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1Abstract—This study proposes an improved edge 
refinement filter with entropy feedback measurement for 
locating an optimal region of interest (ROI) in blurry images. 
This technique is inspired by He et al.’s algorithm and 
enhanced by introducing a suitable filter to obtain smooth 
unwanted pixels whilst retaining important and significant 
edges. This approach led to an accurate retrieval of ROI and a 
considerably precise image restoration within a blind 
deconvolution framework. Results show that the proposed 
method is more competitive than existing techniques and 
achieves better performance in terms of peak signal-to-noise 
ratio, kernel similarity index and error ratio.  
 

Index Terms—image restoration, image edge detection, 
deconvolution, filtering, image enhancement. 

I. INTRODUCTION 

Blind image deconvolution (BID) is a strategy used to 
recover or restore images that have been degraded by an 
unknown source of degradation or point spread function 
(PSF). This problem exists in many practical applications, 
such as the atmospheric turbulent introduced during 
astronomical observations, degradation resulting from out-
of-focus imaging device and aliasing caused by sampling 
and quantisation errors. Accordingly, solving this type of 
image restoration problem remains a challenge owing to the 
ill-posed characteristic of the inversion formula, thereby 
often leading to unknown solutions. This problem is 
traditionally solved by utilising blurred images as a 
constraint and using this information to estimate the impulse 
response of a degradation system. This approach has been 
shown to improve the condition of BID and yield reasonably 
accurate solutions [1]. Nevertheless, this method requires 
accurate localisation of the region of interest (ROI) because 
not all pixels in the input image are meaningful. For 
example, smooth regions contain extremely limited little 
information, thereby failing to contribute significantly to the 
PSF estimation. This problem leads to several solutions, 
such as the use of edges as a means to retrieve an optimal 
and nearly optimal ROI [2–4]. Nevertheless, the edge 
detection of blurry or noisy images is difficult because of 
the loss or incomplete edge information. Pixel-based edge 
detection methods, such as Sobel, Prewitt, Roberts and 
Canny filters, have difficulties satisfying accuracy 
requirements owing to their low precision and high false 

positive. Consequently, the development of subpixel 
techniques for detecting edges in blurry images constitutes 
one of the active research areas in image processing. Some 
studies have been performed and interesting results have 
been published. Choudhary et al. [5] proposed pre-
processing techniques on the basis of the Wiener filter to 
reduce the blurriness of images prior to detecting edges 
using power spectrum function. Ying et al. [6] proposed the 
detection method on the basis of cubic spline interpolation 
to improve the detection accuracy of motion-blurred images. 
By analysing the greyscale distribution of objects in 
different directions, these studies decomposed images into 
sub-bands, from which the noise and edge are removed and 
enhanced, respectively. The experimental results have 
suggested that the proposed method avoids the misdetection 
of important edges and obtains relatively high detection 
accuracy. 
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Li et al. [7] introduced a localising method for removing 
outlier points using the random sample consensus 
(RANSAC) algorithm. The experimental results have 
suggested that this method outperforms the standard 
Gaussian and Canny filters when detecting edges in blurry 
images. Li et al. [8] used a fuzzy prediction method to 
retrieve latent edges, and utilised a pyramid scheme to 
accelerate the search. Cho and Lee [9] used shock filter and 
gradient thresholding to detect noisy edges in motion-
blurred images. The results from their experiments have 
suggested that the algorithm performs acceptably well if the 
edges have strong global features. However, this algorithm 
may converge to a local minimum in the presence of strong 
local features, such as isolated bright spots, thereby resulting 
in noisy and dense estimate. To solve this problem, 
relatively small patches were used instead of masks for edge 
denoising, such as the method proposed by Pan et al. [10]. 
Their algorithm performed reasonably well, particularly 
when the image patches have many rich details. However, if 
the images are lack texture or contain significantly saturated 
pixels, then the algorithm may behave erratically. 

One solution to this problem is the research published by 
Hu and Yang [11]. The aforementioned study used a search 
technique based on a learning strategy to find small patches 
with elevated information content. This research formulated 
an algorithm based on the conditional random field 
framework by utilising small sub-window image structures. 
Although this algorithm enables the automatic selection of 
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good patches, the method is considerably time-consuming. 
Li et al. [12] provided a slightly improved approach is that 
published by. The aforementioned research proposed a 
technique based on relative total variation (RTV) to 
discriminate between smooth and textured regions, thereby 
leading to a substantially accurate PSF estimation. However, 
Li et al.’s algorithm relies on the accurate determination of 
threshold values that has to be fixed through trial-and-error. 
This approach is a principal drawback of the aforementioned 
study’s algorithm. Ma et al. [13] presented a salient patch-
based technique for detecting fine square regions for kernel 
estimation in image deblurring. This study used the structure 
richness and local contrast of images from which a salient 
patch in a refined map is determined. Experiments involving 
large images indicate the superiority of this algorithm in 
terms of sensitivity and speed compared with other blind 
deblurring techniques [14–15]. However, this method 
focuses only on uniform motion blur. Therefore, the 
algorithm may not function properly with other blurring 
artefacts, particularly when images contain smooth shades 
and complex sceneries. He et al. [16] proposed a guided 
filter in an attempt to preserve edges whilst smoothing 
images. The algorithm works by diffusing the background 
whilst relatively conserving the foreground areas similar to a 
bilateral filter [17]. Although this method is capable of 
recovering important or significant edges, small and 
diminutive details are lost as a result of background 
filtering. Another approach is to assume a certain 
discontinuity of edge signals and use this information to 
search for edges; this method is similar to the algorithm 
proposed by Trujillo-Pino et al. [18]. Although this method 
produced high precision, it is sensitive to noise and other 
image artefacts. Another recent approach is the method 
published by Jia et al. [19] based on a two-level fusion 
model. Although this algorithm outperforms other baseline 
edge detectors, the accuracy depends on the threshold scale 
coefficient value, which has to be set empirically. Compared 
with other state-of-the-art methods, He et al.’s algorithm 
[16] appears to presents significant improvement and 
technical breakthrough in the edge detection of blurry 
images. This algorithm is further refined in the current study 
to preserve as many details as possible, thereby ultimately 
resulting in a considerably accurate localisation of ROI. To 
the best of our knowledge, the present study is the first 
attempt in using guided filter to retrieve ROI in blurry 
images and blind deconvolution.  

II. PROPOSED METHOD 

This research introduces an improved edge refinement 
filter. This technique is based on an explicit guided image 
filter developed originally by He et al. [16]. The guided 
filter was derived from a local linear model and computes 
the filtering output by considering the content of a guidance 
image, which can be the input image itself or another 
different image. The key assumption of the guided filter is a 
local linear model between guidance I and filtering output 
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are the average coefficients of all windows overlapping i . 
The averaging strategy of the overlapping windows is 
common in image denoising, and it is a building block of the 
effective block-matching and 3D filtering (BM3D) 
algorithm [21]. However, this algorithm has one particular 
drawback despite effectively detecting edges. The methods 
and procedures tend to work less satisfactorily for low 
contrast images, thereby producing halos or disjointed edges 
in some segmented results. This problem is due to the use of 
local operator or guided image, which causes difficulty in 
determining which edge should be smoothed and preserved.  

Therefore, a new edge refinement filter is proposed by 
modifying (7) of the original guided filter. The basic idea is 
to enhance the capability of the guided filter in edge 
detection through convolution with a suitable filter. 
Mathematically: 

iiii hbaq  )(    (10) 

where  is a Gaussian 2D high-pass filter and ‘ih  ’ 

indicates the convolution. The guided image I  has been 
removed from (10) but remains as a parameter in calculating 

the average coefficient ia  as in (8).  

In this case, the Gaussian 2D high-pass filter is introduced 
to smoothen the background, thereby increasing the overall 
contrast of the image, including the edges. The Gaussian 2D 
high-pass filter is given by [22] as follows: 
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where  is the transfer function of the corresponding 2D 

Gaussian low-pass filter. The general transfer function of 
this filter is given as follows: 
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where the parameter σ denotes the standard deviation of the 
Gaussian curve, which is also related to the cut-off 
frequency of the filter. Equations (11) and (12) show that the 
transition from stop-band is extremely sharp at σ, with all 
frequencies above the cut-off frequency are allowed to pass 
through whilst attenuating other unwanted frequencies. 
Typically, a σ below 1 eliminates the zero-frequency 
component, thereby resulting in a near-black image, whereas 
a σ above 1 generates a sharp image. This effect is similar to 
high-boost filtering or unsharp masking [23]. Therefore, this 
parameter allows the smoothness of the Gaussian filter to be 
regulated.  

Using (11) and (12), the method for edge recovery and 
image restoration is developed. A flowchart shown in Fig. 1 
summarises the overall procedures. Firstly, the algorithm 
starts by transforming an input image to its greyscale 
counterpart. Secondly, the greyscale output is pre-processed 
using contrast limited adaptive histogram equalisation 
(CLAHE) [24] to increase the contrast between the 
foreground and background pixels. Consequently, the 
overall appearance of an image, including the edges, is 
improved. The same image is fed to the ROI search 
algorithm, which comprises the proposed edge refinement 

filter, edge detection, morphological processing and edge 
partitioning. In this scenario, Canny’s filter is used for edge 
detection, and the standard erosion and dilation techniques 
are applied to morphologically increase edge thickness. The 
outputs from this algorithm are ROI candidates based on the 
edge information feedback. The flowchart shows that these 
image processing procedures are performed in parallel. 
Thirdly, all ROIs retrieved from the previous step are 
mapped onto their corresponding locations in the enhanced 
image after which their entropies are calculated. ROI 
corresponding to the highest entropy is retrieved, and PSF is 
estimated thereafter. This information is used to perform 
image restoration using the standard BID framework. 
Interested readers are referred to papers published elsewhere 
on algorithms used for PSF estimation BID restoration [25, 
26]. 

III. PARTITIONING AND LOCALISATION 

ROI size is an important consideration in implementing 
the search algorithm described in the previous section. 
Theoretically, the size must reasonably be large to enable 
ROI to contain sufficient information for precise PSF 
estimation. For simplicity, a square ROI of size 

, where  is an integer, is considered. nnW 22  n
 

 
Figure 1. Overall procedure of the proposed method. 
 

For example, the size of each block for a fixed square 

block of NN   is given as follows: 
snN  2 ,    (13) 

where  is an integer above 0. The variable  controls the s s
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size of each ROI block. The number of ROI block  that 
results from this partitioning is calculated as follows: 

d

sd 22 .    (14) 
For example, d = 4 and N = 512 for n = 10 and s = 1, 
respectively. Similarly, d = 16 and N = 256 for n = 10 and s 
= 2. For a given N, s and d values, partitioning and 
localisation are performed to retrieve all possible locations 
of ROIs. In this case, an ROI is characterised by pixels with 
high gradient values with minimum amount of noise.  
 

 
Figure 2. Flowchart summarising the algorithm for ROI search based on 
edge-driven partitioning and localisation. 
 

Fig. 2 summarises all important procedures in retrieving 
all possible ROI candidates. The specific procedures include 
the following important steps. Firstly, W is placed at the top 
left-hand corner of the image. Secondly, W is moved across 
the image, one row at a time, from top to bottom, until the 
entire image has been scanned. This process is similar to 
raster scanning in digital devices. Hence, this strategy 
provides more candidate solutions than merely searching for 
non-overlapping blocks. At each location, the number of 
pixels belonging to the edges are counted in W. In this case, 
the number must be at least 50% of the total number of 
pixels to consider W the ROI’s candidate. This threshold 
limit is established heuristically. Lastly, each ROI that 
satisfies this requirement is stored for further processing. In 
the event that no W satisfies this requirement, ROI is simply 
mapped to the centre of the image, which is also a default 
ROI location. 

IV. TEST IMAGES 

Three data sets are used to evaluate the performance of 
the proposed technique: Data set I, Data set II and Data set 

III. Data set I is used for edge evaluation and Data sets II 
and III are reserved for BID restoration. Data set I consists 
of 15 selected RGB images together with their ground truth 
contours. They are obtained from the Berkeley 
Segmentation Dataset (BSDS500) [27]. The size of each 
image is 482 × 321 pixels. All images in this data set are 
blurred using 8 different PSF kernels for a total of 120 
blurry images. All PSF kernels in the current study are 
obtained from the literature [1].  

Data set II consists of 10 greyscale images obtained from 
[11]. Overall, this data set has 10 different test images, 
which are referred as IMG1, IMG2 and so on. Each image is 
convolved using 4 different PSF kernels, thereby resulting in 
40 blurred images. Data set III contains one actual blurred 
image. This image was captured by the authors with a 
slightly out-of-focus camera and serves as an indicator of 
the effectiveness of the proposed solution.  

V. QUALITY INDICES 

Five quality indices are used to quantitatively evaluate the 
performance of the proposed algorithm: (i) Pratt’s figure of 
merit (PFoM), (ii) two-fold consensus ground truth (TCGT), 
(iii) peak signal-to-noise ratio (PSNR), (iv) kernel similarity 
(KS) index and (v) error ratio (ER). In this case, PFoM and 
TCGT are used to assess the quality of the edges detected by 
the proposed method. PFoM is formulated as follows [28]: 


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21
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where  and  are the number of ideal and detected 

edge pixels, respectively; 
IN DN

  denotes a scaling constant 

used to penalise displaced edges and  is the Euclidian 

distance from an estimated edge point to the nearest ideal or 

ground truth edge pixel. The separation distance  plays a 

vital role in the evaluation of PFoM. Edge detection is 
considered good if the value of PFoM approximates 1 and 
poor when this value tends to 0. 

id

id

The second quality index is TCGT proposed by Lopez–
Molina et al. [29]. TCGT is a quantitative error measure for 
boundary detection based on the strong and weak consensus 
of a set of binary images. TCGT can be expressed as 
follows: 
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where E  is a candidate image,  is a ground truth 

boundary image and  and  are the amount of 

compulsory information and spurious detections, 
respectively. The TCGT output of 0 and 1 represents the 
optimal and worst possible outcomes, respectively. 

S

TTR N

The remaining three indices are used to evaluate the 
performance of the proposed ROI search scheme. In this 
case, PSNR is calculated as follows [30]: 


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and the mean squared error is given as follows: 
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where R ,  and  are the maximum 

fluctuation in the input, actual and noisy images, 
respectively. Evidently, the higher the PSNR in this case, 
the more accurate the restoration. The KS index is used to 
compare the estimated kernel with the ground truth kernel. 
This index is formulated as follows [11]: 
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where )(  is the normalised cross-correlation function, 

K and K̂  are the ground truth and estimated kernel, 
respectively,   is the distances or error between the ideal 

and calculated kernels,  represents the image coordinates 

and  indicates the Euclidean norm. Meanwhile, )(K  

and  are 0 when )(K̂   is out of the kernel range. The 

larger the KS index, the more accurate the kernel estimation. 
Lastly, the fifth ER index measures the accuracy of the 
deconvolution process, and is defined as follows [1]: 
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where ,  and  are the restored image using the 

estimated kernel, ground truth image and restored image 
using the ground truth kernel, respectively. An ER of 1 is 
ideal, although high ratios indicate results with limited 
accuracy. 

outx gtx kgtx

VI. RESULTS AND DISCUSSION 

The edge results from Data set I are compared with He et 
al. [16], Trujillo–Pino et al. [29], Jia et al. [30] and other 
popular filters. Meanwhile, the results from Data sets II and 
III are compared with the images restored using the ROI 
location determined using the default method and state-of-
the-art methods published of Hu and Yang [11], Li et al. 
[12] and Ma et al. [13]. All experiments are performed using 
MATLAB® software package in a quad-core desktop 
computer. 

A. ROI Size 

Prior to restoration, a few experiments are initially 
performed to investigate the variation on entropy with ROI 
size. Three ROI sizes are considered, corresponding to s = 1, 
2 and 3. Fig. 3 shows the results, which compare the 
proposed and existing methods. 

As shown in Fig. 3, the entropies calculated from ROIs 
retrieved using the proposed method are consistently the 
highest, thereby indicating that they contain the most 
amount of information. This figure also shows that the 
proposed method resulted in nearly uniform entropy, 
averaging at 6.64 for all s. By contrast, ROI fixed at the 
centre of the image or the default method produced a 
maximum entropy of 7.0. However, this value decreased 

significantly to 5.8 when s is increased from 1 to 3. 
Similarly, the entropy calculated by Hu and Yang [11] 
decreased from 7.2 to 6.5 with increasing s. No significant 
difference was observed between the results of Li et al. [12] 
and Ma et al. [13]. This outcome was obtained despite the 
entropies calculated by these methods are slightly higher 
than those computed by Hu and Yang [11]. Nevertheless, 
these values remain less than those of the proposed 
approach. 

 

 
Figure 3. Evaluation of the ROI size in terms of entropy measure, 
comparing proposed and established methods. 
 

Evidently, these results show that the amount of 
information produced by ROIs retrieved by default and Hu 
and Yang [11] are size-dependent. That is, the larger the 
ROI size (or smaller s), the higher the information. By 
contrast, the proposed method produces entropy, which is 
nearly independent of s, thereby indirectly indicating that 
ROI it retrieves is nearly optimal. This trend suggests that 
the ROI size in the proposed approach does not significantly 
impact the accuracy of the PSF estimation and, ultimately, 
the image restoration. Nevertheless, ROI in the current study 
is fixed to 150 × 150 to enable comparison with recent 
techniques. 

B. Gaussian Parameters 

In the proposed edge refinement filter, two parameters are 
required in the design of the Gaussian filter: (i) cut-off 
frequency σ and (ii) filter size. Therefore, two simulation 
experiments are performed to study the effects of σ and filter 
size on edge quality. In the first experiment, the edge 
detection is performed by fixing the filter size to 3 × 3 
whilst varying σ from 0.3 to 0.7 in three discrete steps. 
Examples of edge images obtained through this procedure 
are shown in Fig. 4. Accordingly, no significant changes in 
the edges are detected in response to different σ values (see 
Fig. 4). Visually, all images appear relatively the same. The 
reason is mainly due to the blurriness of the input images, 
thereby making the overall process in edge detection 
minimally sensitive to σ.  

Meanwhile, the results on varying the filter size on edge 
detection accuracy are shown in Fig. 5. Six filter sizes are 
considered: 3 × 3, 5 × 5, 7 × 7, 9 × 9, 19 × 19 and 29 × 29. 
Different from σ, a strong relationship exists between filter 
size and edge detection. Generally, the smaller the filter 
size, the better segmentation. In this case, the 3 × 3, 5 × 5, 7  
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 4. Selected edge detection results from Data set I using the proposed method, (a) original image, (b) blurred version of (a), (c) ground truth edges and 
(d–f) correspond to edge detection results produced with 3 × 3 filter size for various σ values, 0.3, 0.5 and 0.7, respectively. 

 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 5. Selected edge detection results from Data set I using the proposed method, (a) original image, (b) blurred version of (a), (c) ground truth edges and 
(d–i) correspond to edge detection results produced with σ = 0.3 for various filter sizes, 3 × 3, 5 × 5, 7 × 7, 9 × 9, 19 × 19 and 29 × 29, respectively. 
 

× 7 or 9 × 9 filter sizes yielded considerably more complete 
edges than larger size kernels, as shown in Figs. 5(d–g). 
Visually, many edges are missing when the 19 × 19 or 29 × 
29 size kernels are used, thereby resulting in poorly 
segmented results (Figs. 5(h–i)). Therefore, the Gaussian 
filter in this application is designed with σ and the filter size 
set to 0.3 and 3 × 3. This filter is used in all deblurring 
experiments in this study. 

C. Edge Evaluation 

The objective and subjective assessments are used to 
evaluate the performance of the proposed edge refinement 
filter. Subjective evaluation is implemented through the 

visual comparison of the results using the proposed method 
and the methods of Sobel, LoG, Canny, He et al. [16], 
Trujillo–Pino et al. [18] and Jia et al. [19]. Table 1 
summarises the quantitative evaluation of these results in 
terms of the PFoM and TCGT values calculated from all 
blurred images in Data set I. Table 1 shows that the 
proposed algorithm generally performs considerably better 
than the other established methods in terms of PFoM. In this 
case, the proposed method resulted in the best PFoM, 
averaging at 0.157. The next best performer is the method of 
Trujillo–Pino et al. [18] with an average PFoM of 0.147, 
followed by 0.151 in Jia et al. [19], 0.152 in He et al. [16], 
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TABLE I. AVERAGE EDGE EVALUATION RESULTS COMPARING THE PROPOSED AND ESTABLISHED METHODS. 
Quality Indices Kernel Groups Sobel LoG Canny He et al. [16] Trujillo-Pino et al. [18] Jia et al. [19] Proposed 

H1 0.110 0.130 0.140 0.140 0.142 0.176 0.185 
H2 0.105 0.112 0.134 0.165 0.153 0.152 0.166 
H3 0.130 0.138 0.143 0.161 0.161 0.162 0.171 
H4 0.076 0.107 0.119 0.137 0.135 0.132 0.137 
H5 0.114 0.122 0.137 0.154 0.162 0.160 0.169 
H6 0.110 0.113 0.116 0.138 0.138 0.140 0.141 
H7 0.096 0.105 0.117 0.141 0.141 0.142 0.142 

PFoM 

H8 0.090 0.091 0.114 0.143 0.142 0.140 0.144 
H1 0.776 0.711 0.337 0.282 0.279 0.279 0.277 
H2 0.803 0.657 0.352 0.305 0.301 0.300 0.297 
H3 0.765 0.669 0.297 0.260 0.262 0.258 0.239 
H4 0.814 0.791 0.378 0.357 0.331 0.330 0.312 
H5 0.777 0.724 0.304 0.279 0.265 0.256 0.248 
H6 0.830 0.799 0.387 0.335 0.335 0.332 0.330 
H7 0.792 0.683 0.379 0.330 0.324 0.311 0.303 

TCGT 

H8 0.825 0.810 0.389 0.324 0.319 0.305 0.291 

 
0.128 in Canny, 0.115 in LoG and 0.105 in Sobel. Although 
the PFoM values produced by the algorithms of Trujillo–
Pino et al. [18], Jia et al. [19] and He et al. [16] are also 
competitive, the PFOM values calculated from all image 
kernels through the proposed solution are consistently 
higher than the PFoM values produced by these state-of-the-
art techniques. An exception to this trend is the H4 and H7 
kernels, in which the proposed method resulted in the same 
PFoM value compared with that of He et al. [16] and Jia et 
al. [19], respectively. Similarly, the proposed method 
produced the smallest value on the TCGT scale, thereby 
making it the best performer. On this scale, the proposed 
scheme yielded values with an average of 0.287, followed 
by 0.302 in Trujillo–Pino et al. [18], 0.296 in Jia et al. [19], 
0.309 in He et al. [16], 0.353 in Canny, 0.731 in LoG and 
0.798 in Sobel. Therefore, these results suggest that the 
improved edge refinement filter helps to locate and recover 
important edges in spite of the blurriness of the input 
images.  

Fig. 6 shows three selected results and their ground truths, 
in which the Sobel operator resulted in the under 
thresholded image. The majority of the notable edges 
remained unsegmented, as depicted in Figs. 6(d)(i–iii). 
Similarly, the LoG method reconstructs the edges, but only a 
few contours are detected, as shown in Figs. 6(e)(i–iii). A 
close inspection of this figure reveals that the strongest 
contours are detected, but the weak and least significant 
edges remained unaccounted for. The difficulty in detecting 
minor edges is mainly due to the blurry nature of the input 
images. 

By contrast, Canny’s method appears to perform slightly 
better than those of Sobel and LoG. However, the majority 
of the images appear noisy, which is an extremely common 
drawback of this algorithm. Many significant edges are 
corrupted with unwanted pixels or noise, as shown in Figs. 
6(f)(i–iii). Meanwhile, the method proposed by He et al. 
[16] yields comparable results. This method segments the 
majority of the edges, but some significant edges remain 
missing. Moreover, some ‘false’ edges are detected along 
with the accurate edges, as shown in Figs. 6(g)(i–iii). Figs. 
6(h)(i–iii) and 6(i)(i–iii) show the edges produced by the 
algorithms proposed by Trujillo–Pino et al. [18] and  Jia et 
al. [19], respectively.  Although the majority of the 
important features in the three sample images appear clearly, 
the binarised images are filled with noise and interference. 
The deblurring would be less effective if such edge results 

are used to determine the ROI. As shown in Fig. 6 and 
compared with the results of the existing techniques, the 
proposed method is more resistant to blur because the 
algorithm produces more complete edge information. Nearly 
every important edges are detected, and the images appear 
relatively clean with minimal amount of noise, as shown in 
Figs. 6(j)(i–iii). 

D. ROI Evaluation – Data set II 

This section uses the images in Data set II to summarise the 
performance of the proposed and established methods in 
terms of PSNR, KS Index and ER. For comparison, the 
average PSNR, KS index and ER values are calculated and 
plotted in Figs.7, 8 and 9 respectively. 

In terms of PSNR, the results in Fig. 7(a) indicate a 
difference of 9.94 % between the highest and lowest PSNRs 
for all methods evaluated. Generally, the proposed method 
outperforms the other techniques, with the highest PSNR of 
29.21 dB obtained from IMG5. The other methods produced 
moderate PSNRs, with an average of 28.26 dB. Although 
the difference in dB is relatively small, the slight decrease in 
PSNR causes a significant increase in the ringing artefacts 
of the restored outputs. Similarly, the proposed method 
produces substantially superior results for IMG1, IMG3, 
IMG4, and IMG5, with PSNR having an average of 27.80 
dB.  

A close examination of IMG5 reveals that no significant 
difference exists in terms of the PSNR values produced by 
the proposed method and those calculated from the default 
method and that of Hu and Yang [11]. This finding is due to 
the fact that this image is texturally less complicated, 
comprising mostly smooth or uniform regions. Thus, only a 
few ROI candidates are retrieved from this image compared 
with those from other substantially complex images. 
Moreover, the majority of ROIs retrieved are located near 
the centre of the image. They are also located near the 
default ROI and that calculated by Hu and Yang [11]. As 
expected, the quality of restored outputs is relatively the 
same as that in the PSNR results. Meanwhile, Fig. 7(b) 
compares the performance of each method in terms of the 
KS index. The proposed scheme is consistently more 
competitive than the other methods for all images tested. In 
this case, the best performance is obtained from IMG3, in 
which the proposed method produces the highest KS score,
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(i) (ii) (iii) (i) (ii) (iii) 

(e) (f)  
 

      
(i) (ii) (iii) (i) (ii) (iii) 
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(i) (ii) (iii) (i) (ii) (iii) 

(i) (j) 

Figure 6. Edge detection of three selected images from Data set I. (a)(i–iii) test images, (b)(i–iii) blurred version of (a) together with the kernels responsible 
for blurring, (c)(i–iii) ground truth edges, and (d)(i–iii), (e)(i–iii), (f)(i–iii), (g)(i–iii), (h)(i–iii), (i)(i–iii) and (j)(i–iii) are edge results produced by Sobel, 
LoG, Canny, He et al. [16], Trujillo–Pino et al. [18], Jia et al. [19] and the proposed methods, respectively. 
 

with an average of 0.89 compared with 0.87 in Li et al. [12], 
0.87 in the default, 0.86 in Hu and Yang [11] and 0.85 in Ma 
et al. [13]. By contrast, the results from IMG2 and IMG6 are 
the worst for all the methods investigated. Hence, the 
proposed method is considered the best. The reason for the 
slight decrease in the performance is the fact that both 
images contain many repeated but identical patterns. For 

example, IMG2 features a zebra with stripes that are 
uniquely identical, whilst IMG6 contains many small tree 
branches that appear similar. The presence of many similar 
patterns in these images causes some difficulties in selecting 
an accurate ROI on the basis of entropy measurement 
feedback. 
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Fig. 7(c) illustrates the performance of the proposed 
method in terms of ER. This figure clearly shows that the 
proposed scheme yields the lowest ER scores for all images, 
with an average of 1.09 compared with 1.11 in the default, 
1.12 in Hu and Yang [11], 1.12 in Li et al. [12] and 1.13 in 

Ma et al. [13]. The worst performance is from IMG6 owing 
to the same reason as previously discussed. Nevertheless, 
the proposed approach is considered the best, thereby 
indicating its competitive precision compared with the other 
methods.  

 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Performance of the proposed method in terms of (a) PSNR, (b) KS Index and (c) ER compared with the existing techniques. 
 

By contrast, the ER values calculated from the default 
ROI are consistently the lowest, as shown in IMG2, IMG6 
and IMG10. This result suggests that this method is 
effective when the edges are concentrated at the centre of 
the image. However, the proposed technique constantly 
leads to a region containing dominant edges regardless of 

their location in the image. Overall, the proposed method 
achieves superior accuracy and performance in terms of the 
PSNR, KS and ER measures. Further evidence is provided 
in Fig. 8, which shows the quality of selected deblurring 
results along with the calculated PSF kernels. 
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(i) (ii) (iii) (iv) (v) (vi) 

      
(vii) (viii) (ix) (x) (xi) (xii) 

(a) 

      
(i) (ii) (iii) (iv) (v) (vi) 

      
(vii) (viii) (ix) (x) (xi) (xii) 

(b) 

Figure 8. (a–b) Image restoration results of two selected blurred images from Data set II. (i–ii) Ground truths and the corresponding blurred versions 
together with the actual blurring kernels, (iii–iv) restored images using the default ROI locations together with estimated PSF kernels, (v–vi) restored 
images using ROIs estimated by Hu and Yang [11] together with the estimated PSF kernels, (vii–viii) restored images using ROIs estimated by Ma et al. 
[13] together with the estimated PSF kernels, (ix–x) restored image using ROIs estimated by Li et al. [12] together with estimated PSF kernels, and (xi–xii) 
restored images using ROIs estimated by the proposed method together with estimated PSF kernels. 

 

E. ROI Evaluation – Data set III 

To complete the investigation, the performance of the 
proposed scheme is also evaluated using one actual blurred 
image in Data set III. The results are presented in Fig. 9. A 
close examination of Fig. 9(a)(ii) revealed no significant 
improvement in the image quality as a result of applying the 
default ROI. This effect can clearly be visualised in the 
close-up view in Fig. 9(a)(iii). In this case, numbers ‘2’ and 
‘3’ appear relatively blurry. 

A slight improvement can be observed using the methods 
of Hu and Yang [11], Li et al. [12] and Ma et al. [13], as 
shown in Figs. 9(b)(ii), 9(c)(ii) and 9(d)(iii), respectively.  
Although these methods have resulted in substantially sharp 
images, the results contain ringing artefacts, as shown in 
Figs. 9(b–d)(iii). Evidently, the numbers ‘2’ and ‘3’ appear 
distorted owing to the presence of ringing artefacts. 
Meanwhile, Fig. 9(e)(ii) shows the restored result using ROI 
retrieved through a proposed algorithm. Visually, this image 
appears considerably sharper with less ringing artefact than 
the close-up view in Fig. 9(e)(iii). Therefore, this result 
indicates a definite superiority of the proposed approach to 
existing methods. It also indirectly proves that the ROI 
retrieved by the proposed scheme is nearly optimal, thereby 
leading to substantially precise PSF estimation and accurate 
restoration. 

VII. CONCLUSION  

Edges are increasingly utilised to determine the ROI 
location for image deblurring based on BID procedures. 
Recent studies have shown that regions containing strong 
edges tend to produce superior deblurring results. The 
conventional gradient-based approaches have high false 
positive because the majority of these methods favour 
salient or short edges. Therefore, selecting a small region 
with meaningful edges is preferred instead of an entire 
image for estimating the PSF. The current study presents a 
new direct method for retrieving a near-optimal ROI. The 
proposed method is a combination of an improved edge 
refinement filter and entropy feedback measurement. The 
performance of the proposed method is investigated 
qualitatively and quantitatively using three data sets 
comprising simulated and actual blurred images. Given the 
experimental results, the proposed solution generates 
substantially complete edges and demonstrates good 
performance on PFoM and TCGT scales. Similarly, the 
proposed ROI retrieval scheme resulted in considerably 
accurate restoration in terms of the PSNR, KS and ER 
measures. 
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Figure 9. Image restoration of the first test image from Data set III comparing the proposed and established methods. (i) blurred images, (ii) their restored 
counterparts and (iii) close-up view of each restored image. In this case, (a), (b), (c), (d) and (e) correspond to deblurring results produced by default, Hu 
and Yang [11], Ma et al. [13], (d) Li et al. [12] and (e) proposed methods, respectively. Small square blocks in (i) show ROIs retrieved by each method, and 
the estimated kernel is included at the top-left hand corner in each restored output. 
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