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1Abstract—Pressboards are commonly used as insulating 

materials employed in electrical connections of transformers. 
Pressboards are typically made from vegetable fibers, which 
contain cellulose. The proper operation of power transformer 
depends mainly on constant monitoring of insulation materials 
against failure. Due to the complex and close structure of 
power transformers, it is very challenging task to detect failure 
and hence possible location of degradation of pressboard 
internally. Generated discharge signals may result in 
breakdown of system insulation and system failure. In this 
study, the investigation of insulation degradation is fulfilled by 
analyzing discharge signals and simultaneously produced 
acoustic signals during discharges. For this purpose, a test 
setup is used for investigating discharge signals of pressboard 
samples under different electrical stresses. This paper proposes 
monofractal and multifractal analysis of discharge and acoustic 
signals of pressboards. The Higuchi’s method is an effective 
monofractal analysis tool for measurement of fractal dimension 
of self-affine signals, which is proposed for online monitoring 
of discharge signals of pressboards. In order to investigate 
obtained discharge signals with accelerated fluctuations 
effectively, multifractal detrended fluctuation analysis is 
proposed for these signals, which exhibit nonlinear behavior.   
 

Index Terms—partial discharges, power transformers, 
fractals, acoustic sensors, power quality. 

I. INTRODUCTION 

Power transformers are key elements in electrical power 
systems, whose insulation construction consist of mineral 
oil, paper and pressboard (transformer board) [1-3]. The 
service life of a transformer is strictly related to the 
insulation performance of the pressboards. Electrical 
discharges observed on the surface of the pressboard may 
lead to carbonized tracking patterns and hence accelerate the 
deterioration and the total breakdown [4-5]. It is a complex 
task to detect electrical tracking patterns on the pressboard 
by using real time monitoring systems; hence recent studies 
have focused on Partial Discharge (PD) characterization and 
the link between PD and degradation of the pressboard 
surface [5-9]. In addition to PD analysis, various effects on 
the mechanical and electrical strength of pressboards have 
been investigated in literature [10-12]. Moreover, the 
degradation patterns, which are originated from the surface 
discharges and penetrated deep inside the pressboards, are 
analyzed [13-15]. 

Most of the studies mainly focus on analyzing the 
relationship between the PD and surface pattern intensity. 
However, in order to interpret service life and possibility of 
breakdown, an efficient method for early detection of 

insulation failure is required. For this purpose, the 
estimation of pressboard surface distortion by investigating 
PD signal’s characteristics is proposed. The fractal 
dimension calculation is employed for the analysis of PD 
signal’s characteristics.  

 
 

Fractal geometry presents a set of mathematical 
computations for investigating irregular geometric shapes. 
Fractal geometry and fractal dimension concepts deal with 
irregular and self-similar images, which are emerged from 
nature [16-18]. These images, namely fractals have similar 
subsets in every scale and hence small segments of the 
fractal figure contain complete figure data without any loss. 
In the classical geometry objects are computed with integer 
dimensions, however the fractal geometry estimates non-
integer dimensions for fractal figures [19-21].  

The monofractal analysis is based on a single parameter 
(power law exponent) which is fractal dimension of the 
observed fractal signal [22]. An efficient monofractal 
computation method for time series analysis of self-affine 
signals has been introduced by Higuchi in 1988 [23]. In this 
method, estimation of spectral exponents of complex time 
series signals are facilitated by employing fractal dimension. 
The classical fractal dimension calculation processes fractal 
figure and analyzes figure dynamics. On the other hand, 
Higuchi’s approach for fractal dimension estimation is a 
very useful method since it assesses time series signals, 
which are applicable for PDs on the pressboard. Many 
applications are available to use Higuchi’s fractal dimension 
(HFD), especially in biomedical studies [24-26].  

Multifractal signals are analyzed based on power 
spectrum of power law exponents (dimensions) where 
fundamental exponent is obviously fractal dimension. 
Higher order dimensions of this power spectrum is 
calculated by higher order moments of the fractal dimension 
[22, 27]. In this study multifractal detrended fluctuation 
analysis (MDFA) is proposed for multifractal analysis of 
discharge signals. MDFA method has been recently 
preferred to reveal multifractal scaling (Hurst exponent) 
characteristics of complex signals (biomedical studies in 
general) which have nonstationary statistics [27-30]. MDFA 
analysis is a robust method to characterize PD signals, 
which exhibit complex behavior (signal fluctuations) [31].  

A test setup is employed for generating surface and sub-
surface discharges, which are observed in pressboards. Tests 
were performed for various AC voltage levels such as 60kV, 
70kV and 80kV, which cause different amount of distortion 
on the surface of pressboard. Although such discharges are 
generated over time, it is not an easy task to detect these 
signals with the naked eye, hence monofractal and 
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multifractal computation is proposed to observe PD signals 
on the pressboards. In addition to PD analysis, as an 
alternative method, a piezo-electric acoustic detector has 
also been used to obtain and record ultrasonic sounds during 
PD formation period on the pressboard. These ultrasound 
signals are analyzed by using monofractal and multifractal 
methods. 

II. TEST SETUP 

Pressboards are prone to exhibit internal and surface 
damages during their service life as an insulator. To 
accelerate and simulate these degradations, a test setup has 
been constructed which enables to generate PDs on 
pressboard samples in a short time scale. The constructed 
test setup is given in Fig. 1. For the test procedure all, the 
pressboards are cut into pieces with dimensions of 
300x300x4 mm and for a proper operation; they are initially 
dried out and soaked with mineral oil in a vacuum medium 
[32]. 

 

 
Figure 1. The test setup for pressboard 

 

Pressboard samples are placed in an approximately 5-
400mm gap between earthed plane and high-voltage (HV) 
sphere electrode which is in a chamber full of transformer 
oil. During the tests all electrical discharges and acoustic 
signals within the test setup are recorded continuously. The 
coil of the transformer is simulated with the spherical 
electrode, which is employed for the modified symmetry of 
the setup and hence accelerated electrode stresses. A 50kV 
rated AC voltage is applied to the test cell, which generates 
a stress similar to typical power system with full-scale 
380kV rated transformer. As expected, above these limits 
(by raising the output voltage of the test transformer up to 
(percentage160) unexpected discharges and degradations on 
the pressboards will be initiated.  In order to force the 
system to produce discharges and initiate distortions, the 
rated voltages of the test transformer have been selected as 
60kV, 70kV and 80kV.  

The test setup, which is fed by a 100kV single-phase high 
voltage (HV) transformer and filled with mineral oil, is 
capable of withstanding up to 100kV. A 5MΩ high voltage 
resistor is employed for limiting the excessive current 
during a possible total breakdown. To predict and monitor 
degradation on the pressboards, a method based on constant 
monitoring of discharge signals is proposed. For this 
purpose, the discharge current signal is measured on a 100Ω 
resistor and recorded by using personal computer. In 
addition to discharge signal, acoustic noise signals obtained 
during tests are detected via piezo-electric transducer. 
Acoustic PD detection has been proposed by many 
researches [33-35]; all these signals are analyzed and 
recorded by high-speed oscilloscope.  

During tests, surface and subsurface degradation tracking 

patterns are observed on the pressboards, which usually 
contain carbonized black spots on the surface. Increased 
discharges due to increased voltage accelerate surface 
distortions and finally cause total breakdown and system 
failure. In this study, an online monitoring system using the 
HFD estimation method based on discharge signals is 
proposed. The pressboard samples with surface degradations 
after a certain test period are given in Fig. 2. 

 
Figure 2. The pressboard samples with surface degradations 

III. HIGUCHI’S FRACTAL DIMENSION (HFD) METHOD  

Higuchi’s algorithm estimates fractal dimension of a time 
series data directly in the time domain [23]. This method 
consequently computes fractal dimension by using 
combinations of various signal lengths L(k). HFD is 
efficiently computed by the plot (double logarithmic) of 
ln(L(k)) versus ln(k). According to relation, which is given 
in Eq. (1) the exponent D is the fractal dimension of the time 
series, signal which defines the complexity of the curve 
[23]. 

  DL k k                                   (1) 

HFD is always calculated between the dimension values 
of 1 and 2 (it is not required to be integer) since a simple 
curve has dimension of l and a plane has dimension of 2. 
Selecting proper maximum value of k for which the Eq. (1) 
is approximately linear increases estimation performance 
[23], [36].  

For a discrete time series, such as corresponding sampled 
PD signal as seen in our scenario can be represented as X: 
x(1), x(2), x(3),…, x(N), with the total data number of N. 
From this time series, new time series Xk

m are obtained (for 
m=1,2…,k) and given in Eq. (2).   
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In Eq. (2) the└ ┘denotes floor function which calculates 
integer part of a given real number.  The k and m are integer 
numbers, where m represents the initial time and k 
represents interval width respectively. The length of each 
curve is defined by [26]:   
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Lm(k) lengths are not the classical lengths but the 
normalized sums of the absolute values of differences of the 
values, with a distance denoted by k and an initial point m. 
The normalization factor (α) defined for the curve length of 
time series signal subsets, which is given in Eq. (4). 
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In order to calculate length of the curve (L(k)) for time 
interval k, the averaging of all the subseries lengths (Lm(k)) 
with the corresponding k value, is used for m = 1, 2, . . . , k 
[23, 36]. 
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The HFD is calculated effectively by computing the slope 
of the linear regression (approximately linear curve 
required) of a double logarithmic plot of ln L(k) versus 
ln1/k. To reduce complexity and to obtain brief expressions 
the F1 and F2 functions are used. 
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IV. MULTIFRACTAL DETRENDED FLUCTUATION ANALYSIS 

In most cases, it is very challenging task to define 
complex signal whether it is a monofractal or multifractal 
signal strictly, since their scaling properties vary due to their 
axes. It is more appropriate to analyze these signals based on 
their self-affine characteristics. In the first step, it is required 
to transform noisy time series data (in our case discharge or 
ultrasound signals) into time series, which exhibit random 
walk properties [27]. 

1
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i

k avg
k

Y i x x i N
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The average value of the time series signals (xavg) is 
subtracted from time series signal (xk) for obtaining random 
walk like signal. The obtained time series signal contains 
fluctuations with different magnitudes in small segments of 
this signal. In order to examine these local fluctuations, the 
signal is divided into appropriate segments (with equal 
length s) and related root mean square (RMS) values for 
these segments are computed [28]. 
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         (8) 

Where Ns is the number of segments, which is calculated 
by using the scale s (where non-overlapping segments 
should be satisfied). In Eq. (8) the floor function is 
employed. Detrending computation reveals invariant 
characteristics of these segments (v) according to defined 
scale (which is key element of the self-affine signals). For 
this purpose, a fitting polynomial yv(i) is obtained for 
desired order polynomials. The local trend (fluctuations) can 
be characterized by using different orders [27]. The variance 
(second order statistics) is: 
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number. In MDFA method q depended fluctuation functions 
are analyzed. In multifractal signals aside from monofractal 
signals, various magnitudes of extreme and small local 
fluctuations are observed. To investigate these 
characteristics, various order moments are taken into 
account where q-th order RMS values are computed. The 
linear regression of this q-th order RMS values result in 
slopes named Hurst exponent (Hq) for various q values. The 
q-th order Hurst exponent is one of the key signature of 
multifractal structure analysis. Using systematic derivations 
first, the mass exponent (tq) is derived from q-th order Hurst 
exponent [27-28]. 

1q qt qH       (11) 

The q-th order singularity exp
us

onent (hq) is derived by 
ing tangent slope of the mass exponent [28].   

q q qh H qH      (12) 

The multifractal dimensions are co puted
fo

m  and evaluated 
r proper analysis. For this purpose, the singularity 

dimension (Dq) is obtained and expressed by: 
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Plotting singularity exponent versus singularity dimension 
pr

V. RESULTS AND DISCUSSION 

All th d voltages of 
60

trical stresses on the 
pr

ovides multifractal spectrum, which is effective tool for 
investigating multifractal time series. Multifractal spectrum 
defines arcs of related time series in which multifractal 
spectrum width is computed by difference of maximum and 
minimum singularity exponents. Multifractal spectrum 
width increases with increased multifractal properties. It is 
noted that multifractal spectrum width is zero for white 
noise or strictly monofractal time series. 

e tests are conducted by using selecte
kV, 70kV and 80kV respectively to simulate over 

voltages in contrast to power system rated voltages. During 
the tests, discharge signals and ultrasound signals are 
recorded via high-speed oscilloscope (N=512 samples). The 
average values of ten different pressboard samples are 
processed and analyzed for calculations, which are more 
accurate. Initially the HFDs of test samples are obtained for 
each sample and regressive and instantaneous HFD plots are 
analyzed. PD signals and acoustic signals are processed and 
corresponding HFDs are calculated separately. In the second 
part of the study, MDFA is conducted for discharge and 
ultrasound signals and corresponding figures are obtained. 

A. Partial discharge (PD) analysis 

sF s v Y v s i y i v N
s 
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During the tests, excessive elec
essboards produced PDs and these PD current signals are 

collected via a 100Ω resistor. Discharge signals are 
observed and recorded in extremely short time period (μs). 
Increased voltage leads to increased PDs on test samples and 
consequently high intensity surface distortions, which are 
observed after the test procedures. It is very complex task to 
intervene a power transformer inner structure and analyze 
pressboard, while transformer is in operation. 

By taking the average for all segments, an efficient 
fluctuation function is derived for desired order (q). 
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In Eq. (10) the index variable q can be chosen as any real 
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Figure 3. Typical PD current signals on pressboard samples for 60kV, 70kV 
and 80kV applied voltages 
 

The observed typical PD current signals on pressboard 
samples for 60kV, 70kV and 80kV applied voltages are 
given Fig.3. The monofractal HFD method is used for 
measuring complexity of these PD signals. With the 
increasing voltage levels, the amplitude of the PD currents 
are increased as expected. Within a short time period, the 
number of repeated oscillations decreased with the increased 
amplitude, which reduces the complexity (frequency of the 
distortions) of the signal. In our scenario fractal dimension, 
namely HFD measures the complexity and frequency of the 
oscillations over time periods. As shown in Fig.4, with the 
increasing voltage levels the HDFs are decreased 
respectively. The F1 and F2 parameters are ln (L(k)) and ln 
(k) respectively where HFD is calculated by the slope of 
curve plotted according to these parameters.    
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Figure 4. Typical HFD calculation of PD signals on pressboard samples for 
60kV, 70kV and 80kV applied voltages 

 
The instantaneous fractal dimensions of PD signals are 

given in Fig.5 where limited time segments of given time 
series signal are analyzed and this process is continuously 
updated for upcoming signal samples instantaneously. 

   
Figure 5. Instantaneous HFD calculation of PD signals on pressboard 
samples for 60kV, 70kV and 80kV applied voltages 

 
The MDFA is employed for further analysis of recorded 

discharge signals. The q-order Hurst exponent is derived for 
discharge signals and given in Fig.6. For negative values of 
q-orders, Hurst exponent values are quite different for 60kV, 
70kV and 80kV applied voltages. The levelling of Hurst 
exponent lead to truncation of multifractal spectrum. 

 
Figure 6. Q-order Hurst exponent evaluation of PD signals on pressboard 
samples for 60kV, 70kV and 80kV applied voltages 
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Figure 7. Mass exponent evaluation of PD signals on pressboard samples 
for 60kV, 70kV and 80kV applied voltages 

 72 

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 20:46:03 (UTC) by 54.210.83.20. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 18, Number 2, 2018 

The mass exponent exhibits multifractal behavior of 
related time series signals. The mass exponent evaluation of 
discharge signals is given in Fig.7. Like Hurst exponent, 
negative values of q-orders the mass exponent values 
(especially for PD signal at 80kV) are quite different for 
60kV, 70kV and 80kV applied voltages. The strict 
monofractal and white noise time series has linear q 
dependent mass exponent. Multifractal dimensions 
(multifractal spectrum) are important parameters for MDFA 
method. The multifractal spectrum of PD signals is 
computed and shown in Fig.8. In the spectrum, multifractal 
signals generate arcs and the width of these arcs define the 
strength of multifractal behavior. The spectrum width of PD 
signal at 80kV is quite different from other applied voltages. 
The long left tail of the corresponding arc is a sign of 
insensitive multifractal structure to local fluctuations with 
small magnitude (which is in accordance with our scenario). 
On the other hand, long right tail means insensitive 
multifractal structure to local fluctuations with large 
magnitudes [27].   

 
Figure 8. Multifractal spectrum of PD signals on pressboard samples for 
60kV, 70kV and 80kV applied voltages 

B. Acoustic noise analysis 

To increase the performance of the proposed method in 
terms of detecting excessive discharges observed on the 
pressboards, an additional and distinctive acoustic signal 
analysis is performed. During the formation of PD signals, 
ultrasound acoustic signals with higher oscillations are 
obtained. Repeated oscillations and frequently observed 
transitions of these signals increase complexity. Typical 
acoustic noise (ultrasound) signals, which are obtained 
during tests at 60kV, 70kV and 80kV applied voltages, are 
given in Fig.9. 

Increased applied voltages simultaneously increase 
amplitudes of the acoustic noise signals. As shown in Fig.9 
the amplitude of 80kV test signal is approximately ten times 
higher than the 60kV test signal.  Typical HFD calculations 
of acoustic noise signals for 60kV, 70kV and 80kV applied 
voltages are given in Fig.10. During the HFD calculations, 
linear regressions of F1 versus F2 functions are employed. 
The tests have revealed that the HFD values are slightly 
decreased with the increasing applied voltages from 60kV to 
70kV, however with the 80kV test procedure the complexity 
of the sound signals and oscillations have decreased 
significantly, which result in excessive HFD decrease. 

 
Figure 9. Typical acoustic noise signals obtained from pressboard samples 
for 60kV, 70kV and 80kV applied voltages 
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Figure 10. Typical HFD calculation of acoustic noise signals for 60kV, 
70kV and 80kV applied voltages 
 

The frequency of oscillations of time signal defines the 
complexity of the signal. Over voltages cause total 
breakdown and higher signal amplitudes with less 
oscillations in a short time period since increased amplitude 
means reduced peaks in a limited time. As expected the 
complexity (proportional to the HFD) is reduced with the 
increased applied voltage. 

To obtain proper linear regressions of F1 versus F2 
functions is much more difficult for increased applied 
voltages as in 80kV test scenario. A sensitive acoustic 
sensor used for noise detection, utilizes distortions on 
pressboards externally since this method processes acoustic 
noises via piezo-electric transducers. Online processing of 
these acoustic signals can reveal proper assessment of 
distortions and hence insulation system failure.  As an 
alternative method aside from classical HFD calculation, the 
instantaneous HFD of acoustic noise signals are given in 
Fig.11. This method enables online monitoring of time 
series signals in terms of fractal dimension. By using 
instantaneous HFD analysis, the instantaneous complexity 
of the time series signal especially highly disturbing noise 
signals with higher frequencies can be investigated. 
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Figure 11. Instantaneous HFD calculation of acoustic noise signals for 
60kV, 70kV and 80kV applied voltages 
 

The average HFD calculations for both PD signals and 
acoustic noise signals are summarized in Table 1. It is clear 
from Table 1 the average HFD values are decreased with the 
increasing test voltages. The complexity of acoustic noises 
is more than PD current signals and hence average HFD 
values for acoustic signals are higher than average HFD 
values for PD current signals.  Besides acoustic noise, signal 
HFD calculations are much more distinctive than PD signals 
in terms of excessive input voltages. 

 
TABLE I. AVERAGE HFD VALUES FOR PD SIGNALS AND ACOUSTIC NOISE 

SIGNALS 
Applied 

Voltage 

Partial discharge signals 

HFD 

Acoustic noise signals 

HFD 

 

60 kV 1.571 1.852 

70 kV 1.501 1.840 

80 kV 1.358 1.252 

 
In the second part of the study, MDFA is conducted for 

acoustic signals. The q-order Hurst exponent evaluation is 
plotted for acoustic (ultrasound) signals and given in Fig.12.  

H
q

 
Figure 12. Q-order Hurst exponent evaluation of PD ultrasound signals on 
pressboard samples for 60kV, 70kV and 80kV applied voltages 

Hurst exponent evaluation of acoustic signals for 60kV 
and 70 kV-applied voltages exhibit stable trends however; 
Hurst exponent evaluation of acoustic signal for 80kV is 

quite unstable. For negative q values, the Hurst parameter 
results are satisfying and distinctive.    

The mass exponent evaluation of acoustic signals is given 
in Fig.13. Mass exponent evaluation of acoustic signals are 
quite distinctive than the regular PD signals especially for 
negative q-orders. 

 
Figure 13. Mass exponent evaluation of PD ultrasound signals on 
pressboard samples for 60kV, 70kV and 80kV applied voltages 
 

The multifractal spectrum of acoustic signals is given in 
Fig.14. The spectrum width of acoustic signal at 80kV is 
quite different from other applied voltages. Increased 
applied voltage increases the arc widths of the multifractal 
spectrum. The spectrum of the acoustic signals exhibit 
relatively long left tails, which means insensitive 
multifractal structure to local fluctuations with large 
magnitudes.   

 
 
Figure 14. Multifractal spectrum of PD ultrasound signals on pressboard 
samples for 60kV, 70kV and 80kV applied voltages 

VI. CONCLUSION 

In this study, the degradative discharge signals observed 
on pressboard insulations, which are subjected to high 
electrical stresses, are investigated. In real life operations, 
excessive voltages generate constant discharges over time 
and hence distortion patterns on the insulation surface occur 
consequently. To simulate this phenomenon requires a long 
period of time naturally, hence a simple test setup was 
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constructed to conduct discharge tests and to produce 
artificial breakdown process on pressboard samples.  During 
the tests, to simulate excessive voltages with a proper test 
setup design, the 60kV, 70kV and 80kV voltages are 
selected (based on 380kV rated voltage of a typical 
transmission system) for proposed test procedure. In 
addition, electrical discharge signals and acoustic noise 
signals are monitored and recorded. An efficient 
monofractal HFD algorithm is proposed for discharge 
detection on pressboards, which can utilize an early warning 
of insulation failure. The characteristics of these signals can 
reveal possible breakdown and hence power system failure. 
Fractal dimension concept can assess complexity of a 
system especially distortion signals. Tests have uncovered 
that with the increasing applied over voltages; the system 
tends produce degradative discharge signals with higher 
amplitudes. In the early stages of over voltages, the 
distortions and repeated oscillations are excessive and 
frequent, however with the increasing over voltages despite 
the higher amplitudes, the complexity of the signals in terms 
of oscillations, are decreased. The satisfactory results for 
both electrical discharge and acoustic noise signals are 
obtained by using HFD analysis, which showed that the 
increasing voltage levels causes, decreased HFDs for both 
acoustic and electrical tests. In order to increase efficiency, 
MDFA method is conducted for multifractal analysis of 
discharge signals. The q-order Hurst exponent, mass 
exponent and multifractal spectrum investigations have 
revealed the distinctions between the 60kV, 70kV and 80kV 
applied voltages for both PD and acoustic signals. The 
proposed HFD and MDFA algorithms are suitable for real 
time detection and analysis of pressboard failures in which 
early warning may prevent malfunction of insulation 
system. Besides, analyzing electrical and acoustic noise 
signals simultaneously by using combination of these 
methods improves the performance of the proposed system.      
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