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1Abstract—This work proposes and evaluates a methodology 

for monitoring and diagnosis of polymeric insulators in 
operation based on the parameterization of acoustic emissions 
(AE) created by corona and electrical surface discharges. The 
parameterization was performed with the use of the spectral 
subband centroid energy vectors (SSCEV) algorithm, which 
compresses the frequency spectrum and presents the results of 
the AE energies in several frequency bands. Thus, it was 
possible to calculate the dominant acoustic emission 
frequencies. This parameter was used as reference for an 
operating point of the insulators and, therefore, it was used to 
classify them. This classification was correlated to the 
classification obtained by visual inspection in the laboratory, 
where the insulators were divided into three distinct classes: 
clean, polluted and damaged. Aiming to insert an aid to the 
decision-making, this work still proposes the use of artificial 
neural networks (ANN) for pattern recognition. In this way, we 
performed a sensitivity analysis of the parameters that 
influence the SSCEV and ANN, in order to obtain the values 
and configurations with higher performance. The use of 
Levenberg-Marquardt training algorithm has proved to be 
more suitable, since it showed hit rates and convergence up to 
97.66 percent and 70 epochs, respectively. 
 

Index Terms—acoustic emission, artificial neural networks, 
condition monitoring, corona, insulators. 

I. INTRODUCTION 

The ability to anticipate, identify and diagnose a failure 
may be the critical difference between the shutdown and 
normal operation of a transmission line. The diagnosis 
should guide the decision-making process of the 
maintenance teams regarding the needs for repairs and 
replacements in-line components [1]. 

The monitoring and diagnosis of polymeric insulators in 
operation are not easy tasks. First, due to the numerous 
quantities of insulators in a transmission line and, secondly, 
due to the quantity and complexity of the physical 
parameters involved [1]. In this way, methods that help the 
monitoring and diagnosis of insulator processes are in 
ongoing development [2]. 

Periodic inspections are one of the safest and applicable 
ways of obtaining operational data from polymeric 

insulators. Some in-service inspection techniques combine 
non-invasive procedures with the possibility of gathering a 
significant amount of data to allow making estimations 
about insulators conditions. These estimations become 
consistent when performed with the use of intelligent 
systems capable of recognizing data patterns and classifying 
them adequately [3]. In several research fields, the use of 
intelligent classifier systems has been consolidated in the 
data and signal processing. Researchers have presented 
modeling solutions that have proven to be useful in many 
applications. The use of classifiers based on Fuzzy models is 
well documented in [4]. Approaches based on heuristic and 
hybrid models are presented in [5] and [6]. Discussions 
about a new artificial neural network training algorithm was 
proposed by [7]. 

 
1This work was supported by CNPq and Proex/CAPES, which provided 

the scholarships. 

Regarding the techniques for obtaining electrical 
insulators parameters, the usual inspection techniques are 
visual inspection, ultraviolet light detection, thermal, 
acoustic and electric field distribution measurements and 
hydrophobicity classification [1-2],[8-9]. 

Several researchers have successfully used acoustic and 
electromagnetic waves detection methods of corona and 
electrical surface discharges created by intense and local 
electric fields on insulator surfaces [3],[10]. Acoustic 
emission (AE) monitoring techniques present immunity to 
electromagnetic noise [11-12]. They are low cost and, 
furthermore, allow the splitting acoustic noises into distinct 
and limited ranges of the frequency spectrum and the 
application of pattern recognition algorithms [3]. In this 
way, signal analysis techniques based on Wavelet transform 
[13,14], Fourier transform [15,16], Artificial Neural 
Networks (ANN) and so on, have been used in order to 
characterize and classify the corona and electrical surface 
discharge signals [3],[11],[17-19]. 

One of those AE methods for monitoring insulators is 
based on the analysis of the acoustic noise emitted in the 
ultrasonic (US) range, then processed by the Spectral 
Subband Centroid Energy Vectors (SSCEV) 
algorithm [11],[19]. The SSCEV algorithm allows 
calculating the AE energy of discharges in the ultrasound 
range and its application has already been evaluated in the 
diagnosis of ceramic insulators [11]. 
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Several studies have shown the correlation between the 
operating conditions of the insulators, when corona and 
electrical surface discharges occur, and the emission of 
electromagnetic and acoustic waves [11-12],[20-23]. 
Normally, the energy of the AE is proportional to the 
intensity of the discharge to which it is associated, in the air. 
However, the frequency of the AE is inversely proportional 
to the energy released by the discharge [24-25]. During the 
occurrence of electric discharge in the air, a great amount of 
energy is concentrated in limited bands of frequency (called 
dominant frequencies) and this frequency depends on the 
nature of the discharge [25]. 

This work presents a methodology that uses the SSCEV 
algorithm to calculate the dominant acoustic emission 
frequency in order to correlate this parameter with the 
operating conditions of polymeric insulators. The operating 
conditions of the polymeric insulators used in this work 
were obtained through visual inspection in a laboratory and 
it was possible to separate them into three distinct operation 
classes: clean, polluted and damaged. 

Therefore, the main contribution of this work is to 
provide a methodology for monitoring and diagnosis of 
polymeric insulators which is based on the analysis of the 
spectral behavior of the AE, by calculating the dominant 
acoustic emission frequency, and which supports the visual 
inspection. 

In order to support the decision-making process, this work 
proposes the use of ANN to classify AE patterns. For this 
purpose, this paper presents the results of sensitivity analysis 
performed with the main variables of the SSCEV algorithm 
which influences the ANN configuration. In this way, the 
aim of this sensitivity analyzes is to highlight which 
parameters values best fit the proposed methodology and 
which configurations and algorithms of ANN training, 
between Resilient Propagation and Levenberg-Marquardt, 
presents better performance. 

II. DOMINANT ACOUSTIC EMISSION FREQUENCY 

The detection of AE from the corona and surface 
discharges is a viable alternative to methods that are 
sensitive to electromagnetic fields. US acoustic inspections 
are based on a mechanical effect of the electric discharges, 
possible because the corona and surface discharges that 
occur near the polluted and damaged polymeric insulators 
results in located and instantaneous energy release. 

Furthermore, the noise coming from superficial 
discharges releases more energy in the ultrasonic band, 
especially when the discharges happen in the air [24]. 
Figure 1 shows the behavior of the mechanical energy from 
the electrical discharges in the different acoustic frequency 
bands [25]. For a greater amount of radiated energy, the 
frequency of dominant acoustic radiation is lower, as 
observed in the occurrence of ruptures. For the higher 
dominant frequencies, the radiated energy is lower, as 
occurs with the corona discharges. 

According to the curve represented in Figure 1, the 
dominant frequency for different disruptive distances is 
expressed by (1): 
 P

f c
W

  (1) 

where f is the dominant frequency in Hz, c is the velocity of 
air in m/s, P is the atmospheric pressure in Pa and W is the 
mechanical energy of the discharge in J/m [25]. 

The alternative way to calculate the dominant acoustic 
frequency proposed by this work and based on the extraction 
of the SSCEV will be shown in the material and methods 
section. 

 
Figure 1. Acoustic emission radiating frequencies measured from lightning, 
long sparks and partial discharges versus discharge energy (energy per unit 
length, J/m) [adapted from [25]]. 

III. SPECTRAL SUBBAND CENTROID ENERGY VECTORS 

The extraction of signal attributes is one of the most 
important tasks for the recognition of acoustic patterns. It 
requires the choice of an appropriate mathematical 
procedure, which highlights the most relevant information 
and, at the same time, discards redundant or irrelevant 
information. 

Among several methods, there are those for the extraction 
of speech attributes, which can be based, for example, on 
cepstral coefficients and on the spectral subband 
centroids (SSC) [26]. Both methods present computational 
processes similar to each other; however, the use of SSC is a 
more advantageous alternative to cepstral coefficients 
because they allow the proper separation of the signal in the 
presence of unwanted noises [26-27]. 

The SSC processing is performed according to the 
parameters defined for the splitting of the signal frequency 
band, in a fixed amount of subbands, and by the calculation 
of the centroid in each of the subbands [27]. The parameters 
to be defined are: 
 

 Numbers of filters for splitting the frequency 
spectrum; 

 Filters’ middle frequency and break frequency; 
 Filters’ format; 
 Overlap percentage. 

 

The SSCEV method is based on SSC processing and may 
be utilized for recognition and extraction of ultrasonic noise 
features considering the spectral centroid energies. This 
algorithm splits the frequency spectrum into a number of 
overlapping subbands, locates the centroids of each subband 
and calculates the energy in the proximity of each centroid.  

The estimation procedures according to SSCEV algorithm 
are described below [11],[19]: 
 

1. For each US signal recorded, the spectrum is calculated 
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through fast Fourier transform (FFT); 
2. Then, the spectrum is divided into several subbands, 

through the application of rectangular superposed 
bandpass filters; 

3. The centroid localization CH for each subband is 
calculated by using (2): 

 



 






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where P(j) is the estimated spectrum, Hm(j) is the 
vector of frequencies, and N is the number of samples 
(subbands) limited by the filter; 

4. The energy EC associated with each centroid is 
calculated through (3): 
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
, (3) 

where  defines how wide the range in the 
neighborhood of the centroid is. The energy of the 
SSCEV element is then calculated within the range 
defined by . 

IV. MATERIAL AND METHODS 

A. Material 

All the insulators used in the laboratory tests were taken 
from transmission lines. The tested insulators, nine units, 
had different levels of degradation and surface pollution.  

In all tests, we used the same insulator model and 
manufacturer, for 230 kV class. A photograph and the 
dimensional schematic of the model of insulator used in this 
work, are shown in Figure 2(a) and Figure 2(b), 
respectively. 

 
(a) 

 
(b) 

Figure 2. (a) 230 kV model of polymeric insulator photography and (b) 
dimensional characteristics of the polymeric insulator. 

B. Visual Inspection 

The flowchart of the methods applied in this work is 
shown in Figure 3. The experimental procedures started with 
the separation of insulators in operation classes by visual 
inspection. Thus, we analyzed the following physical 
conditions of the insulators: surface pollution, presence of 
erosion and tracking in the polymer coating, exposure of the 
rod, corrosion condition of the end fittings and the state of 
the connections between the core and end fittings. 

The analysis of the insulators conditions allows us to 
distinct three groups with different degradation levels. The 
insulators 1, 2 and 3 comprise the Group 1, which were 
clean and presented no visual signs of degradation. Three 
other insulators comprise the Group 2 (insulators 4, 5 and 6) 
which contained surface pollution. Three other insulators 
(insulators 7, 8 and 9) comprise the Group 3. Insulator 7 
contains tracking and erosion on the coating. Insulator 8 

contains core exposure and moisture in the bonds and 
insulator 9 contains core exposure and corrosion on the end 
fittings. The classification of the nine insulators into three 
groups with distinct operation classes, obtained from the 
visual inspection, is shown in Table I. 

Samples of polymeric insulators
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Figure 3. Flowchart of the methods. 
 

TABLE I. GROUPS OF INSULATOR BY VISUAL INSPECTION 
Group Operation class Insulators 

1 Clean 01, 02 e 03 
2 Polluted 04, 05 e 06 
3 Damaged 07, 08 e 09 

C. Laboratory Tests 

The laboratory tests were performed under similar 
atmospheric conditions for all insulators and in a setup with 
geometrical characteristics that aimed to reproduce the 
conditions in a transmission line, as shown in Figure 4. The 
magnitude of the applied voltage was 132.8 kV, equivalent 
to the nominal voltage between the phase and the earth on 
the insulator. 

 
Figure 4. Photograph of the line condition emulation system. 

 

In order to detect the ultrasonic noise signals, we used the 
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Ultrasonic 2000 MPH, equipped with the Trisonic Scanning 
Module, both manufactured by UE Systems. This setup 
detects the ultrasonic acoustic emitions and converts it to an 
audible frequency range (20 Hz < f < 3 kHz). Figure 5 
shows the schematic of the voltage application and 
measuring system. 

Control
desk

Data acquisition
T1

Ca

Cb

Ultraprobe 
2000 MPH

Signal 
acquisition

T1: 1 kV/600 kV - 600 kVA
Ca/Cb = 7816

 
Figure 5. Diagram of the voltage application and measuring system. 
 

About 15 minutes after the application of high voltage, 
the ultrasonic noises were recorded. The recordings were 
made in three different positions, 10 meters away from the 
insulator and with 120 degrees between them. In each 
position, the noises were recorded three times. Therefore, 
for each insulator we recorded nine audio samples. Each 
recorded audio samples has 30 seconds of duration. During 
laboratory tests, atmospheric conditions did not change 
significantly, maintaining a mean temperature, humidity and 
pressure standard, as shown in Table II. 
 

TABLE II. ATMOSPHERIC CONDITIONS IN LABORATORY 

Temperature (°C) Humidity (%) 
Atmospheric pressure 

(mbar) 
26 70 955 

D. Signal preprocessing 

The signal preprocessing stage was developed with the 
purpose of creating a suitable database for the ANN. In this 
process, each 1.0 second (or a window of 60 industrial 
cycles, in Brazil) of each audio signal represented a sample 
for the ANN. Some overlapping in the windowing process 
was admitted (16.67%, 33.33 %, and 50 %; i.e. 10, 20 or 30 
cycles of windowing steps), in order to increase the number 
of samples and reinforce the correlation between samples of 
the same class. Figure 6 shows the diagram that represents 
the windowing process. 

 
Figure 6. Diagram of windowing process. 

E. Feature extraction by SSCEV 

The result of the windowing process was the input of 
the SSCEV algorithm [11],[19]. In this step, as shown in 
Section II, several numbers of subbands (passband filters) 
were also tested (10, 20 or 30). In each one of three cases, 
overlap rates were compared between subbands: 10%, 25% 
and 50%. 

F. Calculating the dominant frequency  

The spectral behavior of the ultrasonic noise emitted by 
the insulators was evaluated according to the dominant 
acoustic radiating frequency [25]. The variable is closely 
related to the nature of electric discharge that occurs in 
insulator surface, as well as the energy emitted from the 
discharge [24]. 

The calculation of this parameter is used to classify the 
insulators within the operation classes presented in Table I 
and the result of this classification is compared to the one 
obtained by the visual inspection. 

We calculate the dominant acoustic radiating frequency  f 
 (in kHz) by using (4): 



 





N

n

N

n

N
H

P(n)

CP(n)
f

1

1 , (4) 

where P(n) is the normalized power, n is the index that 
locates the normalized power in the corresponding centroid, 
CH

N is the corresponding centroid, limited by the number of 
subbands, N is the number of subbands from SSCEV 
extraction. 

G. ANN settings  

The adaptive mathematical models based on the 
biological neuron were initially developed by [28]. ANNs 
are used for several purposes, including parameter 
classification and pattern recognition [29-30]. Thereby, 
ANNs are based on learning rules to establish their internal 
parameters, called synaptic weights. Among several network 
architectures that have been developed over decades, the 
multilayer perceptron (MLP), developed by [30], has gained 
prominence due to the simplicity, efficiency and reliability. 
By these reasons, we use MLP architecture in this work. 

For training the ANN, we evaluate the use of two 
algorithms, the Resilient Propagation algorithm (RPROP), 
developed by [31], and the algorithm based on 
Levenberg-Marquardt (LM) [32]. The RPROP was chosen 
due to its advantages such as speed of convergence, reduced 
computational effort and good performance in the location 
of the minimum satisfactory error surface. 

In addition, the Levenberg-Marquardt allows the 
acceleration of convergence during the backpropagation of 
the error [33].  The second derivative of the error function is 
taken into account, since the algorithm uses an 
approximation of Newton’s method of optimization [32]. 
Equation (5) represents the Levenberg-Marquardt 
approximation: 

 TTk
i

k
i JIJJ 1

1 ][ 
   (5) 

where represents the neuron i of layer k, J is the Jacobian 

matrix representing the first derivatives of the error function 
in relation to the weights, ξ is the function error in the output 
of the network and I is the identity matrix. 

k
i

The main characteristics of the Levenberg-Marquardt are: 
 

 Convergence speed: the network converges in a 
few times. Experience shows that this quantity is 
around 70 epochs; 

 Robustness: this makes it a very widespread 
algorithm, since the hit rates are high for solving 
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many problems; 
 High computational effort: the price paid for its 

efficiency is the time elapsed in each training 
epoch; 

 Limited efficiency for networks with up to a few 
hundred connections. 

 

The accuracy rates as well as the number of training 
epochs and the processing time were taken as indicators of 
network performance. Each processing took place in 10 
consecutive runs to obtain the average values of these 
parameters. 

As a preliminary result and for use in the sensitivity 
analysis of the ANN processing, we found the relations 
between the number of neurons in the input layer (number 
of subbands used in SSCEV processing) and the number of 
neurons in the hidden layer. After several tests in the 
RPROP training, we found that the number of neurons in the 
hidden layer that allowed better performance was 1.5 
neurons for each neuron in the input layer, resulting in 30, 
60 and 90 neurons in the hidden layer. This same ratio 
between input layer and hidden layer neurons was not 
obtained in the Levenberg-Marquardt training, since there 
was no convergence. We search for the closest possible 
proportion to become comparable to the RPROP process, 
which allow convergence and high performance, and we 
found the ratio of 0.9 neurons in the hidden layer to each 
neuron in the input layer in the Levenberg-Marquardt 
training, resulting in 18, 36 and 54 neurons in the hidden 
layer. 

In all cases, the number of neurons in the output layer is 
equal to three, which corresponds to the number of 
operation classes of the insulators (three groups with 
different degradation levels). 

The dataset of the work is available on the link below: 
http://bit.do/paperAECE-6792. 

H. ANN Architecture for Sensitivity Analysis  

All possibilities of settings variations were considered, 
generating several sets of databases during the stages of 
preprocessing of the signals and attribute extraction. An 
amount of 27 cases was obtained, which are compared 
according to the parameters summarized in Table III. Each 
one of the 27 cases fed the ANN processing. In order to train 
the ANN in a depolarized way, each class must contain the 
same number of samples. This last premise was obeyed 
when we distinguished the classes of the insulators, as 
presented in Table I. 
 

TABLE III. VARIATION OF PARAMETERS FOR SENSITIVITY ANALYSIS 
Step Parameter Quantity 

Preprocessing of 
signals 

Windowing steps (cycles) 
Time superposition rate (%) 

10, 20 or 30 
83, 67 or 50 

Feature extraction 
by SSCEV 

Subbands 
Superposition rate (%) 

10, 20 or 30 
10, 25 or 50 

ANN processing 

Input layer neurons 
 

Hidden layer neurons 
in RPROP 

 
Hidden layer neurons 

in Levenberg-Marquardt 

20, 40 or 60 
 

30, 60 or 90 
 
 

18, 36 or 54 

V. RESULTS AND DISCUSSION 

A. Feature Extraction by SSCEV 

The complexity of the proposed task, which is the 
classification of spectral patterns, is illustratively 
exemplified in Figures 7, 9 and 11, where all of the SSCEV 
are plotted, for each group, in a superposed manner. It is not 
so clear in Figures 7, 9 and 11 that there are specific regions 
of the graphics that are exclusive of a determined class, 
making the distinction difficult. For a clearer visualization 
of the spectral regions of interest, Figures 8, 10 and 12 
presents the mean values for each class. 

The graphs shown in Figures 7, 9 and 11 were constructed 
from the preprocessing of the ultrasonic noise signals, as 
presented in section IV-D, and extraction of attributes 
according to the SSCEV method. 

Each of the graphs seen in Figures 7, 9 and 11 present 
4725 curves, each one corresponding to a SSCEV. 
Since 3 insulators are shown in each graphic, we have 1575 
vectors representing the spectral behavior of each insulator. 
This amount of vector patterns was obtained in the 
windowing stage, with a superposition rate of 83%, which 
was the maximum used in this work, as presented in 
Table III. The number of subbands used in the processing of 
SSCEV for energy calculation, associated with the 
overlapping rate between subbands, indicates the degree of 
spectral detail. Therefore, for illustration purpose, we only 
present the graphical results for a number of 1575 standards 
per insulator, with 30 subbands splitting the spectrum and 
overlapping by 50%. 

The class that represents the Group 1 with cleaned 
insulators was analyzed. Figure 7 shows the results of 
SSCEV for insulators 01, 02, and 03. Figure 8 shows the 
mean values of the results shown in Figure 7. The dominant 
frequency, obtained from (4), found for insulator 01 was 
2.33 kHz. This result is exactly the frequency which 
concentrates most of the energy of SSCEV. Applying the 
same rule, the dominant frequency found for insulator 02 
was 2.32 kHz, and for insulator 03 was 2.31 kHz. 

According to [25], the discharge energy is inversely 
proportional to the frequency of the acoustic radiation. 
Therefore, the higher the frequency, the lower the emitted 
energy and, consequently, the lower the discharge or the 
harmful potential on the insulator. Thus, among the three, 
the insulator 01, with the highest dominant frequency, 
performed best in this class. 

 
Figure 7. Superposed plot of 1575 samples SSCEV obtained from each one 
of the insulators 01, 02 and 03. 
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Figure 8. Mean values of SSCEV obtained from insulators 01, 02 and 03. 
 

Insulators 04, 05 and 06 composed the group of insulators 
containing pollution deposited on the surface. This group, 
however, did not have characteristics of physical 
degradation. Figure 9 shows the results of SSCEV for 
insulators 04, 05 and 06. Figure 10 shows the mean values 
of the results shown in Figure 9. The dominant frequency 
found for the insulator 04 was 2.30 kHz, whereas in 
insulator 05 was 2.13 kHz, and the insulator 06 was 2.19 
kHz. 

Figure 11 shows the results of SSCEV for the 
insulators 07, 08 and 09, which composed the group of 
damaged insulators. Figure 12 shows the mean values of the 
results shown in Figure 11. The results for dominant 
frequency (calculated by (4)) for insulator 07 was 2.17 kHz, 
for insulator 08 was 2.25 kHz for insulator 09 was 2.25 kHz. 

 
Figure 9. Superposed plot of 1575 samples SSCEV obtained from each one 
of the insulators 04, 05 and 06. 

 
Figure 10. Mean values of SSCEV obtained from insulators 04, 05 and 06. 
 

B. Calculating the dominant frequency 

The dominant acoustic radiating frequencies obtained 
with ultrasonic noise samples for each insulator are shown 
in Table IV. We compared these results with the 
classification obtained from the visual inspection, according 
Table I. 

The values shown in Table IV were used for classification 
of insulators by the spectral behavior. As shown in 

Table IV, we relocated some insulators in new operation 
classes, according to the intervals set out in Table V. We 
have chosen these intervals according to the results obtained 
for all nine insulators and we took into account two facts. 
First, we are dealing with the same physical phenomenon 
for all insulators, so the frequencies are very similar to each 
other and cause the thresholds to be very close between the 
different classes and, secondly, that the classes must 
represent the same amount of samples, in order to make the 
classification depolarized in computational processes. 

 
Figure 11. Superposed plot of 1575 samples SSCEV obtained from each 
one of the insulators 07, 08 and 09. 
 

 
Figure 12. Mean values of SSCEV obtained from insulators 07, 08 and 09. 
 

TABLE IV. CLASSIFICATION BY DOMINANT FREQUENCY 
Classification by spectral behavior 

Operation 
class 

Visual 
inspection Insulator 

Dominant Frequency 
(kHz) 

01 2.33 
02 2.32 Clean 01, 02 and 03 
03 2.31 
04 2.30 
08 2.25 Polluted 04, 05 and 06 
09 2.25 
06 2.19 
07 2.17 Damaged 07, 08 and 09 
05 2.13 

 
TABLE V. INTERVAL FOR DOMINANT FREQUENCY 

Group Operation class 
Dominant acoustic radiating 

frequency (kHz) 
1 Clean f  > 2.30 
2 Polluted 2.20 < f ≤ 2.30 
3 Damaged f ≤ 2.20 

 

In this way, we can compare the classifications obtained 
by the different methods. Between the classification by the 
visual inspection and the spectral behavior, there were 
differences for the insulators 05, 06, 08 and 09. The 
insulators 05 and 06 showed frequencies below the 
threshold for class 2 of polluted insulators and were 
reclassified to class 3 of damaged insulators. The insulators 
08 and 09 presented frequencies above the threshold for 
class 3 of degraded insulators and were reclassified to class 
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2 of polluted insulators. The ratings were similar for the 
other insulators. 

C. ANN Processing 

The configurations of the vector patterns used in 
the SSCEV processing and the correspondent ANN 
configurations were presented in Table III, which serves for 
our sensitivity analysis. The data obtained for the whole 
group of insulators, differentiated by the three classes, 
served as input for the 27 configurations presented in Table 
III. 

Furthermore, the ANN training was carried out with the 
input patterns configured according to the classification by 
the spectral behavior. Therefore, the following results were 
achieved based on the new classification obtained by 
calculating the dominant acoustic radiating frequency. 

The 27 cases were evaluated and their results will be 
analyzed below. Figure 13 shows the results for the success 
rates obtained during ANN processing for all cases 
considered, using both RPROP, in blue, and Levenberg-
Marquardt, in red. Figure 14 shows the average number of 
epochs used by each network configuration adopted, 
among 27 cases, taking into account the two learning 
algorithms: RPROP and Levenberg-Marquardt. 

The success rates and the average number of epochs were 
obtained after 10 executions. As shown in Figure 13, the 
standard deviation values were low in all cases, indicating 
that the number of iterations was sufficient to characterize 
the results of ANN. Considering the average success rates of 
all cases, the best case obtained in RPROP processing 
was 88.37% and in the Levenberg-Marquardt processing 
was 97.66%. 

As we can see in the behavior of the curves shown in 
Figure 13, the increase of subbands and, consequently, the 
increase of neurons in the input layer, it makes the network 
more effective, although its efficiency decreases with 
increasing number of epochs to achieve the result, as shown 
in Figure 14. 

Therefore, a larger number of subbands, obtained in 
the SSCEV processing, makes the energy vectors more 
representative for pattern recognition, as the information is 
presented to the network in more detail. 

This can be better analyzed if we compare the results for 
each number of input patterns, 1575, 792 and 531, as 
highlighted in the frames in Figure 13. The behavior of the 
curves is the same: for the same amount of patterns the 
increment of processing units allows the network to obtain 
better results. However, when we observe the behavior of 
lines 1 and 2, which represents the rate of decay of success 
rates, we note that the decrease of the number of patterns, 
although not changing the other parameters of the network, 
decreases in a more noticeable way the effectiveness of 
Levenberg-Marquardt algorithm in comparison to RPROP 
algorithm. 

In Figure 14, the much faster convergence of the 
Levenberg-Marquardt algorithm is remarkable. While 
the RPROP converged between 200 and 700 times in all its 
cases, the Levenberg-Marquardt algorithm converged in a 
maximum of 70 epochs. This is justified by the 
approximation with Newton's method of optimization, 
which converges rapidly to the minimum error [32]. 

As an additional result, after evaluation between 
hyperbolic tangent and sigmoid function, the activation 
function that we choose to use in RPROP training was 
hyperbolic tangent. This function was chosen because of 
Image Set [-1, 1], which allows the network spread negative 
values, providing a more equalized training through the 
layers [34]. For Levenberg-Marquardt training, we used the 
sigmoid activation function. This choice was based on the 
number of tests in which the network reached the maximum 
number of epochs used: 100. 

 
Figure 13. Average success rate (in %) for Resilient Propagation (RPROP) 
and Levenberg-Marquardt processings. 
 

 
Figure 14. Average number of epochs for Resilient Propagation (RPROP) 
and Levenberg-Marquardt processings. 

VI. CONCLUSION 

In this paper, a methodology for monitoring and 
diagnosing the operating conditions of polymeric insulators 
based on acoustic emission parameters of the corona and 
surface discharges was evaluated. The parameter used to 
classify the insulators within the classes determined by 
visual inspection was the dominant acoustic emission 
frequency, where different values were obtained for this 
parameter among the different operating conditions of the 
insulators. 

When analyzing the classification of the insulators, it is 
verified that the clean insulators had a dominant frequency 
higher than 2.30 kHz, whereas the insulators classified as 
polluted or damaged had dominant frequencies lower 
than 2.30 kHz, mostly more specifically in the range 
of 2.13 kHz to 2.25 kHz. These results show a close 
proximity of values that is justified, since we are analyzing 
the same phenomenon of electric discharge in different 
insulators, under similar atmospheric conditions, but with 
different physical and structural conditions. Therefore, the 
threshold for observing defects in insulators, for 
classification purposes, makes it necessary to use estimation 
methods to support decision-making. 

The sensitivity analysis performed by the variation of the 
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main parameters of the SSCEV and, consequently, of 
the ANN, showed that the configurations that presented 
better performance (higher hit rates and low computational 
effort) were those that used larger amounts of signal samples 
(1575 patterns), subbands (30) and overlapping rate (50%) 
among subbands. It is remarkable that case 9 presented the 
best performance. This is noticeable both in the ANN 
training performed with the RPROP and the Levenberg-
Marquardt algorithm, but the use of the Levenberg-
Marquardt proved to be remarkably more suitable because it 
presented higher hit rates (up to 97.66%) and convergence 
up to 70 epochs. 

Considering the above, this methodology is promising if 
we recognize it as an alternative to support visual inspection 
improvements, considering the correlations found in both 
classifications. 
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