT_i0, ..., INT_in-1 signals. The OR gate (see Fig. 5) can 
collect all interrupts in the system. They can be attached to 
sCPUi, if all the INT_IDi_register (i = 0 ... p-1) global 
registers are written with i value. The D flip-flop is designed 
to synchronize the random occurrence of the INTi event 
producing the IntEvi signal (Fig. 3). 

Fig. 6 shows how the proposed and implemented solution 
on Virtex7 works. In this case, 4 sCPUs are presented with 
TRi registers and 4 external interrupts. The values in Fig. 6 
are expressed as hexadecimal numbers. The 4 interrupts are 
attached as follows: 0 to task 0, 1 to task 1, 2 to task 2, and 3 
to task 3. At moment T1 interrupt 1 appears attached to task 
1. Assuming that task 0 also expects an interrupt, task 1 is 
released in execution and the value of crEV1 register is 10H 
(the value of bit 4 from Fig.4c, named IntEvi, is 1). At 
moment T2 the interrupt attached to task 3 appears/occurs; if 
tasks 0 and 1 are suspended, task 3 is being launched in 
execution and the value of crEV3 register is 10H (the value 
of bit 4 from Fig.4c, named IntEvi, is 1). At moment T3 
time, the interrupt attached to task 0 occurs, and no matter 
what task is running, task 0 is launched in execution and the 

value of crEV0 register is 10H (the value of bit 4 from 
Fig.4c, IntEvi, is 1). 

The nMPRA architecture has some disadvantages, such as 
the fact that the nested level of the interrupts is limited to the 
number of tasks and that there is no interrupt handler vector. 
If more interrupts are attached to the same sCPUi, and if 
they occur simultaneously, then the software establishes the 
order in which the interrupts will be handled; this can lead to 
additional delays. 

Instruction wait validates the expected events and its 
format is instruction wait. The instruction format of wait is 
wait Rj. It blocks the pipeline until the event selected by 
setting Rj register occurs. The Rj register is automatically 
transferred to the task register (TR). Each sCPUi has a TRi 
register with a structure shown in Fig.4a. A more efficient 
method involves the use of mnemonics which imply an 
immediate value (expected events) in the instruction body, 
in the following form: wait Rj, events. The events expected 
by the wait instruction are loaded in the TRi register and, 
during return, the expected and occurred events are loaded 
into the Rj register as shown in Fig.4b. 

 

 
Figure 5. Association of the interrupts with the sCPUi (task i) [5] 
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Figure 6. The implementation of the proposed solution on Virtex 7 
 

As specified in [5],[7],[8], and in [14] - [24], this 
architecture has several interesting features, such as: it does 
not use a specialized interrupt controller, the interrupts 
inherit the priority of the tasks (sCPUi), a task can attach 
none, one, several or even all the p interrupts in the system, 
the priority of the interrupts that are attached to the same 
task is established by the programmer, an interrupt that is 
attached to a task can interrupt a lower priority task but 
cannot interrupt the execution of the task to which it is 
attached, or a higher priority task, one interrupt can be 
attached only to a single task, the interrupt can be a task, all 
the interrupts can be attached to a single task. 

VI. ENHANCED INTERRUPT RESPONSE TIME IN THE nMPRA 

A first improvement concerning the response time of 
interrupts, without taking into account other types of events, 
is proposed in [14]. This article examines the response time 
of interrupts when other events, such as mutexes, 
semaphores, messages, interrupt handling, are taken in 
consideration. Furthermore, the original contribution and 
scientific merit of this paper by comparing to other scientific 
papers [5],[7]-[8],[14]-[24], is a solution, obtained from the 
synthesis with ChipScope analyzer, for improving the 
handling time of interrupts when the other types of events 
are active and validated.  

An extreme scenario is the one in which a sCPUi waits 
for all 7 types of events. The question is: which event is 
handled first and what is the order of event handling? An 
initial answer can be provided by the application 
programmer, depending on the objectives the task has to 
accomplish. A simple solution would be to prioritize the 
events through the software. An extremely possible scenario 
is shown in Program1. This extreme scenario shows that 
even though the occurrence of an event is associated with 
the highest priority task in the system, it switches the task to 
the next machine cycle (unless memory access instructions 
are run). The event handling can be delayed, especially in 
the unfortunate situation when the expected events occur 
simultaneously and when the task expects all of them. 

The Program 1 presented above is a software solution for 
the prioritization of the events and the interrupts associated 

with a task. The proposed solution is versatile because it 
requires no additional hardware support and allows the easy 
modification of the program priorities. The major 
disadvantage, however, is the delay introduced for low 
priority events. Even if it is the only event which occurs, the 
low-priority event has to wait for all tests meant to identify 
the higher priority events to be completed; this may cause a 
delay that cancels the hardware speed of task switching. 
Assigning events (and therefore interrupts) to task i in a 
system with i tasks must be done carefully in order to 
preserve system performances. 

A first improvement in the response time to the 
occurrence of interrupts and their prioritization [14] regards 
the use of a priority encoder at each sCPUi level, as shown 
in Fig. 7. Depending on the total number of interrupts, each 
sCPUi is has a register with [log2 pi] bits. This register 
provides the number of the highest priority interrupt, in case 
more than 2 simultaneous interrupts occur, or when more 
interrupts are attached to the same sCPUi. The truth table for 
the priority encoder is shown in Table 2. In such cases, the 
IntEvi procedure becomes like in Program 2. This solution 
requires additional hardware support for each sCPUi. The 
advantages of this solution include: 
 The start time of the interrupt handler is the same for 

all interrupts, if at one point a single interrupt is active. 
In the case of the software solution, this time depends 
on the position of the interrupt in the decision chain 
(further the test done by the IntEvi software is from the 
start of the procedure, the greater delay). 

 The procedure for solving the cause for the interrupt is 
faster when dealing with a small number of interrupts 
which occur simultaneously. 

 
TABLE II. THE PRIORITY ENCODER 

Most   Interrupts for sCPUi    Least     IntRegi 
INT
_0i 

INT_
1i 

… INTii … INTpi [log2 

pi] 
… b1 b0 

0 0 0 0 0 0 0 0 0 0 
1 x x x x x 0 0 0 1 
0 1 x x x x 0 0 1 0 
… … … … … … … … … … 
0 0 0 0 0 1 1 1 1 1 
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Program 1 – pseudo-code for the software prioritization of the events and the interrupts associated with a task 
sCPUi_taski: 
 Initializing the task i 
 
main_sCPUi_loop: 
 Load Rj register with all events and interrupts 
 Waits all sCPUi possible events and interrupts 
              Take the events and interrupts occurred 

Select Inti interrupts 
Test if at least one interrupt occurred (if it is active) 
Jump if no interrupt occurred (jump test_D2Evi ) 
Call interrupt handler procedure (Call IntEvi)                  

 
test_D2Evi: 

Take the events 
Select D2Evi event 
Test if the event it is active 
Jump if the D2Evi event it is not active (jump test_D1Evi) 
Call event handler procedure (call D2Evi) 

 
test_D1Evi: 
 …….. ………………………..  
 
test_TEvi: 
 …….. ……………………….  
 
test_WDEvi: 
 …….. ……………………….  
 
test_MutexEvi: 
 …….. ……………………….  
 
test_SynEvi: 
 // Main body of the task  
 ……. ………………………..  
 Jump main_sCPUi_loop  
 
IntEvi:  

// The procedure for interrupt 
 Save the interrupts 

Take base address of the peripheral 
Take peripheral status for the higher priority interrupt 
Take the interrupt i1 status  
Test if interrupt i1 it is active 
Jump if interrupt i1 is not active  (jump test_inti2) 
Call interrupt handler procedure for the most priority interrupt i1 (call int_handler_i1) 

 
test_inti2: 

…….. …………………………  
 
test_intipi1:  

Test the least important interrupt ip1 
…….. …………………………  
Return from procedure 

 
D2Evi:  

// The procedure for the D2Evi event 
…… …………………………  
  
SynEvi:  

// The last and the least priority event procedure for SynEvi 
……… ………………………  
 
int_handler_i1:  

// Interrupt handler for i1 the most priority interrupt 
………. ……………………...  
  
Int_handler_ip1:  

// Interrupt handler for ip1 the least priority interrupt 
……… ……………………… 
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Priority 
encoder

INT_0i

INT_1i

INT_pi

INT_ii

i = 0 ...n‐1

IntRegi

log2log2

 
Figure 7. The priority encoder 

 
Program 2 - pseudo-code for the prioritization of the events 
and the interrupts associated with a task using  a hardware 
priority encoder 

jIntTable:  
IntH0, IntH1, …, IntHp1i 
// Interrupts table with p1 =< pi 

IntEvi: 
 // Starting the procedure for interrupt 

Save the events 
loop_IntEvi: 

Select Inti interrupts 
Test if at least one interrupts occurred 
Jump if no interrupt occurred (jump  
          exit_IntEvi) 
Take the most priority interrupt that it is active 
Call interrupt handle (call IntH0) 
Take actual interrupts  
Loop to test if exist more interrupts (jump  
         loop_IntEvi) 

exit_IntEvi: 
 Return from procedure 
………………….. 
IntH0:   

// First interrupt most priority one 
Jump to interrupt 0 handler procedure 

IntH1:  
// The second interrupt the next most priority 
Jump to interrupt 1 handler procedure 

…………………..  
IntHp1:  

// The last interrupt least priority one 
Jump to interrupt p1 handler procedure 

………………….. 
interrupt_handler0:  

TODO 
…………………..   
 Return from interrupt handler 
interrupt_handlerp1i:  

TODO 
………………….   
 Return from interrupt handler 
The disadvantages of the solution (presented in Program 

2) are that requires additional hardware for each sCPUi and 
the priorities are fixed at sCPUi level (int_0i has the highest 
interrupt priority and int_pi has the lowest interrupt 
priority). The priority is transferred to the sCPUi, according 
to the interrupts attached. A second improvement, which 
requires additional hardware, promotes the idea that once 
the interrupt-type events gain the highest priority, the 
transfer of the control to the interrupt handler would be 
made directly by loading the PC with the start address of the 
interrupt handler. In this case, the return instruction from the 
interrupts will either return to the interrupt program, if there 
are no more active interrupts, or it will return to the starting 
address of the interrupt handler associated to the next 
priority interrupt attached to a sCPUi. The block diagram is 

illustrated in Fig. 8. The main problem of this solution is the 
generation of the Dec_En signal. The pseudo code for 
generating this signal is presented in Program 3. This 
hardware solution is designed to eliminate the delays 
introduced by the loop in Program 2 (about 10 instructions). 
As one of the advantages, this solution improves the 
response time to interrupts, from the moment when control 
is transferred to the interrupt handler. Returning from an 
interrupt, the handler switches quickly, through the 
modification of jr $ ra’s behavior instruction, to the next 
interrupt handler if there are active interrupts for sCPUi. The 
disadvantage of this solution is that it requires additional 
hardware resources (address decoder, registers with trap 
cells and the generating logic for the Dec_En signal). 

 
Program 3 - pseudo code for Dec_En signal 

It is called the IntEvi procedure 
IntEvi: 
  Repeat while they are active interrupts   

   Enable the scheme for automatic jump to an interrupt 
handler (Dec_En = 1) 

         The content of the registers that contain the cell trap 
for the interrupt handler corresponding to the higher priority 
interrupt is taken and transferred to the PC. 

    Disable the Dec_En = 0, and transfers control to the 
interrupt handler 

         Execute the interrupt handler routine 
            If the jr $ra instruction is executed and there are no 

longer active interrupts  
              (IntEvi = 1) 
           then Exit 
Exit (execute normal jr $ra with return from IntEvi routine)     

VII. CONCLUSION 

The nMPRA has a very good switching time between 
tasks, when an event associated with a higher priority task 
occurs. Because the nMPRA allows simultaneous 
synchronization for up to seven events, a major issue is the 
time in which events can be treated if they occur all at the 
same time. The nMPRA architecture may become less 
efficient if there are no low cost solutions found for this 
problem. This article attempted to perform an analysis of 
this issue in the case of interrupts and only the interrupt 
routine has been taken into account. The last solution 
proposed is a very high speed one (low response time) but 
which implies a significant consumption of hardware 
resources. The proposed solution interrupts the sCPUi if the 
IntEvi procedure is active. From the author’s point of view, 
this is an improvement of the sCPUi behavior to interrupts. 

ACKNOWLEDGMENT 

This work was supported by a grant of the Romanian 
National Authority for Scientific Research and Innovation, 
CNCS/CCCDI-UEFISCDI, project number PN-III-P2-2.1-
PED-2016-1473, within PNCDI III. The infrastructure used 
for this work was partially supported by the project 
“Integrated Center for research, development and innovation 
in Advanced Materials, Nanotechnologies, and Distributed 
Systems for fabrication and control”, Contract No. 
671/09.04.2015, Sectorial Operational Program for Increase 
of the Economic Competitiveness co-funded from the 
European Regional Development Fund. 

       83

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:58:14 (UTC) by 3.224.147.211. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 17, Number 3, 2017 

 84 

  

Priority 
encoder

INT_0i

INT_1i

INT_pi

INT_ii

i = 0 ...n‐1

IntRegi Decoder_i

Sel_0

Sel_1

Sel_i

Sel_pi

Interrupt handler 0

Interrupt handler 1

Interrupt handler i

Interrupt handler pi

Load PC 
bus

Dec_En

Enable

These registers contains  trap 
cells  for interrupts  handlers

 
Figure 8. The priority encoder 
 

[13] D. Andrews, W. Peck, J. Agron, K. Preston, E. Komp, M. Finley, R. 
Sass, "hthreads: a hardware/software co-designed multithreaded 
RTOS kernel", Emerging Technologies and Factory Automation, 
2005. ETFA 2005. 10th IEEE Conference on, vol.2, pp.338, 19-22 
Sept. 2005. doi:10.1109/ETFA.2005.1612697. 

REFERENCES 
[1] J. Shawash, D. R. Selviah, “Real-Time Nonlinear Parameter 

Estimation Using the Levenberg–Marquardt Algorithm on Field 
Programmable Gate Arrays,” IEEE Trans. Ind. Electron., vol. 60, no. 
1, pp. 170–176, Jan. 2013. doi:10.1109/TIE.2012.2183833. 

[14] N. C. Gaitan, V. G. Gaitan, E.-E. (Ciobanu) Moisiuc: "Improving 
Interrupt Handling in the nMPRA", In Development and Application 
Systems (DAS), 2014 International Conference on. IEEE, pp. 11-15, 
15–17 May, 2014. doi:10.1109/DAAS.2014.6842419. 

[2] M. Shahbazi, P. Poure, S. Saadate, M. R. Zolghadri, “FPGA-Based 
Reconfigurable Control for Fault-Tolerant Back-to-Back Converter 
Without Redundancy,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 
3360–3371, Aug. 2013. doi:10.1109/TIE.2012.2200214. 

[15] C. Kyrkou, T. Theocharides, "A Parallel Hardware Architecture for 
Real-Time Object Detection with Support Vector Machines," in IEEE 
Transactions on Computers, vol. 61, no. 6, pp. 831-842, June 2012. 
doi:10.1109/TC.2011.113. 

[3] M. Shahbazi, P. Poure, S. Saadate, M. R. Zolghadri, “Fault-Tolerant 
Five-Leg Converter Topology With FPGA-Based Reconfigurable 
Control,” IEEE Trans. Ind. Electron., vol. 60, no. 6, pp. 2284–2294, 
Jun. 2013. doi:10.1109/TIE.2012.2191754. 

[16] N. C. Gaitan, I. Zagan, V. G. Gaitan, “Predictable CPU Architecture 
Designed for Small Real-Time Application - Concept and Theory of 
Operation,” International Journal of Advanced Computer Science and 
Applications – IJACSA, vol. 6, no. 4, 2015. 
doi:10.14569/IJACSA.2015.060406. 

[4] T. T. Phuong, K. Ohishi, Y. Yokokura, C. Mitsantisuk, “FPGA-Based 
High-Performance Force Control System With Friction-Free and 
Noise-Free Force Observation,” IEEE Trans. Ind. Electron., vol. 61, 
no. 2, pp. 994–1008, Feb. 2014. doi:10.1109/TIE.2013.2266081. 

[5] V. G. Gaitan, N. C. Gaitan, I. Ungurean, “CPU Architecture Based on 
a Hardware Scheduler and Independent Pipeline Registers,” IEEE 
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 
23, no. 9, pp. 1661–1674, Sept. 2015. 
doi:10.1109/TVLSI.2014.2346542. 

[17] L. Andries, G. Gaitan, "Dual priority scheduling algorithm used in the 
nMPRA microcontrollers: Subtitle as needed (paper subtitle)," 2014 
18th International Conference on System Theory, Control and 
Computing (ICSTCC), Sinaia, 2014, pp. 43-47. 
doi:10.1109/ICSTCC.2014.6982388. 

[18] E. E. C. Moisuc, A. B. Larionescu, I. Ungurean, "Hardware event 
handling in the hardware real-time operating systems," 2014 18th 
International Conference on System Theory, Control and Computing 
(ICSTCC), Sinaia, 2014, pp. 54-58. 
doi:10.1109/ICSTCC.2014.6982390 

[6] M. Zimmer, D. Broman, C. Shaver, E. A. Lee, “FlexPRET: A 
processor platform for mixed-criticality systems,” in 20th IEEE Real-
Time and Embedded Technology and Applications Symposium - 
RTAS, pp. 101–110, Apr. 2014. doi:10.1109/RTAS.2014.6925994. 

[7] E. Dodiu, V. G. Gaitan, A. Graur, “Custom designed CPU 
architecture based on a hardware scheduler and independent pipeline 
registers – architecture description”, in IEEE 35’th Jubilee 
International Convention on Information and Communication 
Technology, Electronics and Microelectronics, Croatia, pp. 859-864, 
24 May 2012. INSPEC Accession Number: 12865464. 

[19] I. Zagan, V. G. Gaitan, "Improving the Performances of the nMPRA 
Processor using a Custom Interrupt Management Scheduling Policy," 
Advances in Electrical and Computer Engineering, vol.16, no.4, 
pp.45-50, 2016, doi:10.4316/AECE.2016.04007. 

[20] E. E. Moisuc, A. B. Larionescu, V. G. Gaitan, “Hardware Event 
Treating in nMPRA,” in 12rt International Conference on 
Development and Application Systems – DAS, Suceava, Romania, 
pp. 66-69, 15–17 May, 2014. doi:10.1109/DAAS.2014.6842429. 

[8] E. Dodiu, V. G. Gaitan, “Custom designed CPU architecture based on 
a hardware scheduler and independent pipeline registers – concept 
and theory of operation,“ in IEEE EIT International Conference on 
Electro-Information Technology, Indianapolis, USA, pp. 1–5, May 
2012. doi:10.1109/EIT.2012.6220705. 

[21] A. Kalyansundar, R. Chattopadhyay, "A Novel Approach to 
Hardware Architecture Design and Advanced Optimization 
Techniques for Time Critical Applications," 2008 IEEE/IFIP 
International Conference on Embedded and Ubiquitous Computing, 
Shanghai, 2008, pp. 9-15. doi:10.1109/EUC.2008.113. 

[9] A. S. R. Oliveira, L. Almeida, A. B. Ferrari, "The arpa-mt embedded 
smt processor and its rtos hardware accelerator", IEEE Trans. 
Industrial Electronics, vol. 59, no. 3, pp. 890-904, August 2009. 
doi:10.1109/TIE.2009.2028359. 

[22] I. Zagan, V. G. Gaitan, "Schedulability analysis of nMPRA processor 
based on multithreaded execution," 2016 International Conference on 
Development and Application Systems (DAS), Suceava, 2016, pp. 
130-134. doi:10.1109/DAAS.2016.749256. 

[10] I. Liu, J. Reineke, D. Broman, M. Zimmer, E.A. Lee, "A PRET 
microarchitecture implementation with repeatable timing and 
competitive performance," Computer Design (ICCD), 2012 IEEE 
30th International Conference on, vol., no., pp.87-93, Sept. 30 2012-
Oct. 3 2012, doi:10.1109/ICCD.2012.6378622. 

[23] L. Andries, V. G. Gaitan, E. E. Moisuc, "Programming paradigm of a 
microcontroller with hardware scheduler engine and independent 
pipeline registers - a software approach," 2015 19th International 
Conference on System Theory, Control and Computing (ICSTCC), 
Cheile Gradistei, 2015, pp. 705-710. 
doi:10.1109/ICSTCC.2015.7321376. 

[11] S.A. Edwards, E.A., Lee, "The Case for the Precision Timed (PRET) 
Machine," Design Automation Conference, 2007. DAC '07. 44th 
ACM/IEEE, vol., no., pp.264-265, 4-8 June 2007. 

[12] P. Kuacharoen, M. Shalan, V.J. Mooney III, "A Configurable 
Hardware Scheduler for Real-Time Systems", in Proc. Engineering of 
Reconfigurable Systems and Algorithms, pp.95-101, 2003.  

[24] I. Zagan, V. G. Gaitan, "Improving the Performances of the nMPRA 
Processor using a Custom Interrupt Management Scheduling Policy," 
Advances in Electrical and Computer Engineering, vol.16, no.4, 
pp.45-50, 2016, doi:10.4316/AECE.2016.04007. 

 

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 15:58:14 (UTC) by 3.224.147.211. Redistribution subject to AECE license or copyright.]


