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1Abstract—Electric Vehicles (EVs) have economic and 
environmental benefits for owner and the community. 
However, EV fleet charging may affect distribution network 
(DN) in negative manner. In order to overcome this problem, 
charging process should be coordinated well. If the charge 
coordination is inadequate to satisfy network standard, that 
can be provided by injecting power from some of the available 
EVs to grid. The concept, where EVs supply power to the 
network, is called Vehicle-to-Grid (V2G) and efficiency, 
reliability and stability of the network can be improved with 
V2G technology. Disadvantages of V2G concept are cost of 
coordination, infrastructure changes, battery degradation and 
disruption of EV owner comfort. In this paper, some most 
popular heuristic algorithms such as Genetic Algorithm (GA), 
Partical Swarm Optimization (PSO), Differential Evaluation 
(DE), and Artificial Bee Colony (ABC) are used in order to 
optimize the charge/discharge coordination in V2G concept. 
The optimization algorithms decide status of each EV to 
minimize the coordination cost considering network and EV 
constraints. Thus charging processes of EVs are affected as less 
as possible from coordination process. Results show that, all 
the given algorithms satisfy the network requirements and GA 
is the best in terms of optimization performance. 
 

Index Terms—electric vehicles, genetic algorithms,  heuristic 
algorithms, smart grids, optimization.  

I. INTRODUCTION 

Consumed energy at transportation sector is twenty five 
percent of the total consumed energy on the worldwide [1]. 
Therefore, fossil fuels consumption in transportation leads 
environmental pollution and high energy cost. Along with 
that, there is a growing sensitivity on energy efficiency and 
environment. Electric Vehicles (EVs) are the important 
options to reduce both fuel cost and green gas emissions. 
Therefore, many countries encourage people to purchase 
EV, and as a result, the number of EVs on the road is 
increasing day by day. According to the moderate scenario, 
it is estimated that 35% and 62% of total vehicles will be in 
hybrid or electric form by 2020 and 2050 in US, 
respectively [2]. In 2016, the number of open access charge 
points has reached 320.000 worldwide, growing by 72% 
since 2015 [3]. Such predictions and statistics promise a 
bright future for EV. 
The smart grid, regarded as the next generation power grid, 
includes distributed energy sources, intelligent control and 
advanced communication technologies. It uses bidirectional 
flows of power and information to create a widely 
distributed automated energy delivery network [4]. EVs are 

expected to be an important part of future smart grid with 
their opportunities as much as challenges. The main 
challenge is the huge loads from EV charging due to many 
of the EV owners arrive from work to home between 16.00 
and 19.00 that corresponds the peak times for residential 
distribution network [5, 6]. If vehicles start charging as soon 
as they arrive home it causes such problems as increasing in 
peak load, overloading of transformers, degradation of 
voltage etc. [7-9]. That kind of problems can be solved with 
charge coordination. Moreover, EV can perform more than a 
load in smart grid due to its bidirectional power transfer 
feature once the required necessary infrastructure is 
established [10]. The ability of EVs to inject power into the 
grid is called Vehicle-To-Grid (V2G) technology [11, 12]. 
In this concept, EVs can be used as a generation resource as 
well as a storage device for certain periods of time to 
provide power to the grid.   

 
 

The current situation of V2G technology, the impact on 
distribution network, challenges and opportunities are 
investigated in [10, 11]. V2G system consists of 6 main 
subsystems. In this structure, Energy Supply Provider (ESP) 
provides energy to customers through the distribution 
network (DN). Independent System Operator/ Regional 
Transmission Organization (ISO/RTO) provide the power 
system operation and control. Aggregator determines the 
charge/discharge status of EVs and provides an interface 
between EV, ESP and ISO/RTOs. Charging infrastructure, 
two way electrical power and communication, smart 
metering and control are other subsystems of V2G. As the 
penetration of EVs grows, auxiliary services such as 
frequency regulation, load shaving, spinning reserve, and 
voltage support can be provided by EVs [13-21].  

In [22], optimization methodologies of charge/discharge 
are reviewed and numerical applications are carried out in 
[23]. Comprehensive objective function subject to 
constraints should be defined for optimal charging 
strategies. Objective functions are generally based on 
minimizing cost [24], power loss [13] and maximizing 
voltage profile [21], welfare [25], V2G revenue [26] etc. 
Constraints indicate the bounds of physical limit of system 
and EV owners’ specifications. After defining objective 
function subject to constraint, optimization method is 
applied to reach best solution. Though numerous 
mathematical optimization methods such as linear 
programing [27], non-linear programming [28], dynamic 
programming [29], game theory [30] etc. have been used to 
solve the optimum charge/discharge problem, they have 
some draw-backs. Simplification may be required for 
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mathematical methods due to difficulties in solving highly 
non-linear and non-convex terms of objective function. This 
may lead to the loss of accuracy and non-optimum results. 
Also, mathematical methods cannot address the high 
dimension problem in a reasonable amount of time [31]. By 
contrast, heuristic algorithms naturally immune to non-
linear, non-convex and high-dimensional systems, 
computational time can also be limited. Hence, heuristic 
algorithms are generally preferred for solving optimum 
charging coordination which is high dimensional and 
complex problem [32].  

In [33], charging coordination of EV is provided using 
GA without peak load mitigation in their formulation. In 
[34], Particle Swarm Optimization approach is proposed in 
order to maximize EV owner income and mitigate power 
losses in distribution system. Peak load and network losses 
are decrease 9.76% and 2.62%, respectively. However, 
system voltage is not considered as constraints. In [35], Ant-
based swarm algorithm is performed for charging 
coordination of EVs with load fluctuation and the 
transformer capacity constraints. While peak valley 
differences were 504.54 kW in free charging mode, it is 
decreased to 127.49 kW with charging coordination. 
However, EVs are not located in a distribution system. 
Hence, system losses and constraints are ignored in 
simulations. In [25], proposed algorithm aims to maximize 
the total utility considering EV charge demands. The 
method provides charging profits 3.4 times much more 
earned by the no-control strategy. However, only 
transformer capacity is taken into account as network 
constraints. In [36], Hybrid particle swarm optimization 
Gravitational Search Algorithm based optimization is used 
in order to optimally allocate power to each of the EVs. As 
increase in EV penetration, fitness value is increased from 
144.838 to 183.094.  However, no systems level realistic 
assessments have been performed.  

In [37], Genetic Algorithm based solution is proposed for 
optimizing EV coordination in order to flatten load profile. 
However, the method does not guarantee fully charged 
battery at departure time.  In [38], a heuristic algorithm is 
proposed to solve problem of scheduling EV charging with 
storage units. The aggregator’s revenue can be improved by 
80.1% using optimal charging scheduling. However, EV 
owners’ benefits and EV constraints are not mentioned.  In 
[39] and [40], EVs charging load is not considered 
individually, total load is assigned for system improvement. 
Hence, EV owner satisfaction is not provided. In [41], 
charging power of EVs in a fixed period is maximized. 
However, behavior of EV owner is not taken into account. 

In [42], an EV charging coordination strategy is proposed 
with objective function of charging cost. Also system 
constraints are considered. In [43], Tabu Search algorithm is 
used to minimize the total operational costs of the 
distribution system. In [44], proposed method determines 
optimal schedule for the charging of each EV considering 
system requirements and individual EV owners. However, 
V2G strategy is not involved in [42-44].  

On these bases, optimization unit should make optimal 
coordinated charge/discharge decisions in order to satisfy 
system constraints, meet power demand, maximize 
aggregator profit and owner comfort level. Nevertheless, 

most papers fail to simulate EV coordination considering a 
distribution network or ignore some system constraints. 
Hence, system reliability is not guaranteed. Also, charging 
freedom has higher priority than financial income for EV 
owners in reality. Namely, delaying charging or discharging 
to grid negatively affects EV owners comfort. However, 
many of researches have deficiency in terms of EV owners 
satisfaction.  

This paper addresses the charge/discharge coordination 
problem of EV for supporting system in a V2G concept. Our 
contributions are as follows; 

- The methodology that considers, the uniform 
randomness of arrival and departure times, initial state of 
charge and EVs are located in IEEE-33 bus system to 
achieve realistic results.  

- We proposed an objective function which minimizes 
cost of aggregator, guarantees maximum charging level of 
battery at departure time and satisfy network constraints in 
V2G systems simultaneously. Also, EV batteries reach to 
full as soon as possible. Hence, comfort level of EV owner 
is maximized.   

- Swarm based (ABC, PSO) and evolutionary based (GA, 
DE) heuristic algorithms are used to solve optimum 
charge/discharge coordination and comparative results are 
presented. 

II. PROBLEM FORMULATION 

The increase in EV penetration will result in additional 
loads on the electricity grid. Moreover, simultaneous 
charging of all EVs causes violation in system limit. 
However, due to the V2G features, EVs can supply energy 
to distribution grid. The aggregator collects individual EV 
data and coordinates the EV charge/discharge based on 
ancillary service signal. Charge/discharge coordination 
problem is optimizing charge/discharge status of each EVs 
in order to obtain an economical operation of the 
distribution system and satisfying the system requirements 
of the system. Objective function of charge/discharge 
coordination can be technical or economical. In this work, 
objective function aims to minimize the cost which 
aggregator has to pay EV owner in order to provide system 
constraints. When the network constraints are violated, the 
aggregator decide status of each EVs to charge/discharge in 
order to reduce system load and improve system voltage . 
The charge/discharge tasks are assigned to EVs based on 
coordination cost. While control variables are 
charge/discharge status of EV, value of objective function 
depends on these variables.   

The objective function ( )f x  is cost of charge discharge 

coordination to be minimized. ( , )x u  defines power flow 

equations and ( , )x u  indicates physical boundaries of the 

power system. 

 , 0
. ( )   

( , ) 0

x u
Min f x subject to

x u







  (1) 

Network standard is satisfied with optimization of 
charge/discharge coordination. State and control variables, 
constraints and objective function are formulated below. 

 
State and control variables: 
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State variables of DN and EV are described as follows; 

         , , ,

1,2,.. , 1, 2,..
DN m n nP t V t P t SOC t

x t
n N m M

 
 

|



   (2) 

 DNP t represents the total load of the DN at . t M  is the 

total bus number of the network and each buses are indexed 
by  denotes the voltage of bus m at . 

 is the number of EVs connected to the network at t  and 

each connected EV is indexed by  

1, 2 ,... .m M  mV t t

N

1, 2,... .n N  nCSO t  is 

the state of charge of the EV battery at . t
Charge/discharge coordination requirement is decided for 

each  based ont  x t . Coordination is not required if the 

system is within limits. In case the network is out of the 
limit, first the charge coordination is applied. Charge 
coordination refers selection of EVs to stop charging 
process. If charge coordination fails to return to the network 
limits, then discharge coordination will be applied. 
Discharge coordination refers selection of EVs to be 
discharged. Status of each EV is considered as control 
variables at t  as follows; 

    | 1, 2..nu t u t n N      (3) 

where  is the control action on EV at .  nu t t  nu t

n

= 1 

means EV  is allowed to charge. = −1 means EV  

is assigned for discharge. If = 0, EV  neither 

charges nor discharges. Naturally, The EVs, has not arrived 
yet, are not consider for charging or discharging options.  

n  nu t

 t
n

nu

Network Constraints: 
The total distribution network load  includes 

denotes total household load on the network, 

 DNP t

 HP t  EVP t  

indicates total EV load and  LP t  represents losses on the 

network as shown in (4) and (5). 

       DN H EV LP t P t P t P t  

   EV n
n N

P t P t


 
  (4)

    (5)  

 Limit of DNP which is decided by the generation capacity 

and the distribution transformer rating given as follows; 

  max
DN DP t P N     (6) 

Limit of  given as follows;   mV t

 min max
mV V t V    (7)  

Electric Vehicle Constraints: 

 1nE t    denotes the energy of EV n  at ,  1t  t  is 

the minutes interval between  and . t  1t   tmiss
nE and 

calculates the amount of the missing energy and 

required time to reach maximum allowed capacity at t  as 
represented in (8) and (9).  

( )reqT t

   max 1
60

miss n
n n

t P
E t E E t

      
  

( )naet t  is availability end time for charge/discharge 

coordination.  is departure time of EV and  is 

calculated subtracting  from  as given in (10).  

dep
nt n ( )naet t

( )reqT t dep
nt

( ) ( )dep
n n reqaet t t T t    (10) 

The EVs only charge if the current time is equal or later 
than as given in (11).  ( )naet t

           1n mif t aet t u t   (11)  

Namely, EVs cannot be used for charge/discharge 
coordination later .  Otherwise, battery of the EV  

would not be in maximum capacity at departure time. 
 constraint is applied to ensure the maximum 

capacity of EV n  at departure time. The EV users may 
provide a departure time or it can be estimated by 
probabilistic methods based on history of EV usage path 
[12]. 

( )naet t n

( )naet t

Availability of EV  for charge/discharge coordination is 

also depending on user preferences and battery

n

 nSOC t


 

which is the rate of current energy  to energy 

capacity of EVs 

  nE t

  ECn t  as given in (12).   

   
 

n
n

n

E t
SOC t

EC t
   (12) 

min
nSOC  and , minimum and maximum limit of max

nSOC

 nSOC t  as given in (13).  

 min max
n nSOC SOC t SOC  n   (13) 

In case of   max
n nSOC t SOC t

n

 , EV  stop charge. 

Similarly, EV  is not available for discharging in case 

of

n

   min
n nSOC tSOC t  . 

 
Objective Function: 
The cost of charge/discharge coordination is considered 

as the objective function  f x  to be minimized as given in 

(14). Therefore the aggregator and EV owner are affected as 
less as possible from coordination process.  ,n dccP t

n

, 

denotes the purchased discharge power from EV  and 

dcc is the cost of discharge per kW. Similarly,  ,n ccP t

cc

 

indicates the delayed charge power of EV n .   and 

dcc are the costs of delayed charge and discharged power, 

respectively. pen , pen  and penaet are penalty functions 

which occur in case of violation of maximum load, voltage 
and availability end time  at  as presented (15), (16) and 
(17).  is penalty coefficient. 

t

penc

     

     

, ,
1 1

, *
N N

n dcc dcc n cc cc
n n

pen pen pen

f x t P t P t

t t aet t

* 

 
 

   
    
   

  

 
 (14) 


  (8)

 
60

( )
miss
n

req

E
T t

P


    (9) 

      max max*    pen DN DN pen DN DNt P t P c if P t P     (15) 

      min min

1

*    
M

pen m pen m
m

t V V t c if V t V


    (16) 
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1

( ) *    
N

pen n pen n
n

aet t t aet t c if aet t t


    (17) 

III. OPTIMIZATION OF EV CHARGE/DISCHARGE 

COORDINATION WITH HEURISTIC ALGORITHMS 

Heuristic Algorithms are effective in solution of power 
systems due to ability of scanning wide range of solution 
quickly and approaching global optimum although the 
solution is generally reached locally optimum with classical 
methods [45]. Some optimization algorithms are presented 
for optimum coordination of charge/discharge process in the 
literature [46-48].  In this work, evolutionary and swarm 
based algorithms are used for EV selection in order to 
optimize charge/discharge coordination in the network 
structure of V2G. In Fig.1, flowchart of optimum 
charge/discharge coordination with heuristic algorithms is 
given. First, the charge/discharge coordination requirement 
is determined running Backward/Forward (B/F) Sweep 
power flow considering the voltage and maximum load limit 
in the system. Status of each available EV is determined 
randomly. If any violation occurs, penalty function is 
applied. Best solution is selected considering fitness values 
of solutions. The solution is updated using operators of 
algorithms in each iterations. Iteration is stopped when it 
reaches the maximum iteration number.  

 
Figure 1. Flowchart of the optimization process of charge/discharge 

coordination with heuristic algorithms 

 
Whereas chromosomes represent the potential solutions in 

GA and DE, quality of food sources and distance of the 
particle to the food represent potential solutions for ABC 
and PSO, respectively. In [49], new optimization criteria is 
defined that can be used of fuzzy controller with dynamics. 

The solution vector of heuristic algorithms 

 1 2, , ,...,i i i ij iD X x x x x

1, 1,
,..., ,

t ta d
U u u

i

 corresponds to control variable 

vector in EV 

charge/discharge coordination problem. Number of 
variables in the solution vector equals the number of control 
variable elements of U .  is the total number of potential 
solution.  is the number of potential solution, i m

 , , , ,
..., ,..., ,..., ,...,

n t n t N t N ta d a d
u u u u

mi
1.. i . 

Each potential solution include  dimensional control 
variable vector. 

D
j  is the number of parameter in  variable 

vector, 1...j D  [50, 51]. j th parameter of th solution 

vector  

i

ijx represent the charging action of EV  at . 

Control variables vector which demonstrates the charging 
status of each EV for each time and it can be arranged as 
shown in (18). Therefore, the i th solution of heuristic 
algorithms has been encoded by a control variable. Number 
of rows equal to the dimension of the total number of 
aggregated EV 

n t

 N  and a number of columns depend on 

the number of time interval between arrival  at  and 

departure  dt  of the each EV. Although parameters are 

defined as a matrix in [52], control parameters are not 
mentioned in a matrix due to plug in durations of each EV is 
different here.   

 



, ,.

,..n t

N N

u
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N

 

1 1 1,
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..,
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a d

a d

t

t N t

u u

u u u



 



,

.,

a dt t

n

u

u

2,n

 

U u















min
jx x

  (18) 

Each EV is indexed by . When EV arrives 
the home and plugged in, SOC of EV read and departure is 
provided or it is estimated based on historic. The problem is 
solved and charge/discharge statues of EV are updated for 
each time interval. The EVs charging schedule is generated 
between arrival and departure of EV [34].  is control 

parameter of th EV in the t th time for th solution.  

Value of  defines the charging status of EV [5]. As 

mentioned detailed in Section-2, charging status can be 1, -1 
and 0 expressing the charging, discharging and no action, 
respectively.  The presented methodology finds the optimal 
charging schedule in order to solve EV charge/discharge 
coordination. The aggregator has to pay to EV owner for 
discharge and delayed charging process. Objective function 
is used to minimize cost of charge/discharge coordination. 
Charge and discharge times of EVs are decided using 
heuristic algorithms. While the cost of coordination 
minimizes, EV owner and system constraints are satisfied. 

1, ...,

,
i
n tu

in

,
i
n tu

,i j

Common process of the algorithms is similar but operators 
of each algorithms change solutions. In the algorithms, th 

parameter of i th solution is initialized randomly 
considering upper and lower limits of the parameter as 
follows; 

j

 max min0,1 j jr x x      (19) 

Best solution is selected considering their fitness values 
as follows;  

1

iss
ip

mi

i i

fitne
   (20)  

fitness





The algorithms develop quality of solutions using their 
own unique operators which explained detailed under their 
headings. 

A. Genetic Algorithm  

New population is created using gene of chromosomes of 
previous population [53]. Best fitness of the chromosomes is 
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selected and transfer to next population. Firstly, 
chromosomes which refer the solution set are encoded.  
After random initialization, operator of reproduction, 
crossover and mutation are used. Chromosomes are selected 
from previous population for reproduction. Crossover refers 
gene changes between chromosomes as shown in Fig. 2.  

 
Figure 2. Crossover process in GA 

 

Mutation is random changing between genes of a 
chromosome as shown in Fig. 3. It creates individuals in the 
solution space but those are not in the population. Different 
mutation methods are available according to the coding 
types of individuals. 

 
 

Figure 3. Mutation process in GA 
 

Selection process is applied after genetic operators and 
the current population is updated with selected population. 

B. Differential Evaluation 

DE is a population based algorithm. Each chromosome is 
exposed to mutation, cross over and selection operators in 
order to create a new individual [54]. In mutation Donor 

vector  is created by multiplying with scaling factor   ,i jv t 
 F difference of two chromosomes    and added to 

the third one   as follows; 

1, 2r r

3r

      , 1, 2, 3,1i j r j r j r jv t x t F x t x t      (21) 

In cross over, the trial vector  is created mixing 

current vector 

 iU t

 iX t  and donor vector  iV t  with 

Crossover Rate . ( )CR

   
 

,
,

,

,     [0,1]   ,

, .
i j rand

i j
i j

v t if rand CR j j
u t

x t otherwise

   


 (22) 

In selection, the chromosome which has the highest 
fitness degree is transferred to the next generation regarding 
to comparison of  iX t  and trial vector  iU t . 

    
 

          ,,
1

, .

i ii
i

i

if f U t f X tU t
X t

X t otherwise

   


 (23) 

C. Particle Swarm Optimization 

Searching for food of particles is simulated as searching 
solution for an optimization problem [55]. Fitness value of 
the particle refers its distance to food. Main operators are 
velocity and the position of the particle. Velocity of the th 
particle updated as follows; 

i

        1 1
1 1 1 1

t t t
t i i iv wv c r pbest x c r gbest x      t

i



 (24) 

where  is best previous solution, 

and 

 1 2, ,...,i i iDpbest p p p

gbest  is best global solution in the memory.  is 

number of current generation,  are uniform random 

value in the range [0, 1], is  inertia weight factor,  

are acceleration constant of  and 

t

1,c c

1,

w

pbest

2r r

i

2

igbest . Position of 

th particle is updated summing its previous position and 

current velocity as follows; 

i

 1t t t
i i i

1x x v      (25) 

D. Artificial Bee Colony 

A bee colony consists of three group bees; employed, 
onlookers and scouts [56]. Employed bee is on the food 
source in advance and it shares the quality of the source with 
onlookers bee. Onlookers bees select food sources 
considering source’s nectar quality. Scouts scatter randomly 
to explore new food sources.  

Producing new food sources: It is the operator of ABC. 
Neighborhood principle is considered by employed bees in 
order to decide the new food sources. Neighbors of quality 
food sources are selected as new sources as follows;   

   (26)  , , , , ,i j i j i j i j k jv x x x  

v
i

 represents new food source. More quality sources have 

more probability to be selected. 

IV. SIMULATION RESULTS 

Optimization of charge/discharge coordination using 
heuristic methods are implemented on  33 bus residential 
distribution networks serving 1000 houses with nominal 
voltage of 12.66 kV and base power of 100 MVA. Houses 
are separated to 33 bus distribution network proportional 
with the load data of the network as given in APPENDIX A 
[57]. The load profile is generated in GridLAB-D which is 
developed by Pacific Northwest National Laboratory as a 
modeling and simulation tool of electric network [58, 59]. 
Load flow and optimization is simulated in MATLAB [60]. 

AB-D allows detailed modelling of end use 
technologies based on users’ behaviors and control of 
appliances.  Multi-state appliances models were used to 
obtain realistic load profiles in house and distribution 
system. Total load profile of distribution system depends on 
many factors such as set points of thermostatic loads, output 
temperature, appliance usage frequency etc. In this study, 
simulated appliances are clothes washers, dishwashers, 
clothes dryers, refrigerators, plug loads, lighting loads 
HVAC units (heating, ventilating, and air conditioning),  
water heaters, and ranges [9, 61, 62]. House area is assumed 
to vary from 140 m

GridL

2 to 230 m2. Meteorological data of 
Yakima, WA, USA is used as outdoor temperature and 
simulation is carried out in July.  Cooling and heating set 
points of houses are selected between 21.1-23.8°C and 18.3-
20.5°C, respectively. The set point of water heater is 48.8°C. 
Usage frequency of random pulsed appliances such as dryer, 
clothes washer dishwasher, range are varied by GridLAB-D 
based on calibrated End-Use Load and Consumer 
Assessment Program (ELCAP) residential load data [63]. 
The voltage magnitude at the substation was fixed at 1.0 p.u. 
(per unit). Maximum and minimum voltage magnitude 
limits are defined 1.00 p.u. and 0.9 p.u., respectively [64]. 
Load capacity is specified as 5000 kW. Three models of 
EVs placed randomly in 33 bus distribution network as 
given in APPENDIX A.  Specifications of connected EVs 
are given in TABLE I. EV may be used for commuting or 
longer trips with higher capacity batteries. We considered 
daily commuting purpose and features of EVs were chosen 
to suit this purpose. 
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TABLE I. FEATURES OF EV IN 33 BUS DN 

 EV1 EV2 EV3 
Number of 

Connected EVs 
131 104 165 

Battery 
Capacity (kWh) 

16.5 17 24 

Charge/Disch. 
Power(kW) 

1.9 3.0 3.3 

Range (mile) 58.7 54.4 86.8 

 
EV owners mostly departure from home between 06.00-

09.00 and arrive home between 16.00-19.00. Hence, 
departure and arrival time distribution of EV created 
according to a normal probability distribution function with 
the mean at 07:30 and 17.30 of the variance of 1 h, 
respectively [65]. Daily average trip distance is 33 mile 
according to [66]. Trip distances of each EVs are calculated 
using probability distribution function with the mean at 33 
mile of the variance of 4 mile. is battery state of 

charge at arrival time and calculated as follows; 

arr
nSOC

maxarr n
n n n

n

range
SOC SOC dis

EC

 
  

 




 (27) 

arr
nSOC  depends on roundtrip distance  , range ndis

 nrange

max
nSOC

 and energy capacity of EV. Due to deep discharge 

and full charge decrease the battery life, EV  is allowed to 

be charged and discharged between and 

[67]. These are randomly selected as follow; 

n

SOCmin
n

 max
nOC 0.9 0.99rand S ,  min

nSOC rand 0.3 0.4  .  

It is assumed that the aggregator has to pay 1.5 $/kWh 
and 5 $/kWh for delayed charging power and for discharged 
power to EV owner. 

B/F Sweep method is used to perform a load flow 
analysis [68]. Line currents and bus voltages are calculated 
for each iteration to determine EV states to provide optimum 
charge/discharge coordination. At the initialization step, 
voltage of each bus assumed 1.0 p.u. and voltage deviations 
of buses are calculated. In the backward step, the currents 
are computed considering voltages of the previous iteration. 
In forward step, the node voltages are updated using voltage 
drops on the distribution network lines. The currents and 
voltages are updated iteratively until nodal voltage criterion 
satisfied. 

Charge/discharge coordination is required when the DN 
constraints are violated. If the network does not turn to its 
limit although all EV stop charging, then discharge 
coordination is applied. Optimum charge/discharge 
coordination process determines the charge/discharge states 
of each EV to minimize the cost of coordination and 
disturbance of EV owners. 

V2G system consists of three main components; grid, 
aggregator and EVs. There is a bidirectional communication 
and power flow between components. That can be foreseen 
to be available in the future smart grid. Also, smart meters 
play important role in order to send and receive data. The 
aggregator receives the support signal from operator, if the 
system limits are violated. Then, the aggregator of EVs 
starts to coordinate charge/discharge schedules to meet 
system requirements. Charging status of each plugged EV 

are decided to minimize objective functions. Following 
consideration is assumed in the application: 
-EVs have ability of bidirectional load flow and grid has the 
required infrastructure for communication between EV and 
aggregator.  
- The EV coordination is controlled for each time interval 
which time period is divided into.  
-Departure time of each EV is notified by user or it is 
estimated from historic driving patters.  
-The EV owner permits the aggregator to determine 
charging status of EV.   

In Fig. 4, EV load, DN load w/ and w/o EV are given. 
Uncoordinated charging process starts at 14.30 and finish 
around 24.00.  Peak load is increased from 4760 kW to 5593 
kW with integration of EVs at 18.00. Although total EV 
load is 748.5 kW, increase at total load is higher with 
increase of losses. Total load of the network is 4997 kW at 
18.30. After that, total load is also lower than the maximum 
load limit of the network despite EV penetration.  
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Figure 4. Total load and EV load of DN 

 

In Fig. 5, minimum bus voltage magnitudes of DN are 
presented. The minimum bus voltage magnitude is lower 
than the 0.9 p.u. w/o EV penetration only at 18.00. That 
means, if all EV stopped charging process the network 
would be still out of limits. Therefore, discharge 
coordination of EV is required at that time. Because charge 
coordination is not adequate to satisfy network limits. On 
the other hand, minimum bus voltage decrease below 0.9 
p.u. from 17.30 to 19.30 with the uncoordinated charging 
process of EV. Charging coordination is needed at those 
times except for 18.00.  
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Figure 5. Voltage magnitude w/ and w/o EV 

 

In Fig. 6, total network losses which highly increase with 
integration of EV are given. Total network losses increased 
from 300 kW to 383 kW at peak time.  

In this paper optimization of charge/discharge 
coordination is provided using heuristic methods, GA, PSO, 
DE and ABC. The results of each algorithm are compared 
with each other.  For each algorithm, population size and the 
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iteration numbers are selected 20 and 100, respectively. 
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Figure 6. Losses of DN w/ and w/o EV 

 

The best values of specific parameters of each algorithm 
are chosen based on experiment as follow; 

PSO: [ , ] = [0.5, 1.2, 1.5].  affects the search 

ability significantly but   and  decided the final values 

of position expectation and position variance. If  is 
selected too small, particles may not search sufficiently. 
Low values of   and may lead particles to search far 

from target region before tugged back. High values of the 
weighting factors   and may cause excessive motions or 

overshooting in the target region [69]. 

w 1, 2c c

1c

1c

w

1c

2c

c

2c

w

2

DE: [  F , ] = [0.6, 0.4]. Small values of CR  result 

in gradual and small exploratory moves in search space, 
while large values of CR  produce rapid moves at angles to 
the search space’s axes. Using too small a value of 

( )CR

F  leads 
to premature convergence, while high value high values 
slow down the search [70, 71]. 

ABC: Limit= [100]. Limit is the number of trials which 
bees to leave the food source. If limit is too low, sufficient 
search cannot be performed. If it is high, too much search is 
performed on one food source. Although time consumption 
is increased, the solution may not be increased [72].   

GA: [Crossover, Mutation, Selection] = [Scatted, 
Constraint dependent, Roulette] 

In Fig.7, Converge curves of the algorithms which are 
employed for charge coordination cost at 17.30 are shown 
due to network load and EV load level are same for each 
algorithm at that time. GA has the best results with $0.014. 
Initialization value of GA is also better than other 
algorithms. Although, initialization values of PSO, DE, 
ABC are almost same, ABC has the highest value with 
$0.089.  
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Figure 7. Coordination cost convergence curve at 17.30. 

 

In Fig. 8, daily costs of the charge/discharge coordination 
process using heuristic algorithms are shown. Optimization 
of coordination process starts at 17.30 and finish at 19.30 for 
each algorithm. Charge/discharge coordination is not 

required due to voltage and load of the network are within 
the limits at 20.00. Daily cost of coordination process are 
$833.10, $2871.90, $3288.30, $4169.10 using GA, PSO, 
DE, ABC, respectively. Cost of charge/discharge 
coordination changes depending on selected EV. Because 
connected bus of selected EV is significant for voltage 
support. Minimum cost is obtained using GA due to 
optimum selection of EV for coordination process.  

GA PSO DE ABC
0

1000

2000

3000

4000

5000

C
os

t (
$)

 

 

 

 

GA
PSO
DE
ABC

Figure 8. Daily cost of charge/discharge optimization 
 

While the coordination process creates a cost for the 
aggregator, it also discomforts the EV owners by 
discharging or delaying charging process. Amount of 
discharged or delayed load are given in Fig. 9. V2G 
discharge period is shown in a box. Discharged powers are 
93.5 kW, 146.1 kW, 180.8 kW, 254.2 kW using GA, PSO, 
DE and ABC at 18.00, respectively. EVs fully charged 
earlier with GA due to amount of delayed charging process 
is lower. Therefore number of charging EV is lower with 
GA at 19.30. Also, GA had the best convergence 
performance. Hence, delayed charging loads are 22.6 kW, 
76.1 kW, 166.3 kW, 336.1 kW using GA, PSO, DE and 
ABC at 19.30, respectively. Delayed or injected load is 
absent at 20.00. 
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Figure 9. Delayed or injected load during coordination 
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Figure 10. Number of EV that used for charge/discharge coordination 

 

In Fig. 10, number of the EVs which affected from 
optimum charge/discharge coordination is presented. 12, 25, 
41 and 78 EVs are selected to stop charging at 17.30 and 30, 
57, 67, 92 EVs are selected for discharge at 18.00 by GA, 
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PSO, DE and ABC, respectively. GA presents the minimum 
number of selected EVs for coordination as well as the cost 
of coordination. The difference between algorithms is more 
evident at 19.30. While GA selects only 10 EVs, ABC 
selects 123 EVs to satisfy network requirement at 19.30. 

In Fig. 11, total load of DN is presented for given hours. 
Total load of DN with GA is higher than others during 
charge/discharge coordination due to allowing using 
maximum capacity of the network. Total loads of DN  are 
4652.1 kW, 4595.6 kW, 4558.3 kW, 4479.7 kW using GA, 
PSO, DE and ABC at 18.00, respectively. However, total 
network load with GA is lower at 20.00 because of EVs 
which ended charging process before 20.00.  Total loads of 
DN are 3948.7 kW, 4089.7 kW, 4136.8 kW, and 4184 kW 
using GA, PSO, DE and ABC at 20.00, respectively. 
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Figure 11. Total load of the DN 

 
In Fig.12, voltage values of each bus are given for 18.00. 

Minimum voltage magnitude w/o EV is lower than 0.9 p.u. 
only at 18.00. Therefore, discharge coordination is applied 
only at 18.00, while charge coordination is applied at other 
given times. Voltage magnitude is increased from 0.8768 
p.u. to 0.9 p.u. with the given algorithms during discharge 
period.  
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Figure 12. Voltage magnitude of each buses at 18.00  

 
TABLE II. MINIMUM VOLTAGE MAGNITUDES WITH GA, PSO, DE, ABC 

Minimum Bus Voltage (p.u,) 

Hour 
w/o 
EV 

w/ EV 
 

GA 
 

PSO DE ABC 

17.30 0.9129 0.8980 0.9000 0.9001 0.9007 0.9023 
18.00 0.8942 0.8768 0.9000 0.9001 0.9003 0.9008 
18.30 0.9082 0.8907 0.9000 0.9001 0.9002 0.9000 
19.00 0.9113 0.8929 0.9000 0.9010 0.9002 0.9000 
19.30 0.9168 0.8971 0.9000 0.9003 0.9005 0.9039 
20.00 0.9335 0.9149 - - - - 

 
Also, minimum voltage magnitudes are increased to 

minimum 0.9 p.u. with charging coordination at other given 
times as demonstrated in TABLE II. The coordination is not 

required at 20.00 due to any of the bus voltages are not 
lower than 0.9 p.u. or total load of the system is not higher 
than 5000 kW. 

V. CONCLUSION 

The power consumption which is already continuously 
increasing stressed on network much more with the impact 
of charging EVs in peak hours. This leads to problems such 
as overloading, voltage drops etc. in distribution network. 
These problems can be solved by deferring charging and 
injecting power from EV using V2G feature in the smart 
grid infrastructure. However charge/discharge process 
should be well optimized considering system requirements, 
cost and comfort of EV owner. In this study, 
charge/discharge coordination cost is minimized to increase 
each bus voltage to EN50160 standards and reduce the total 
load below the maximum network load capacity using GA, 
PSO, DE and ABC. Also it is provided that EVs to be 
charged maximum at departure time. Therefore charging 
process and EV owner are affected as less as possible from 
coordination process.  In case of comparison of the 
algorithms, GA provided both minimum cost and maximum 
convenience for EV owners. While the cost is minimized, 
network capacity is optimally used not to discomfort EV 
owner by reducing the number of selected vehicles for 
charge/discharge coordination. This allows both vehicles to 
be charged as quickly as possible, as well as longer average 
battery life due to minimizing number of switched EV. 
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APPENDIX A 
TABLE A. NUMBER OF HOUSES AND EV IN EACH BUS 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

  Number of EV 

Bus No 
House 
Num. 

EV1 EV2 EV3 

1 0 0 0 0 
2 27 0 0 0 
3 24 7 3 3 
4 32 6 2 6 
5 16 0 6 0 
6 16 7 0 0 
7 54 0 0 0 
8 54 0 0 0 
9 16 4 4 6 
10 16 7 1 5 
11 12 2 2 7 
12 16 9 5 0 
13 16 7 3 3 
14 32 21 0 0 
15 16 7 3 3 
16 16 1 6 7 
17 16 7 0 0 
18 24 0 7 7 
19 24 0 0 14 
20 24 0 21 0 
21 24 1 2 10 
22 24 10 7 3 
23 24 6 4 11 
24 113 14 9 5 
25 113 26 6 3 
26 16 7 0 0 
27 16 3 5 6 
28 16 0 0 0 
29 32 3 2 5 
30 55 10 6 6 
31 41 0 0 0 
32 58 0 0 21 
33 17 0 0 0 
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