
Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

Cascaded Feature Selection for Enhancing the
Performance of Collaborative Recommender

System

Mohammad Yahya H. AL-SHAMRI1,2, Abdulmajid F. AL-JUNIAD1,2, Talal S. QAID1,3,
Mahdi H. A. AHMED1,4, and Abeer A. RAWEH1,3

1College of Computer Science, King Khalid University, Abha 91413, Saudi Arabia
2Faculty of Engineering and Architecture, Ibb University, Ibb, Yemen

3Faculty of Computer Science, Hodeidah University, Al Hudaydah, Yemen
4College of Engineering and IT, Taiz University, Taiz, Yemen

mohamad.alshamri@gmail.com

1Abstract—Most of collaborative recommender systems

(CRSs) rely on statistical and data analysis methods for
comparing users. However, dealing with them using machine
learning techniques seems to be more appropriate. This paper
investigates the usage of feature selection and classification
methods for CRSs. It suggests building a user model suitable
for the classification purpose and proposes a density-based
feature selection (DBFS) method based on the rating density
for each class. The DBFS reduces the effect of sparsity problem
and keeps only users having a dense-feature history.
Additionally, a cascaded feature selection method is proposed
to pick out a subset of features through a two-layer approach.
The first layer applies a classical feature selection method while
the second layer applied the DBFS on the output of the first
layer. The results show that the performance is gradually
improved. The cascaded feature selection yields the best results
since it improves the system accuracy, reduces the space and
processing complexities, and alleviates the sparsity in two
cascaded layers. The achieved improvements by cascaded
feature selection as compared to SVM are 6.55%, 10.14%, and
3.92% in terms of accuracy, F-measure and MAE, respectively.

Index Terms—computational modeling, feature extraction,
information filtering, machine learning, recommender systems.

I. INTRODUCTION

The huge amount of online data makes it very difficult for
users to find the right information at the right time with a
reasonable complexity. This task of teasing the relevant
information out of a vast pile of glut looks like finding a
needle in a haystack. This makes machine-learning
techniques a must for high and ultrahigh dimensional data,
which have been emerged in many online applications [1,2].
Usually, the online services have millions if not billions of
records what overwhelm the users with a huge number of
alternatives that cannot be surfed easily. Here, the power of
machine learning comes to explore automatically good
predictors based on the past user history. This is what
actually required from online applications with very big data
like recommender systems. A vivid example of such
systems is the Amazon website that suggests many items to
its users through personalized webpages [3-6].

In terms of its domains, recommender systems are

powerful tools to suggest movies, or music clips for
entertainment or to persuade customers to buy more
products. Today, the most successful recommender system
is the collaborative recommender system (CRS) which can
recommend a variety of items spanning music, jokes,
movies, books, restaurants or destination locations for
tourism. In general, CRS has a set of users U , and a set of

rating for a set of items, . The rating , of the user ,

for the item , can be binary value indicating like or

dislike preference of the user or an integer number within a
given interval indicating the level of user satisfaction with
that item. There are two more basic types of RSs called
content-based and demographic recommender systems [3].
In fact, these systems differ in the profiling approaches and
the way of comparing the interests of their users [7].
Sometimes, authors combine some of the basic types to
build a hybrid recommender system to get benefits from
multiple systems [8].

1The authors extend their appreciation to the Deanship of Scientific

Research at King Khalid University for funding this work through General
Research Project under Grant number (G.R.P-305-38).

S kar , au

ks

In fact, knowledge acquisition for RSs requires a learning
process. This is usually associated with the training set that
is prepared before the implementation stage of each user.
Otherwise, the system can do nothing. However, in many
cases, the collected data is very small and varies from one
user to another. For this reason, the final user-item matrix
for CRS is sparse and hence it is difficult to find close
neighbors for some users. Moreover, learning on sparse
matrix could misguide the learning process that
consequently reduces the system accuracy. Many CRSs
employ nearest neighbor algorithms for learning from
examples. Some other systems used a pre-computed model
and they have proved to produce recommendation results
that are similar to neighborhood-based recommender
techniques [9].

CRSs are heuristic-based models utilizing similarity
measures to find a set of neighbors for the active user. Based
on the opinion of this set, the system generates predictions
which indicate the usefulness of that item for the user. The
philosophy is simple; a user heuristically may like what his
close neighbors like [3]. This is equivalent to a classification
system which classifies the items according to some criteria
and then recommends true classified items to the users.
Hence, considering CRS as a classification process is very

 23
1582-7445 © 2018 AECE

Digital Object Identifier 10.4316/AECE.2018.04003

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 14:57:03 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

important and may lead to good results. However, due to the
constraints and prior requirements of the classification
process, many authors avoid classification and directly use
statistical methods. Meanwhile, we can go one step farther
to improve performance by considering feature selection.
Wes will try to reduce the number of features in the dataset
by including only useful features in the dataset without
changing them. This is usually done by selecting relevant
features, that properly describes the problem in hand, and
discarding irrelevant and sometimes redundant ones without
affecting the system performance which has to be within an
acceptable range [10-12].

In fact, the importance of feature selection and
classification for large scale data is beyond doubt but the
best method does not exist, and hence the researchers either
try to find a good method for specific problem settings or try
to merge many methods for a hybrid approach [12]. Feature
selection can be thought as a good candidate for reducing
sparsity of CRSs. By removing irrelevant features, the
system can overcome the sparsity problem especially if this
process is related to the user history. This encourages us to
explore many classification and feature selection methods.
Moreover, we propose a novel feature selection method for
better performance of sparse applications. Essentially, our
aim is to minimize the effect of the sparsity problem, the
processing time and the allocated memory while
maintaining high accuracy. The main contributions of this
paper are:
 Introducing new models suitable for applying

classification and feature selection on CRSs.
 Proposing a density-based feature selection method

for CRSs to decrease sparsity and enhance the
accuracy.

 Implementing many feature selection methods with
fixed and with user-dependent percentages.

 Proposing a cascaded feature selection approach for
further improvement in recommendation quality.

The rest of this paper is organized as follows: the related
work about classification and feature selection for
recommender systems is described in Section II whereas
Section III discusses in detail how to build appropriate user
models for applying classification and feature selection for
collaborative recommender systems. Applying classical
classification and feature selection methods for CRS is
described in Section IV. The proposed density-based feature
selection method and cascaded feature selection approach
are discussed in Section V. The conducted experiments and
analysis of obtained results are presented in Section VI. The
last section concludes the paper and gives some directions
for future work.

II. RELATED WORK

In literature, classification and feature selection have been
widely adopted to explore and mine hidden information in
medicine, astronomy, and biology data. A recent survey on
the use of machine learning for recommender systems
argued that it is not an easy task for researchers and
practitioners to assign a specific tool to a given task of the
RS. They concluded that Bayesian and decision tree

algorithms are widely used in recommender systems
because of their popularity and simple implementation [2].
These techniques are used either to build a model for the
system or to reduce the system dimensionality. For example,
Basu, Harish, and Cohen [13] discussed an inductive
learning approach using a combination of collaborative and
content features to predict user preferences. This model
formalized the recommendation process as a learning
problem. Schmidt-Thieme [14] outlined many classification
models for CRSs alone but these efforts did not pay off and
did not increase the quality. This encouraged other authors
to build classification methods by combining collaborative
and content-based recommender systems [8,13].

Wang and Tan [15] proposed a naïve Bayesian method
for CRSs that ignored the conditional independence
assumption. Miyahara and Pazzani [16] converted multiclass
data to binary-class data and then applied simple Bayesian
classifier on that binary data for both user-based and item-
based CRSs. They found that the performance is enhanced
compared to the correlation-based CRS. Bouneffouf,
Bouzeghoub and Gançarski [17] suggested a Mobile
Context-aware Recommender Systems to recommend items
for the mobile user based on the user state and interest. They
applied a bandit algorithm and case-based reasoning for
context recommendation. Saleh, El Desouky and Ali [18]
applied many classification techniques for what they called
vertical recommendation system. They discussed vertical
recommendation system as a four layers RS for suggesting
text documents. Actually, they used classification
techniques for the content analyzer layer which is the first
layer in their system. Wang, Liao, and Zhang [19] used
KNN classifier which can adapt to the changes in the user-
item matrix but at the cost of re-computing the similarity
matrix again. The context features are used by Bouza, Reif,
Bernstein, and Gall [20] to build a decision tree model. They
considered two ratings for items as the minimum number of
ratings to build the decision tree for the user. This approach
showed lower precision than recommendation using average
rating.

Some authors combined association rules and decision
tree in their system. The decision tree is used to select a
target user for recommendations whereas the association
rule is used to recommend some items [21]. Another
research attempt used decision tree for generating a set of
recommendations after frequent itemsets are detected using
association rules [22]. Hühn and Hüllermeier [23] used a
decision tree to rank purposes for the recommendation
applications. Su and Khoshgoftaar [24] went one step farther
by applying advanced Bayesian networks on multiclass data.
Zhang and Iyengar [25] proposed linear classifiers for a
model-based recommender system. Gershman et al. [26]
used a decision tree for implementing a recommender
system that needs only a single traversal.

Clustering is another approach used by some authors to
improve the RS performance. Clustering algorithm itself can
be improved in terms of performance and speed. For
example, Zhang and Ma [27] improved rough k-means
clustering based on weighted distance measure with
Gaussian function. Borlea, Precup, Dragan, and Borlea
proposed centroid update approach to improve k-means
algorithm by reducing the number of iterations needed to

 24

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 14:57:03 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

perform the clustering process [28]. Chakraborty and Das
[29] replaced the conventional Euclidean distance of k-
means with the S-distance. They argued that S-K-means
preformed better than k-means with Euclidean distance
especially when the distribution of the clusters is not
regular.

Some authors tried to improve the performance of
recommender systems in terms of sparsity and scalability
using the clustering approach. Zahra et al. addressed the
scalability issues associated with traditional recommender
systems by proposing a k-means clustering-based
recommendation algorithm which investigates how centroid
selection in k-means based recommender systems can
improve performance while saving cost [30]. Sharma [31]
used an improved k-means clustering algorithm for RS and
showed improvement in quality of recommendations and
execution time with changing of centroid selection in k-
means algorithm. Bobadilla, Bojorque, Esteban, and
Hurtado [32] proposed a Bayesian non-negative matrix
factorization (BNMF) method to improve the performance
of the recommender system by decreasing the sparsity of
rating matrix. They argued that BNMF improved the current
clustering results in the collaborative filtering area.

III. BUILDING USER MODELS

In recommendation applications, a user profile is
normally a set of ratings some of the available items. This
set of ratings is usually acquired either implicitly from the
user interaction with the system or explicitly through a
questionnaire. However, this profile is not useful for
classification as it is. First, it has to undergo some
prearrangement or sometimes processing to be suitable for
classification. In the following subsections, we will discuss
how to build the user model for our approaches in this
paper.

A. General Model for Classification Problem

For classification problem, we need a set of examples
with a set of features and a class. Table I represents a
general model for classification problem where E is the set
of examples with cardinality () and Q F is the set of

features with cardinality (M). The last column is the class
label column.

TABLE I. GENERAL MODEL FOR CLASSIFICATION

 Set of Features (F) Class

 1f 2f  1Mf Mf kar ,

1e 5 -  1 3 4
2e - 2  - 2 1

      5

1Qe 2 2  1 - 4

S
et

 o
f

E
xa

m
pl

es
 (

E
)

 3 -  2 4 5 Qe

B. User Model for Classification

At first glance when we talk about recommendations, the
set of users seems to be the set of examples and the set of
items seems to represent the set of features. However, this
way has no clear class label and hence it is not useful for
classification. The direct way to resolve this issue is to swap
users with items so we have a clear class label which is the

active user rating for a given item. Hence, the set of
examples for a given active user model will be the set of
items rated by that active user whereas the set of features
will be the set of training users having common ratings with
the active user.

 0, ,:  kakka rSssS (1)

  iaiia SUuuU ,: (2)

Here, is the set of items rated by user with a

cardinality whereas is the set of users who have

common ratings with user with a cardinality . The

set contains the common items between users and

. The model size should be fixed for each active user and

therefore we fill unknown ratings by 0. This means that an
item will be given zero rating if it is not rated yet by the
user.

aS au

M
aK aU

au a

iuiaS

au

For simple classification, the set of features is aUF 

with cardinality aMN  . However, the set of examples

may be less than that of with cardinality aSE  aKQ 

because some items may be rated only by the active user
himself and not by any other user sharing common items
with him. This possibility might be rare but we have to
consider it especially for odd users with some unique
behavior. Hence we will define the set of examples (items)
that are rated by both the active user and at least one user
sharing some items with him as below:

 aiiakkaa UuSssS  ,: (3)

Alternatively, we can define as the union of all

common ratings sets of all users having common history with
the active user.

aaS


aM

i
iaaa SS

1

 (4)

Hence, the set of examples will be with cardinality aaSE 

aaMQ  .

C. User Model for Feature Selection

Feature selection reduces the problem space and therefore
the size of the general model will be reduced according to
the set of selected features (users) and the set of items
having common ratings with that active user. For this
purpose, assume a binary flag for each feature (user) such
that:






selectednotisfFalse

selectedisfTrue
g

i

i
i (5)

Based on that, we can define the set of selected features
as:

 TruegUuuU iaiia  ,:' (6)

Here, with cardinality is the set of features

(users) who have common ratings with user and has

been selected as a feature for his model. Consequently, the
set of examples will be:

'
aU '

aM

au

 '' ,: aiiakkaa UuSssS  (7)

where with cardinality is the set of items rated by

 and has been rated also by at least one training user in

'
aaS '

aK

au

 25

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 14:57:03 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

his model . In this case, the general model of Table I is

used with the following changes, , ,

, and . Table II summarizes the parameters

for the discussed models. We will utilize these models for
recommender systems in the following section.

'
aU

N

'
aaSE  '

aaKQ 
'
aUF  '

aM

TABLE II. USER MODELS PARAMETERS

Parameter
General
Model

Simple
Classification

Model

Feature
Selection

Model

Examples E aaS '
aaS

Features F aU '
aU

Cardinality

of E
Q aK '

aK

Cardinality

of F
M aaM '

aM

IV. CLASSIFICATION AND FEATURE SELECTION FOR

RECOMMENDER SYSTEMS

The previous section discussed how to build user models
for classification and feature selection whereas this section
discusses in detail how to apply these models for CRS. Our
goal is to give an overview about the usefulness of classical
classification and feature selection methods for
recommender systems.

A. Classification Approach

Classification is one of the easiest learning ways to
predict unknown classes based on previous examples.
However, classification requires the data to be arranged in a
specific manner and this has been done in the previous
section. Classification research detailed many classification
techniques mentioning their pros and cons. This paper will
test four different classification techniques, namely; Naïve
Bayes classifier, decision tree-C5.0 classifier, random forest
classifier, and support vector machine classifier. The Naïve
Bayes classifier is the simplest classifier that utilizes Bayes
theorem for conditional probabilities of random variables
given known observations to build the classifiers [33,34].
The appealing thing of this classifier is that it is direct,
simple and computationally fast to reach a decision. The bad
thing of this classifier is that it assumes a specific form of
the feature probability distribution for each class.

The second teste classification technique is the decision
tree. It represents the data as a tree having nodes as features,
edges as values of these features, and leaf nodes as class
labels. This paper uses C5.0 decision tree classifier which is
an evolution of ID3. Decision tree classifiers perform well
for highly relevant features and poor for features with
complex relationship [34]. The third classifier is the random
forest which is an ensemble predictor close to the nearest
neighbor predictor. Actually, ensemble predictors assume
that strong predictors can come up from weak ones.
Therefore, random forest starts with decision trees with
controlled variance as weak predictors and goes ahead by
combining them to form an ensemble. This classifier is
robust, requires no normalization, and is immune to
collinearity [35].

Support vector machine classifier, the last classifier we
examined in this paper, is a supervised learning process

which uses a non-linear mapping to map the input vectors
into some high dimensional feature space Z. This mapping
constructs a linear decision surface with certain properties to
ensure high generalization ability of the constructed network
and to find an optimal hyper plane to clearly separate the
sample points of different class labels [36]. However, SVM
is slow and faces a challenge in how to get the appropriate
kernel for a given dataset [33]

The block diagram in Fig. 1 illustrates how to apply
classification for CRS. A model should be built for each
active user to generate a set of classifiers which will be used
for predicting unknown classes (ratings for our application
case).

Figure 1. Classification process for CRS.

B. Feature Selection Approach

Usually, feature selection chooses relevant features for
predictive modeling problem like recommendation problem.
Feature selection has three advantages: first it improves the
prediction accuracy of the classifier, second, it gives a faster
and more cost-effective classifier, and finally, it shows a
clear picture for the features of the underlying problem [37].
This paper utilizes three filtered-type feature selection
methods; namely, information gain, correlation-based, and
Chi-square [37-39]. The process of this approach is
illustrated in Figure 2. The selection process sorts the
features according to their relevance and hence selects those
ones, within a predefined proportion, which may be fixed
for all active users or user-dependent ones.

In recommender systems, each active user has its own
identity for dealing with the items in the system. Some users
are lenient when rating the items while others are very strict.
On another side, some users are very active on the system
and try to participate more with the system whilst others
have a very limited number of ratings. Moreover, the set of
features for each user is different as it relies on the common
ratings with the other users. Therefore, giving all users the
same selection percentage is not appropriate. The user-
dependent ratios seem to be the best choice for this
application to reflect the individual properties of each user
model. Having agreed on this, a problem arises on how to
pick out this value among many. In fact, we have many

 26

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 14:57:03 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

variables in terms of the user-item matrix and only one
value has to be tuned using a learning technique. The tuned
value should reflect the model characteristics. In this
problem, we have only a single percentage value to search
for with almost limited options. Moreover, small fractions
will not affect the results so much. We can go for a genetic
algorithm as a learning method but its benefit is low and
convergence will be very slow. Moreover, it will take a very
long time for the same result we can get with fixed values
but with very less processing time. Therefore we will go for
stepwise tuning of this value for each user model. The best
value is the one that gives the minimum mean absolute error
for that user model. Hence our fitness function will be [40]:





TE
aS

k
kakaTE

a

a prr
S

uMAE
1

,,

1
)((8)

where is the test ratings for the active user and is

the predicted rating for item . The learning process will

be done offline and hence it will not affect the online
processing time. Moreover, we have only one percentage
value for each user and hence one array of users’ size will
be there as an extra storage.

TE
aS kapr ,

ks

Figure 2. Feature selection process for CRS.

V. PROPOSED FEATURE SELECTION APPROACHES

This section explores novel methods for applying
classification on CRS in an efficient way. Actually,
recommender systems suffer from sparsity problem as their
users usually rate only a limited number of items. For our
application, we have a model for each user and this model is
sparse with different degrees of sparsity. Moreover,
recommender systems differ from other data applications in
that the users mostly rate what they see and like.

In fact, the users of recommender systems are targeted

from the beginning and therefore their selection usually is
based on some prior information about the items. For this
reason, the data is always biased towards high ratings.
Another important point here is that the rating values given
by the users are not always 100% accurate to reflect each
user preference for items and hence they may differ from
time to time.

For the mentioned above reasons, the classical feature
selection methods may not cope with such applications and
also may not be able to identify variable tastes and moods of
different users. In the following subsection, we propose a
density-based feature selection method which takes into
account the user’s history of interaction with the system.
The result of this approach will be utilized later in building a
cascaded feature selection approach. The proposed
approaches outperform the previous ones in terms of error
performance and accuracy.

A. Density-Based Feature Selection Approach

 Many efforts have been devoted to modify the classical
feature selection methods. For example, Yu and Liu [11]
studied feature redundancy for feature selection. They
argued that the focus of most feature selection methods is to
find relevant ones. However, this is insufficient especially
for high-dimensional datasets. Al-Junaid et al [41] proposed
a differential windowed feature selection (DWFS) method
for breast cancer identification. However, the proposed
approach is specific for cancer, assumes consistent and
complete data and it also needs two main datasets for
normal and cancer samples.

In terms of sparsity, classical feature selection methods
reduce the sparsity as they select only some features from
the available ones. This usually happens as a side effect of
reducing the number of features because the relevancy of the
features is considered but not their sparsity. In this section,
we will take the density of the ratings of features as a
criterion for selecting features. By this way, we will be sure
that the sparsity of the user model is reduced and only those
features with high density will be selected. To do so, we
have to keep in mind that the user model treats items of the
system as examples and users as features. We call the
proposed feature selection as density-based feature selection
(DBFS) method. The DBFS method suggests parameters at
three different levels, model-level, feature-level, and class-
level. This feeds the proposed approach with many different
parameters and makes it robust in its performance. The
following two definitions introduce rating density and
density factor for a given user model.

Definition 1 (rating density): Rating density of a given
feature (user) is simply the set of ratings given by feature

, for the model of user . That means the common set of

ratings between the two users:
iu au

iai Surd )((9)

Definition 2 (density factor): Density factor of a given
user model is the maximum rating density in that model.

))(),...,(max(Mi urdurdd  (10)

where M is the number of features (users) for this model.
Definition 1 is a feature-level parameter and hence it is a

local parameter while definition 2 is a model-level
parameter to find the maximum number of ratings between

 27

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 14:57:03 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

the active user and any other user and therefore it is a global
parameter. The above definitions are not enough as we have
to find the same values at the class level for each feature so
that we can apply the selection process. For this purpose, the

set of ratings , given by the feature (user) , for a given

class cn is defined as below:

n
iaS iu

 nkiiakk
n
ia crSssS  ,,:  (11)

In this case, will be the union of all , where,

. N is the number of classes.
iaS n

iaS

Nn ,...,1


N

n

n
iaia SS

1

 (12)

Now we can define class density and class density factor
as below.

Definition 3 (class density): Class density of a given
feature (user) is the cardinality of the set of ratings given by
the feature for that class:

n
ia

n
i Scd  (13)

Definition 4 (class density factor): Class density factor
for a given feature (user) is the maximum class density in
the user model for that class:

 n
M

n
i

n
a cdcdd ,...,max (14)

We can think of the class density and the class density
factor as local and global descriptors for that class. For a
given user model, we have many class densities depending
on the feature in hand whereas we have only one class
density factor for the user model. To complete the selection
process, we have to calculate a weight for each feature in the
user model before sorting the features and selecting only
some of them. In the following, we will define class weights
from which we will develop a feature weight.

Definition 5 (class weight): Class weight for a given
feature is defined as the class density of that feature divided
by the class density factor of the user model:

n
a

n
in

i d

cd
cw  (15)

The feature weight is calculated as the weighted mean of
all class weights of that feature. Actually, the way of
calculating the feature weight from individual class weights
can take many forms like simple, weighted or trimmed
mean. For weighted mean, we have to obtain the weights of
aggregating the class weights. One straightforward way is to
use the feature class distribution for this purpose as below:








N

n

n
i

N

n

n
i

n
i

i

cd

cdcw
w

1

1 (16)

Hence a weighting vector, W, will be formed for all
features in the model.

MwwwW ,....,, 21 (17)

The weighting vector will be used in conjunction with a
predefined threshold to select features for the classification
process. The set of selected features will vary based on the
given threshold; therefore it has to be tuned to get the best
result and this usually not easy. The selected set of features
for DBFS will be:

 THRwfDBFSSet ii )()(:)( (18)

where  is a permutation that orders features based on their
density weights such that [41].)()2()1(... Mwww  

The threshold and consequently the selection percentage
can be fixed in advance for all users or be user-dependent
based on some users’ characteristics. For user-dependent
percentages, the percentage value is specific for each user
and hence may be different for users having the same
number of features. In this case, the percentage value for
each user has to be learned before the online stage. We have
to search for the best percentage selection value based on
the active user characteristics. Algorithm 1 depicts the
DBFS process which requires a model and a threshold as
inputs and returns a set of selected features as an output.

Algorithm 1: DBFS
Input: active_user_model, threshold
For each feature
 For each class

 Calculate class density, [equation 13]; n
icd

 End
End
For each class

 Calculate the class density factor, [equation 14]; n
ad

End
For each feature
 For each class

 Calculate class weight, [equation 15]; n
icw

 End
 Calculate feature weight, [equation 16]; iw

End
For each feature

 If wi > THR // feature weight is greater than threshold

 Add the feature to Set(DBFS);
 End
End

B. Cascaded Feature Selection Approach

This approach goes one step further than simple feature
selection by applying the density-based feature selection on
the newly generated matrix. Hence, we will exploit the
benefits of both the classical feature selection and the
density-based feature selection. The first stage applies the
classical feature selection whereas the second stage applies
the density-based feature selection on the selected set of
features. Therefore we will keep the most relevant features
from the first stage and then refine them according to their
values for the rating density. That means we will apply the
density-based feature selection on more trustable user model
than before.

Moreover, this will reduce the effect of sparsity at two
different levels. The first level will be achieved using the
classical feature selection by removing irrelevant features
whereas the second level will be achieved using the density-
based feature selection by removing less dense features. The
block diagram in Fig. 3 illustrates the process of the
cascaded feature selection process. For this approach, two
percentage values will be required and hence they have to be
learned offline.

Algorithm 2 depicts the cascaded approach which needs a
model and a threshold as inputs and returns a set of selected
features as an output. First, the process come up with a set
of features based on correlation-based feature selection and
then refine this set using DBFS.

 28

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 14:57:03 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

Figure 3. Cascaded feature selection process.

Algorithm 2: Cascaded_CBFS_DBFS
Input: training_users, training_ratings, test_ratings, threshold-1, threshold-2
For each active user
 First Stage:
 training_model ← Build_Model(training_users, training_ratings);
 test_model ← Build_Model(training_users, test_ratings);
 For each feature of the training_model
 Calculate the feature weight based on CBFS method
 If feature weight is greater than threshold-1
 Add the feature to ;)(CBFSSet
 End
 End
 modified_training_model ← Modify_Model(training_model,);)(CBFSSet

 modified_test_model ← Modify_Model(test_model,);)(CBFSSet
 Second Stage:
 For each feature of the modified_training_model
 Calculate the feature weight based on DBFS method
 If feature weight is greater than threshold-2
 Add the feature to ;)(DBFSSet
 End
 End
 modified_training_model ← Modify_Model(training_model,);)(DBFSSet

 modified_test_model ← Modify_Model(test_model,);)(DBFSSet
 classifiers ← SVM(modified_training_model);
 predictions ← classify(modified_test_model, classifiers);
End

VI. EXPERIMENTS

For our experiments, R language and Caret R package are
used as an implementation environment. The experiments
cover all approaches we have discussed before with
different variants for each approach if possible. The
following subsections discuss in detail different aspects of
experiments implementation like dataset preparation,
evaluation metrics, the conducted experiments, and finally
the analysis and discussion of the results.

A. Data Preparation

MovieLens dataset is the most popular dataset for
recommender systems [www.movielens.net] which has
many packages. For our experiments, we used 1M
MovieLens dataset which has one million plus ratings for
3952 movies given by 6040 users. Each rating takes a
discrete value between 1 and 5. The number of ratings given

by each user varies from very small number 20 to a very big
number 2314.

To conduct the classification process, we chose the
number of ratings to be 250 or more for two reasons: (1) to
get a dense classification model reflecting a rich history of
the user; (2) to reduce the number of zeros (un-rated items)
in the user model which may affect the classification
process. Among 6040 users, we found 1225 users, satisfying
the above-mentioned condition, from which we selected
randomly 50 users for testing and called them active users.
The remaining 1175 are considered as training users. The
active user ratings will be used to build a model and to test
the system. Again, the active user ratings set , has to be

divided randomly into training ratings, (80%), and

testing ratings, (20%). During experimentation, the

active user is assumed to have only the training ratings for
modeling. The test ratings are used to evaluate the system
since we assume them as unknown ratings and search for
predicted ratings for them.

aS
TR
aS

TE
aS

Fig. 4 illustrates how the dataset is divided in terms of
users and ratings of the active user. The training users in
conjunction with the training ratings of the active user are
used to build model for the classifier. However, the training
users in conjunction with the test ratings of the active user
are used to build a model for predictions.

Figure 4. Dataset division in terms of users and ratings.

B. Evaluation Metrics

Four evaluation metrics are used for evaluating the
prediction accuracy and error of our experiments, namely,
mean absolute error, root mean square error, F-measure, and
accuracy. Different measures will help us to assess tested
approaches from many aspects. The first error measure is
the absolute mean error (MAE) which is defined as the
absolute difference between the actual and predicted ratings
[40,42]. Low MAE means that the RS predictions are more
accurately. The MAE over the test ratings of the active user

, is: au





TE
aS

j
jajaTE

a

a prr
S

u
1

,,

1
)(MAE (19)

 29

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 14:57:03 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

The net value of MAE over all active users is the
weighted average of individual values of all active users.





AM

a
aa uw

1

)(MAEMAE (20)

The weight is calculated based on the number of test
ratings for that active user relative to the total number of test
ratings in the system.




AM

i

TE
i

TE
a

a
S

S
w

1

 (21)

Another important error measure is the RMSE which
increases the contribution of high errors by squaring their
values and this can be considered as error penalty [40,42]. In
fact, large value of RMSE indicates that the predicted value
is far away from the actual rating whereas small value
indicates the inverse conclusion. The RMSE for all active
users () will be: AM

  
  

















A
TE
aM

a

S

j
jajaTE

a
a prr

S
w

1 1

2
,,

1
RMSE (22)

The other two prediction accuracy measures, namely
accuracy and F-measure will be calculated directly from the
confusion matrix [43,44]. For a multi-class recommender
system, the classification process will take many classes.
Hence the confusion matrix will be as in Table III for 5-
grade rating scale.

TABLE III. CONFUSION MATRIX OF A 5-CLASS CLASSIFICATION

 Predicted ratings

 1pr 2pr 3pr 4pr 5pr

1r 11t 12f 13f 14f 15f

2r 21f 22t 23f 24f 25f

3r 31f 32f 33t 34f 35f

4r 41f 42f 43f 44t 45f A
ct

ua
l r

at
in

gs

5r 51f 52f 53f 54f 55t

The accuracy for N-class recommender system is:

 


 






N

i

N

ijj ij

N

i ii

N

i ii
a

ft

t
u

1 ,11

1)Accuracy((23)

The total value of accuracy for all active users is the
weighted average of each active user value.





AM

1

)Accuracy(Accuracy
a

aa uw (24)

To calculate recall, precision, and F-measure, we need to
know the sets of correct and predicted ratings for a given
user , which are defined as [7]: au

 kaka
TE
akka rprSssu ,,,|)(CorrectSet  


 (25)

 0,|)(etPredictedS ,  ka
TE
akka prSssu (26)

In general, precision indicates the number of selected
items which are relevant to the user, however recall
indicates the number of relevant items which are selected. In
recommendation applications, relevant item is the one that
was predicted correctly by the system. Therefore, we can
define the precision and recall for prediction-based

recommender system as:

)(etPredictedS

)(etPredictedS)(CorrectSet
)precision(

a

aa
a u

uu
u


 (27)

)(CorrectSet

)(etPredictedS)(CorrectSet
)recall(

a

aa
a u

uu
u


 (28)

We will follow the WEKA approach for calculating the
individual and average values of precision, recall, and F-
measure for multiclass classification. The individual value

of recall for the class is: thn





 N

njj
njnn

nn
n

ft

t
R

,1

 (29)

Similarly, the individual value of precision for the
class is:

thn





 N

nii
innn

nn
n

ft

t
P

,1

 (30)

We mean by individual values a specific rating value in
the rating scale. Actually, the system has classes based
on the values of the rating scale. Therefore we have to
aggregate them to find the final value. The individual value

of the F-measure for the class is:

N
N

thn

nn

nn
n PR

PR2
F  (31)



The weight for the class value will be: thi

  


 






 N

i

N

ijj ijii

N

ijj ijii

i
ft

ft
w

1 ,1

,1 (32)

Accordingly, the net value of each metric is the weighted
average of the individual class values. Therefore the average
F-measure of the active user , is: au





N

1

)(
i

iia FwuF (33)

The overall value of F-measure for all active users is the
weighted average of each active user value.





AM

1

)F(F
a

aa uw (34)

C. Experiments

We conducted six sets of experiments, one set for each
approach. The experiment set of some approaches consists
of many experiments based on the employed methods for
that approach. There are some predefined parameters that
will be discussed inside each experiment. Table IV lists the
approaches and the corresponding list of experiment(s)
associated with them.

One important parameter in our experiments is the
selection percentage which may be fixed or user-dependent.
For the latter case, a stepwise tuning between 5% and 50%
in a step of 5% each time is used. Since we have 10 options
for each value, then 100 options will be there for each case.
In total, we have 5000 options for our test dataset which is
very small compared to genetic algorithm approach with a
population size of 10, maximum generations of 30 and runs

 30

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 14:57:03 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

of 15. We restricted our tests to 50% only to be consistent
with the main aim of the feature selection to filter out
irrelevant features. We think that 50% of the features is
more than enough for this purpose.

D. Analysis and Discussion

The results show that a good improvement is achieved by
applying the proposed approaches especially those having
user-dependent selection percentages. This improvement
depends on the employed method and the applied approach.
In the following, we will discuss in detail each one of them.

TABLE IV. LIST OF EXPERIMENTS FOR ALL APPROACHES

Approach Experiment(s)

Naive Bayes Classifier

Decision tree- C5.0

Random Forest
Approach-1

SVM
Information Gain (10%, 20%, 30%)

Correlation-based (10%, 20%, 30%) Approach-2

Chi square (10%, 20%, 30%)

Approach-3
Correlation-based feature selection with
user-dependent selection percentages

Approach-4
Density-based feature selection
(10%, 15%, 20%, 25%, 30%, 35%, 40%)

Approach-5
Density-based feature selection with user-
dependent selection percentages

Approach-6

Correlation-based feature selection with
user-dependent selection percentages
followed by density-based feature
selection with user-dependent selection
percentages

Approach-1 (Simple Classification)

The results of Naïve Bayes classifier, decision tree-C5.0
classifier, random forest classifier, and support vector
machine classifier are listed in Table V.

TABLE V. RESULTS OF APPROACH-1

Classification Method Accuracy F-Measure MAE RMSE

Naive Bayes Classifier 0.358741 0.323847 0.930429 1.240380
Decision tree - C5.0 0.367258 0.368733 0.908682 1.241110
Random Forest 0.466252 0.402379 0.609317 0.869115
SVM 0.487030 0.433479 0.590259 0.862162

The results indicate that the best classification method is
SVM in all aspects whereas Naïve Bayes is the worst one.
There are big differences between the best and worst method
in all metrics. This agrees with the findings of Su and
Khoshgoftaar [24], where the simple Bayesian classifier
showed worse predictive accuracy than traditional CRS.
Hereafter, we will use SVM method for all classification
purposes.

Approach-2 (Feature Selection – Fixed-percentage)

The results of information gain, correlation-based, and
Chi-square feature selection with fixed selection percentages
for all users are listed in Table VI. The feature selection is
always followed by SVM classification in our experiments.
For the three selection percentages 10%, 20%, and 30%, all
results are less than that of the simple SVM classification
approach except the results of correlation-based feature
selection with 20% selection percentage, which performs
better than the simple SVM classification and the other
feature selection methods. These results are better than that

of the simple SVM classification method with only 20% of
the features. This is a good achievement for reducing the
processing time, storage requirements, and sparsity.

TABLE VI. RESULTS OF APPROACH-2

Information

Gain
Correlation-

based
Chi-square

10% 0.4781631 0.4751191 0.4768396

20% 0.4778984 0.4874272 0.4789571 Accuracy

30% 0.4817364 0.4833245 0.4817363
10% 0.4256797 0.4337240 0.4246826

20% 0.4253316 0.4425498 0.4263906 F-Measure

30% 0.4280072 0.4379344 0.4278189
10% 0.6124934 0.6135521 0.6128904

20% 0.6109052 0.5954209 0.6095818 MAE

30% 0.6017734 0.5983325 0.6019058
10% 0.8927831 0.8901927 0.89131

20% 0.887912 0.8723921 0.8868972 RMSE

30% 0.4781631 0.4751191 0.4768396

Approach-3 (Feature Selection – User-dependent percentages)

Approach-2 gives good results with one fixed selection
percentage, 20% for all active users in the system. However,
this may be not suitable for all users as the rating taste for
them is different. Hence, it will be an advantage if we assign
a user-dependent selection percentage for each user. In this
experiment, we will search for this value between 5% and
50% with a step size of 5%. Accordingly, we will test ten
percentage values for each active user. The results of this
approach are listed in Table VII. Note that the table
summarizes the best results of all approaches examined in
this paper.

TABLE VII. RESULTS OF APPROACH-3

Approach Accuracy F-Measure MAE RMSE

Approach-1 0.4870302 0.4334795 0.5902594 0.8621621
Approach-2 0.4874272 0.4425498 0.5954209 0.8723921
Approach-3 0.5051615 0.4623655 0.5759661 0.8582970
Approach-4 0.4928534 0.4475190 0.5872155 0.8643010
Approach-5 0.5088671 0.4645541 0.5733192 0.8581199
Approach-6 0.5189254 0.4774342 0.5670990 0.8605500

The results of this approach are better than the best results
of the fixed-percentage selection listed also in the same
table. The accuracy jumps from 48.7% to 50.5%. The
improvement percentages are 3.72% and 6.66% in terms of
accuracy and F-measure as shown in Table VIII. We follow
Al-Shamri [7] for calculating the improvement percentages.
This indicates that the set of features selected for each user
model reflects the user mood for the rating scale. Hence, the
system needs only a small set of features to ensure more
accurate classifications. The results in Table VIII illustrate
the improvement percentages for all the approaches
compared to the best simple classification method, i.e.
SVM.

TABLE VIII. IMPROVEMENT PERCENTAGES OF DIFFERENT APPROACHES

COMPARED TO APPROACH-1

Approach Accuracy F-Measure MAE RMSE

Approach-2 0.081514 2.09244 -0.874446 -1.186552
Approach-3 3.722829 6.663752 2.42153 0.448300
Approach-4 1.195655 3.238792 0.51569 -0.248086
Approach-5 4.483685 7.168643 2.86996 0.468840
Approach-6 6.548916 10.13997 3.92377 0.186980

 31

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 14:57:03 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

Approach-4 (Density-based Feature Selection - Fixed-percentage)

Density-based feature selection is appropriate for sparse
matrices like what we have in recommender systems. In our
experiments, we test seven percentage values, 10%, 15%,
20%, 25%, 30%, 35%, and 40%. The results of this
approach are listed in Table IX. We found that the best
selection percentage is 25%. The results are better than
those of approaches 1 and 2. This indicates the
appropriateness of DBFS method for recommender systems
as sparse applications. Moreover, this selection method
always performs better than the classical approaches for all
percentage values. The improvement percentages compared
to simple SVM classification are 1.2% and 3.24% in terms
of accuracy and F-measure with only 25% of the features.
By increasing the selection percentage beyond 25%, the
results get worse.

TABLE IX. RESULTS OF APPROACH-4

Selection
Percentage

Accuracy
F-

Measure
MAE RMSE

10% 0.4842509 0.4419685 0.6019058 0.8816893
15% 0.4862361 0.4446160 0.5974060 0.8754364
20% 0.4883536 0.4459744 0.5910535 0.8663363
25% 0.4928534 0.4475190 0.5872155 0.8643010
30% 0.4874272 0.4430250 0.5911858 0.8649675
35% 0.4886183 0.4436868 0.5898624 0.8630716
40% 0.4899418 0.4430058 0.5890683 0.8637018

Approach-5 (Density-based Feature Selection – User-dependent
percentages)

The difference between this approach and the previous
one lays on how to choose the selection percentages. Here
we have to search for the best selection percentage for each
user model while considering the individual user identity.
The results of this approach are better than the
corresponding fixed one by good margin for all measures.
The accuracy is now 50.89% instead of 49.29%, whereas the
MAE error is 0.5733192 instead of 0.5872155. This
indicates better performance of this approach compared to
the fixed one. Moreover, this approach reflects the internal
characteristics of different users.

Approach-6 (Cascaded Feature Selection)

The results of this approach are the best among all other
approaches as shown in Table VII. The achieved accuracy is
now 51.89%, while F-measure is 47.74%. The
improvements as compared to simple classification are
6.55%, 10.14%, and 3.92% in terms of accuracy, F-measure
and MAE respectively. These improvements show the
effectiveness of the proposed approach especially in terms
of F-measure which indicates that the generated
recommendations will be more relevant to users.

The selection percentage values and for both

stages are trained offline. Some users need a light filtering
whereas some others need a heavy filtering. For example,

 keeps high percentage values whereas u keeps very

low value for both stages. Other users select two different
values in the two stages. For example, keeps 50% of

the features in the first stage and only 10% of them in the
second stage. Table X gives more examples of the learned
selection percentage values. Fig. 5 illustrates the final and
best results of each approach as listed also in Table VII. The

results show that simple classification has the lowest
accuracy whereas cascaded feature selection (approach 6)
has the best results.

1W 2W

1929u

50u

The accuracy values of both simple classification and
correlation-based feature selection are very close. However,
F-measure of the correlation-based feature selection is better
than that of simple classification. This means that the system
is now able to generate more relevant items. The final and
best results of each approach in terms of MAE and RMSE
are drawn in Fig. 6. The results are very close with little
advantage of approach 5 and approach 6. The results of
RMSE are higher than that of MAE because of the error
squaring.

TABLE X. SOME WEIGHTING VALUES FOR SOME ACTIVE USERS

Active user 1W 2W

4u 0.15 0.45

14u 0.05 0.35

15u 0.1 0.15

19u 0.05 0.05

21u 0.5 0.25

29u 0.4 0.4

50u 0.5 0.1

Figure 5. Accuracy and F-measure values for all approaches.

Figure 6. MAE and RMSE values for all approaches.

Fig. 7 summarizes the improvements of all approaches
compared to approach-1 which is the simplest classification.
The improvements are high for F-measure which indicate
that the generated predictions are more relevant to the active
user and hence more interesting. Accuracy improvements

 32

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 14:57:03 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

are also high especially for approach-6. In fact, there were
improvements for all measures. There is one exception
about RMSE and MAE for approach-2. The results of error
performance of approach-2 are less than that of approach-1.
This approach chose only a subset of features based on
correlation-based feature selection method. However, this
story is changed using the proposed density-based feature
selection method which shows good error improvement.

Figure 7. Improvement of all approaches compared to approach-1.

VII. CONCLUSIONS

Feature selection is a powerful artificial intelligence
method for processing huge datasets like recommender
systems. This paper builds a roadmap with clear examples
of using classical feature selection and classification for
recommender systems.

In this paper, we introduced user models for applying
different approaches and then we tested them
experimentally. The results showed that feature selection
methods indeed improve the performance of the
recommender system.

Moreover, the results showed that the suggested density-
based feature selection method solves to a good extent the
sparsity problem by selecting only dense features. The
density-based feature selection gives better results than that
of the classical ones especially when we tune the selection
percentage based on user characteristics. The tuned
percentage values for both classical feature selection and
density-based feature selection reflect the users’ preference
more accurately and help the system to reduce the effect of
the sparsity problem.

In addition, the proposed cascaded feature selection takes
the results one step farther, since it is fast in terms of
processing and light in terms of storage requirements. The
heavy job is done offline and hence it will be appropriate for
online applications.

The proposed approaches try to alleviate the sparsity
problem to some extent. However, many ideas can be
introduced in this direction like matrix decomposition,
filling the missed values, or extracting useful features from
the original ones. This will be left for future work in order to
explore the possibility of classical machine learning
methods to enhance the performance of the recommender
system.

REFERENCES
[1] D. Donoho, “High-dimensional data analysis: the curses and blessings

of dimensionality,” in Proc. American Mathematical Society
Conference of Math Challenges of the 21st Century, 2000.

[2] I. Portugal, P. Alencar, and D. Cowan, “The use of machine learning
algorithms in recommender systems: a systematic review,” arXiv, vol.
4, pp. 1–16, Nov. 2015. doi:1511.05263v4

[3] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez,
“Recommender systems survey,” Knowledge-Based Systems, vol. 46,
pp.109–132, 2013. doi:10.1016/j.knosys.2013.03.012

[4] M. D. Ekstrand, J. T. Riedl, and J. A. Konstan, “Collaborative
filtering recommender systems,” Foundations and Trends in Human–
Computer Interaction, vol. 4, No. 2, pp. 81–173 2010.
doi:10.1561/1100000009

[5] F. Isinkaye, Y. Folajimi, and B.Ojokoh, “Recommendation systems:
Principles, methods and evaluation,” Egyptian Informatics Journal,
vol. 16, pp. 261-273, 2015. doi:10.1016/j.eij.2015.06.005

[6] X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering
techniques,” Advances in Artificial Intelligence, vol. 2009, pp. 1-9,
2009. doi:10.1155/2009/421425

[7] M. Y. H. Al-Shamri, “User profiling approaches for demographic
recommender systems,” Knowledge-Based Systems, vol. 100, pp.
175-187, 2016. doi:10.1016/j.knosys.2016.03.006

[8] R. Burke, “Hybrid recommender systems: Survey and experiments,”
User Modeling and User-Adapted Interaction, vol. 12, No. 4, pp. 331–
370, 2002. doi:10.1023/A:1021240730564

[9] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical analysis of
predictive algorithms for collaborative filtering,” in Proc. 14th
conference on Uncertainty in artificial intelligence, 1998, pp. 43-52.
doi:1301.7363

[10] I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh, Feature Extraction:
Foundations and Applications. Springer, pp. 463-470, 2006.
doi:10.1007/978-3-540-35488-8

[11] L. Yu and H. Liu, “Efficient feature selection via analysis of
relevance and redundancy”, Journal of Machine Learning Research,
vol. 5, pp. 1205–1224, 2004.

[12] V. B. Canedo, Novel feature selection methods for high dimensional
data. PhD thesis, March 2014.

[13] C. Basu, H. Harish, W. Cohen, “Recommendation as classification:
Using social and content-based information in recommendation,”
AAAI Technical Report, WS-98-08, 1998.

[14] L. Schmidt-Thieme, “Compound classification models for
recommender systems,” in Proc. 5th IEEE International Conference on
Data Mining, 2005, pp. 378-385. doi:10.1109/ICDM.2005.46

[15] K. Wang, Y. Tan, “A new collaborative filtering recommendation
approach based on naive Bayesian method,” in: Tan Y., Shi Y., Chai
Y., Wang G. (eds) Advances in Swarm Intelligence. ICSI 2011.
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, vol.
6729, pp. 218–227, 2011. doi:10.1007/978-3-642-25832-9

[16] K. Miyahara and M. J. Pazzani, “Improvement of collaborative
filtering with the simple Bayesian classifier,” IPSJ journal, vol. 43,
no. 11, pp. 3429-3437, 2002.

[17] D. Bouneffouf, A. Bouzeghoub, and A. L. Gançarski, “Hybrid- ε-
greedy for mobile context-aware recommender system,” in Proc.
Pacific-Asia Conference on Knowledge Discovery and Data Mining,
Springer Berlin Heidelberg, 2012, pp. 468-479. doi:10.1007/978-3-
642-30217-6_39

[18] A. I. Saleh, A. I. El Desouky, and S. H. Ali, “Promoting the
performance of vertical recommendation systems by applying new
classification techniques,” Knowledge-Based Systems, vol. 75, pp.
192–223, 2015. doi:10.1016/j.knosys.2014.12.002

[19] B. Wang, Q. Liao, and C. Zhang, “Weight based KNN recommender
system,” in Proc. 5th International Conference on Intelligent Human–
Machine Systems and Cybernetics (IHMSC), 26–27 August 2013, pp.
449–452. doi:10.1109/IHMSC.2013.254

[20] A. Bouza, G. Reif, A. Bernstein, and H. Gall, “SemTree: ontology-
based decision tree algorithm for recommender systems,” in Proc.
Semantic Web Conference, Karlsruhe, Germany, 2008.

[21] Y. Cho, J. Kim, and S. Kim, “A personalized recommender system
based on web usage mining and decision tree induction,” Expert
Systems with Application, vol. 23, No, 2, pp. 329–342, 2002.
doi:10.1016/S0957-4174(02)00052-0

[22] D. Nikovski and V. Kulev, “Induction of compact decision trees for
personalized recommendation,” in Proc. ACM Symposium on
Applied Computing, Dijon, France, April 2006, pp. 575–581.
doi:10.1145/1141277.1141410

[23] W. Cheng, J. Hühn, and E. Hüllermeier. “Decision tree and instance-
based learning for label ranking,” in Proc. 26th Annual International

 33

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 14:57:03 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 18, Number 4, 2018

 34

Conference on Machine Learning (ICML ‘09), New York, NY, USA,
2009, pp. 161–168. doi:10.1145/1553374.1553395

[24] X. Su and T. M. Khoshgoftaar, “Collaborative filtering for multi-class
data using belief nets algorithms,” International Journal on Artificial
Intelligence Tools, vol. 17, No. 1, pp. 71-85, 2008.
doi:10.1142/S0218213008003789

[25] T. Zhang and V. S. Iyengar, “Recommender systems using linear
classifiers,” Journal of Machine Learning Research, vol. 2, pp. 313-
334, 2002.

[26] A Gershman, A. Meisels, K-H. Luke, L. Rokach, A. Schclar, and A.
Sturm, "A decision tree based recommender system," in Proc. 10th
Conf. on Innovative Internet Community Services, Trondheim,
Norway, 2010, pp. 170-179.

[27] T. Zhang and F. Ma, “Improved rough k-means clustering algorithm
based on weighted distance measure with Gaussian function”,
International Journal of Computer Mathematics, vol. 94, no. 4, pp.
663-675, 2017. doi: 10.1080/00207160.2015.1124099.

[28] I. D. Borlea, R. E. Precup, F. Dragan and A. B. Borlea, “Centroid
update approach to k-means clustering”, Advances in Electrical and
Computer Engineering, vol. 17, no. 4, pp. 3-10, 2017. Doi:
10.4316/AECE.2017.04001.

[29] S. Chakraborty and S. Das, “k-means clustering with a new
divergence-based distance metric: Convergence and performance
analysis”, Pattern Recognition Letters, vol. 100, pp. 67-73, 2017. doi:
10.1016/j.patrec.2017.09.025.

[30] S. Zahra, M. A. Ghazanfar, A. Khalid, M. A. Azam, U. Naeem, A. P.
Bennett, “Novel Centroid Selection Approaches for K-Means
Clustering Based Recommender Systems”, Information Sciences, Vol.
320, pp. 156-189, Nov. 2015. doi: 10.1016/j.ins.2015.03.062

[31] S. Sharma, “A Recommender System Based on Improvised K- Means
Clustering Algorithm”, International Journal of Research in Advent
Technology, Vol. 6, No. 7, pp. 1477-1483, July 2018.

[32] J. Bobadilla, R. Bojorque, A. H. Esteban, and R. Hurtado,
“Recommender Systems Clustering Using Bayesian Non Negative

Matrix Factorization”, IEEE Access, Vol. 6, pp. 3549-3564, 2018. doi:
10.1109/ACCESS.2017.2788138.

[33] C. C. Aggarwal, Data Mining: The Textbook, Springer, pp. 285-343,
2015. doi:10.1007/978-3-319-14142-8

[34] S. Yu, Z-H Zhou, M. Steinbach, D. J. Hand, and D. Steinberg, “Top
10 algorithms in data mining,” Knowledge Information Systems, vol.
14, pp. 1–37, 2008. doi:10.1007/s10115-007-0114-2

[35] T. K. Ho, “Random decision forests,” in Proc.3rd International
Conference on Document Analysis and Recognition, Montreal, QC,
14–16 August 1995, pp. 278–282. doi:10.1109/ICDAR.1995.598994

[36] C. Cortes, and V. Vapnik, “Support-vector networks,” Machine
Learning, vol. 20, pp. 273-297, 1995.
doi:10.1007/BF00994018

[37] I. Guyon, and A. Elisseeff, “An introduction to variable and feature
selection,” Journal of Machine Learning Research, vol. 3, pp. 1157-
1182, 2003.

[38] V. Bolón-Canedo, N. Sánchez-Maroño, and A. Alonso-Betanzos,
Feature Selection for High-Dimensional Data, Springer, pp. 31-40,
2015.

[39] G. Chandrashekar, and F. Sahin, “A survey on feature selection
methods,” Computers and Electrical Engineering, vol. 40, pp. 16–28,
2014. doi:10.1016/j.compeleceng.2013.11.024

[40] M. Y. H. Al-Shamri, Effect of Collaborative Recommender System
Parameters: Common Set Cardinality and the Similarity Measure,
Advances in Artificial Intelligence 2016 (2016), 10 pages

[41] A. Al-Junaid, T. Qaid, MYH Al-Shamri, M. Ahmed, A Raweh,
Vertical and Horizontal DNA Differential Methylation Analysis for
Predicting Breast Cancer, IEEE Access, vol. 6, pp. 53533-53545,
2018. doi: 10.1109/ACCESS.2018.2871027.

[42] N. Japkowicz and M. Shah, Evaluating learning algorithms: a
classification perspective, Cambridge, pp. 74-159, 2011.
doi:10.1017/CBO9780511921803.

[43] A. Zhang, Evaluating Machine Learning Models: A Beginner Guide
to Key Concepts and Pitfalls, O’Reilly Media, pp. 7-12, 2015.

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 14:57:03 (UTC) by 44.213.80.203. Redistribution subject to AECE license or copyright.]

