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1Abstract—Task context switching, unitary management of 

events, synchronization and communication mechanisms are 
significant problems for each real-time operating system. For 
real-time systems, another overhead factor is the processor's 
time to execute the routine of treating external asynchronous 
interrupts. The main objective of this paper is to describe, 
implement, and validate the preemptive scheduler module as 
part of the hardware accelerated real-time operating system, 
using the RISC-V instruction set and Verilog HDL. The new 
architecture contains the hardware structure used for static 
and dynamic scheduling of the tasks, real-time management of 
the events, and also defines a method used to attach interrupts 
to tasks. In order to accomplish this objective, it was necessary 
to structure CPU modules so as to ensure easy adaptation to 
other implementations (MIPS coprocessor, ARM or RISC-V). 
 

Index Terms—pipeline processing, field programmable gate 
arrays, architecture, operating systems, scheduling.  

I. INTRODUCTION 

Nowadays, embedded systems are an ideal platform to 
implement projects in terms of the requirements of Internet 
of Things and Industry 4.0. Various real-time time systems 
(RTOS), used in the automotive domain, robotics or 
industrial automation, must guarantee a response within 
specified time constraints. For these systems, the time 
required to switch task contexts and the RTOS jitter 
introduced in treating aperiodic external events are very 
important parameters. In a central processing unit (CPU), 
the context refers to the data in the registers and program 
counter at a specific time moment. In reality, safety-critical 
systems use intensive RTOS that implements complex 
mechanisms for isolating the critical components from 
uncritical ones. The aim of moving the operating system, or 
some of its components in hardware, is to reduce the non-
determinism sources introduced by asynchronous events. 
For this reason, a solution is needed to provide predictability 
and accurate response from the system when its state differs 
from the normal functioning mode, such as service mode. 
However, a RTOS has a well-specified maximum deadline 
for each task that it executes to support applications with 
precise timing needs.  
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To design and implement a real-time event management, 
this paper proposes the nMPRA concept (Multi Pipeline 
Register Architecture - n degree of multiplication) based on 
the RISC-V architecture. The main characteristic of the 
hardware accelerated processor is defined by the context 
switch operation that is made in a single clock cycle, with a 
worst case scenario of three clock cycles for special 
instructions used in case of external memory accesses [1]. 
The implementation of the real-time event handling module 
provides superior performance in terms of response time and 
reduced time needed to switch task contexts; the architecture 
is suitable for real-time small-scale applications due to the 
resource consumption needed to multiply the multiplexed 
storage elements. The proposed processor is a deterministic 
hardware implementation, due to the integrated preemptive 
scheduler and ZScale – RISC-V architecture. In this project, 
the three-stage pipeline VScale implementation with the 
Verilog VScale version proposed as an ”open source” at 
Berkeley University, will be used in order to design the 
nMPRA and the nHSE (Hardware Scheduler Engine for n 
tasks). Moreover, RISC-V instruction set and the Virtex-7 
VC707 development kit will be used for synthesis and 
FPGA implementation. This experimental project aims to 
implement, test and validate a dynamic scheduler module as 
part of the proposed microprocessor [2], [3], using the 
RISC-V instruction set, as well as the implementation of the 
Z-Scale three-stage pipeline architecture. Implementation 
will be validated in FPGA for various configurations, 
considering n - the number of tasks, i - the number of 
interrupts, m - the number of mutexes, and s - the number of 
communication events. The functions specific to RTOS, 
such as the tasks scheduler, the synchronization and inter-
task communication mechanisms, play a special role in real-
time systems (RTS). The lack of hardware implementation 
of these mechanisms is a challenge for current research in 
the field. Thus, FPGA circuits [4] can be used to design and 
test a microprocessor implemented in hardware in order to 
provide low response times, minimal jitter, and low power 
consumption [5], [6]. The FPGA implementation of 
hardware accelerated RTOS based on real-time event 
handling module is a deterministic concept, due to the 
integrated preemptive scheduler and ZScale - RISC-V 
architecture.  

With respect to the novelty of the paper, we believe that 
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the paper brings the following contributions: 
 Based on the current technological developments, the 

proposed event handling module concept has been 
implemented using the RISC-V instruction set. 

 Tests have been performed in order to validate the 
functionality of the proposed preemptive scheduler 
module used for unitary management of events and the 
Verilog VScale design. 

 Obtaining the number of logical components used on 
the FPGA chip for a diverse range of configurations (4, 
8 and 16 degrees of resource multiplication) and 
implicit real-time event handling module (number of 
interrupts, mutexes and message events) in 
correspondence with the RISC-V architecture. 

This paper is structured as follows: the first section 
contains a brief introduction and Section II describes similar 
papers in the field of real-time embedded systems. Section 
III presents the concept and theory of nMPRA processor 
operations based on RISC-V architecture and Section IV 
describes the practical results obtained during the validation 
of the theoretical elements presented in the previous section. 
In Section V the authors present the paper final conclusions. 

II. RELATED WORK 

This section analyzes and compares several CPU 
implementations and projects proposed in the field of real-
time scheduling. Theoretical and practical aspects related to 
the schedulers of the analyzed architectures are highlighted, 
as well as the features of the real-time characteristic. The 
main features of the most representative CPU and RTOS 
research projects with functions implemented in hardware 
refer to the implementation of the scheduler [7], the pipeline 
assembly line, and the type of the implementation.  

The processor core proposed in [8] is composed of two 
five stages of assembly pipelines. The first one is dedicated 
to a single hard real-time thread (HRT), and the second 
pipeline is dedicated to non-HRT (NHRT). In a quad-core 
version, each core is composed of four hardware slots. Thus, 
each core can simultaneously execute one HRT and three 
NHRT. To the HRT is assigned the highest priority, being 
isolated from the other NHRT from the core through the 
real-time scheduler. The threads priorities are fixed and 
Round-Robin is the chosen scheduling scheme. 

Kuacharoen, Shalan and Mooney [9] mention that a 
commercial software scheduler can have a very high 
overhead. When the clock frequency is 100KHz, for just 64 
tasks, this overhead represents almost 46% of the CPU 
usage. The time earned by making the scheduling operation 
in hardware can be used to execute one or more useful tasks 
in the system. The time required to switch contexts is an 
intrinsic boundary of the kernel [10], which does not depend 
on the scheduling algorithm or task set structure. If Q is the 
tick of the system and σ is the worst-case execution time 
(WCET) corresponding to the periodic task [11], the 
introduced overhead can be calculated as the Ut utilization 
factor obtained through the relation (1).  

Ut = σ/Q   (1) 
The effects of scheduling operation due to preemptions 

can be taken into consideration by adding the Ut to the total 
usage factor corresponding to the periodic task set. 

Typically, preemptive RTOS have priority inversion 
scenarios, when high priority tasks are suspended by 
asynchronous interrupts assigned to low priority tasks. 
Ordering tasks and interrupt events in the same address 
space has the role to eliminate this disadvantage. Although it 
eliminates over control due to scheduling operations, the 
coprocessor-processor architectures cannot eliminate the 
following types of over control: 
 Bus arbitration overhead (for schedulers that 

communicate on the same bus to which other devices 
are also connected - eg, direct memory access (DMA)). 

 Time of effective data transfer through the CPU bus.  
 Interrupt processing times (for events where the main 

processor is triggered by the interrupt mechanism). 
 Time to save and restore tasks contexts, operations that 

are still performed in the conventional processors mode. 
In terms of commercial processor architectures that 

benefit from advanced context management mechanisms, 
we mention the TriCore 1.3.1 [12] from Infineon and Intel 
80960 [13]. The TriCore architecture efficiently manages 
and maintains the tasks’ contexts through hardware. Context 
switching occurs when an event or instruction causes a 
break in program execution, in this context the CPU need to 
resolve the event before continuing with the program. The 
TriCore architecture uses a number of 32 registers, of which 
16 are used for addresses, and the other 16 are used for data. 
The register management mechanism can automatically save 
registers to the stack only partially. Of the 32 registers, only 
16 are saved in Context Save Area (CSA). In order to save 
the other half of the registers, the user must initiate this 
operation manually. Although this architecture is optimized 
for efficient context switching, the main impediment is 
related to the time needed for contexts to save operation 
using the stack. Thus, a period of time is required to perform 
manual saving of the lower half of the general purposed 
register set, if it is desired to completely save the context of 
the executed task.  

In the I960 processors family, the user benefits from a set 
of local registers that are automatically remapped over a 
memory area named Stack Frame, indicated by the Frame 
Pointer (FP). Register g15 is reserved for the current FP 
which contains the address of the first byte in the current 
(topmost) stack frame. The architecture has a circular frame 
buffer available for a limited number of tasks. Even if it is a 
relevant architecture, the I960 has two drawbacks. Context 
saves involve stack memory transactions, which is slower 
than the internal processor registers. For determinism 
needed by RTS, the architecture can be improved if for these 
memory frames there is no rigid correspondence of the task 
- stack frame.  

III. CONCEPT AND THEORY OF OPERATION OF HARDWARE 

ACCELERATED PROCESSOR BASED ON RISC-V  

The issues covered in this paper relate to the architecture 
used for the proposed implementation, the integration of 
hardware scheduler registers into the nMPRA concept [14], 
the resource replication, the assembly line (the number of 
stages), and the synchronization and communication 
mechanisms [15]. Also, the integration into the hardware of 
a preemptive scheduling algorithm based on priorities has 
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been taken into consideration. The main modules of the 
pipeline assembly line are: 
 The Instruction Fetch/Instruction Decode - Execute 

(IF/IDEX) and the Instruction Decode - 
Execute/Memory - Write Back (IDEX/MEMWB) 
pipeline registers. 

 The fetch stage with the Program Counter (PC) loader 
module and the PC for addressing the I$ instruction 
memory (as alternative, ALU, EPC and EVEC outputs 
from CSR may be used as an instruction). Moreover, 
the instruction memory and the simple adder (+4) can 
be used in order to increment the PC register. 

 The instruction decode and execution stage includes the 
immediate value generator, the implementation of the 
register file module as well as the forwarding 
multiplexers (fwd1 and fwd2), the A and B multiplexers, 
the ALU combinational unit, the data storage control 
unit, the CSR module multiplexer with values in the 
register file or with immediate values from instructions, 
conditional jump block, and the control unit. 

 The stage for accessing the memory and writing back 
data in the register file involves the following modules: 
the data memory, the CSR block including the hardware 
real-time scheduler registers, the charging unit, the 4-bit 
adder for PC-IDEX/MEMWB and the multiplexor for 
selecting the value to be written back in the register file. 

The project will be synthesized on xc7vx485tffg1761-2 
FPGA chip, implementing nMPRA + nHSE concept for n = 
1, 2, 4, 8, 16, 32, a variable number of interrupts (i = 1 ÷ 32) 
and mutexes (m = 1 ÷ 32), and a variable number of signals 
(s = 1 ÷ 32).  

Throughout this paper, the word signal (s) is used to name 

all inter-task synchronization and communication events 
validated and treated by real-time scheduler. The nHSE + 
nMPRA blocks must be implemented in Verilog HDL to 
enable the easy synthesis of different configurations through 
n, i, m and s parameters. The decision to multiply resources 
will be taken by analyzing the correctness of the VScale 
implementation, with three pipeline stages (Fig. 1), and the 
RISC-V instruction set [16], [17]. The basic idea is that any 
storage element (except data and instruction memories) in 
the datapath must be multiplied by n and its output signal 
must be multiplexed n to 1. The design is meant to enable 
the testing of the proposed functionalities.  

As shown in Fig. 1, Z-Scale is the architecture chosen for 
nMPRA whereas for the implementation the Vscale 
architecture has been chosen. This architecture was 
implemented and validated using the Virtex-7 FPGA and 
VC707 development kit produced by Xilinx. 

The extremely fast context switch of the nMPRA concept 
is accomplished in hardware by remapping the active 
context of the task to be executed. Regarding the power 
consumption by the FPGA implementation, if all tasks are 
inactive, the pipeline corresponding to sCPUi’s may be set 
in sleep mode using the hardware scheduler control 
registers. This architecture shown in Fig. 1 is designed with 
three pipeline stages, namely: 
 The stage for extracting instructions (FETCH) and 

IF/IDEX pipeline registers.  
 The stage for decoding and executing instructions 

followed by IDEX/MEMWB pipeline registers. 
 The stage for memory access, CSR and write back to 

register file. 
 

 
Figure 1. The RISC-V (ZScale) architecture based on resource multiplication and the integrated hardware scheduler; PC-Program Counter, IR-Instruction 
Register, RegFile-Register File, ALU-Arithmetic and Logic Unit, CSR-Control and Status Register, EPC-Exception PC, EVEC-Exception Handler Addr. 
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Subsequently are described some representative signals of 
the ZScale - nMPRA datapath implementation. The 
PC_src_sel (select PC source) signal is set by the control 
unit (Fig. 2), which has the role to select the next value with 
which the PC_IF_REG (NEW-PC) register is loaded. The 
imm_type signal selects the immediate value type in 
accordance with the instruction group. The implicit value for 
alu_op is `ALU_OP_ADD, so that these signals select the 
operation that needs to be executed by the ALU module, and 
the add_or_sub variable selects the addition or subtraction 
operation. Considering that funct7[5] is inst_DX (32 bit 
input in the control unit), the Verilog code for updating this 
value is the following:  

assign add_or_sub = ((opcode == `RV32_OP) && 
(funct7[5])) ? `ALU_OP_SUB : `ALU_OP_ADD;.  

The dmem_en signal indicates the access to the data 
memory (in reading or writing), and the dmem_en_unkilled 
signal identifies the two types of instructions working with 
the memory (LOAD and STORE). The dmem_wen (data 
memory write enable) signal sets a write operation in the 
data memory, while the output variable dmem_size defines 
the size of the data memory. The output variable 
csr_imm_sel (CSR immediate select) selects the immediate 
value for the CSR module directly from the instruction (= 0) 
or bypass data or from the register file (= 1). The output 
variable wr_reg_WB (write register in WB pipeline stage) 
indicates that the MEMWB stage will have a write back 
operation in the register file. The local register 
dmem_en_WB represents the MEMWB stage control signal 
for data memory validation (LOAD or STORE). In the 
instruction decode stage, the wr_reg_DX variable indicates 
that for the decoded instruction, a write back to the register 
file in the MEMWB stage may take place. The output 
variable reg_to_wr_WB stores the address of the register to 
be written in the MEMWB stage.  

As can be seen in Table I, nMPRA implements mutexes 
in hardware and every grMutexi global register contains a 
bit for storing the state of the mutex and m-1 bits for the 
owner sCPUi identifier. The Mutex Register File (MRF) 
registers can be accessed from any sCPU and therefore they 
are shared resources for all sCPUi. Thus, each sCPUi 
generates a MutexEvi event (crEVi[5]) every time a blocked 
mutex is released (Mutex i bit from grMutexi global 
register). The block and release operations of a mutex are 
performed in a single processor cycle, as an atomic 
operation. The real-time event handling module uses a 
number of grSRFi global registers to compose the Signals 
Register File (SRF).  

 
Figure 2. PC_src_sel signal effect in RTL representation after synthesis of 
the RISC-V (ZScale) architecture including the hardware scheduler 
 

In order to implement the inter-task communication 
mechanism (Table II), each grSRFi (global register Signals 
Register File i) use one bit to store the event status (Event i), 
2nj bits for storing the tasks ID, their source (s_IDnj-
1÷s_ID0) and destination (d_IDnj-1÷d_ID0), and k bits for 
storing the message (Mess k-1÷Mess 0).  

The hardware block, implemented at the level of a 
preemptive scheduler, generates automatically the address 
(starting from 0) of the first free event and signals if all 
events are active (set to value 1). Since the Content 
Addressable Memory (CAM) search in the grSRFi registers 
is performed in hardware, the jump to the trap cell assigned 
to message events (the crEVi[6] bit named SynEvi) is done 
in only two clock cycles. An important aspect for hardware 
accelerated RTOS is the Verilog implementation of sCPUi 
timers (for example, as supervisor registers, etc.) and of the 
debug port in order to access internal data. Based on ZScale-
nMPRA specifications were designed the Verilog HDL code 
for VScale resource multiplications, including extensions, 
and the Veriolg code for real-time event handling module.  

The nMPRA implementation based on the RISC-V 
architecture uses also the following datapath signals, which 
are grouped according to the execution activity that they 
affect. The stall_IF signal preserves the Instruction Fetch 
stage data, this being directly influenced by the state of the 
imem_wait, redirect, stall_DX and exception signals. The 
wire output signal kill_IF is propagated in the 
prev_killed_DX_reg and prev_killed_DX_reg bistables, 
blocking the content of the PC_IF_reg[31:0] register. The 
CSR address convention uses the CSR address bits to 
encode the default access privileges. 

 

TABLE I. THE IMPLEMENTATION OF THE MRF GLOBAL REGISTERS AND THE CORRESPONDING DATA AT A PARTICULAR EXECUTION TIME MOMENT 
grMutex i 31 30…5 4 3 2 1 0 

 Mutex i  Task ID bit4 Task ID bit3 Task ID bit2 Task ID bit1 Task IDbit0 
grMutex 0 0/1 (Mutex 0)  0 0 0 0 1 
grMutex 1 0/1 (Mutex 1)  0 0 0 1 0 

.. .. .. .. .. .. .. .. 
grMutex m-1 0/1 (Mutex m-1)  0 0 1 1 1 

 
TABLE II. THE STATE OF THE EVENT, THE TASK ID, SOURCE AND DESTINATION AND THE CORRESPONDING MESSAGE STORED IN THE SRF 

Address Register 2nj + k + 1 nj - 1 . 0 nj - 1 . 0 k - 1 . 1 0 
  Event i s_IDnj-1 . s_ID0 d_IDnj-1 . d_ID0 Mess k-1 . Mess 1 Mess 0 

Address 0 grSRF 0 0/1 (Event0) 0  0 0  1 0  1 1 
Address 1 grSRF 1 0/1 (Event1) 0  0 0  0 0  0 0 

… … … … … … … … … … … … … 
Address e-1 grSRF e-1 0/1 (Evente-1) 0  0 0  1 0  0 1 
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This simplifies error checking in hardware and provides a 
larger CSR space, but constrains the mapping of CSR in the 
address space. The implementations could enable a high 
privilege level to gain access to other registers of the CSR, 
at a low privilege level, in order to enable the interception of 
these accesses. This change should be transparent for low 
privilege level software. The wb_src_sel_WB register with 
WB_SRC_SEL_WIDTH bit stores the selection for the 
source that will generate the new value when updating the 
register file in the WB stage. The wb_src_sel_DX variable 
selects the source in the Instruction Decode / Execute 
pipeline stage for the new value in the write backstage. The 
one bit signal stall_WB stops the assembly line, beginning 
with the WB stage, and the dmem_wait signal indicates that 
the data memory did not perform the read or write operation. 
Regarding the instructions and logic for branch operations, 
the branch_taken signal indicates that the branch operation 
takes place. Thus, the branch_taken_unkilled register 
indicates the decryption of the BRANCH instruction and the 
value cmp_true given by ALU. In this context, the wire 
input cmp_true validates that the condition for the 
BRANCH is true. The local variable jal implies the 
execution of a JAL instruction, while jal_unkilled sets the 
decoding of the same instruction. The jalr variable indicates 
execution of a jalr instruction, while the local variable 
replay_IF activates kill_IF, disables ex_IF, and determines 
that PC_src_sel = `PC_REPLAY. The local 
illegal_instructon variable indicates a non-existing 
instruction, while the illegal_csr_access input signal 
indicates an illegal access to the CSR. The load_use signal 
mark the presence of a hazard situation if a LOAD 
instruction is in the WB stage, and the load_in_WB signal 
validates a load operation in the WRITE_BACK stage. 

IV. PRACTICAL RESULTS BASED ON RISC-V CONCEPT 

The hardware accelerated processor architecture was 
implemented by multiplying all existing registers in the 
RISC-V (Z-scale) architecture shown in Fig. 1. All the 
memory elements were multiplied 32 times, so n = 32. 
Registers in the hardware real-time event handling block 
were mapped to the CSR area, between the following 
addresses: 0x200-0x2BF, 0xA00-0xAFF and 0xE00-0xEFF.  

The initialization of internal scheduler registers is done by 
using the access instructions of these reserved areas. An 
assembler program code example that configures the real-
time event handling unit internal registers is listed in Table 
III. Next, we will show the operation of the RISC-V 
processor when activates the timer events for sCPU0, 
sCPU1 and sCPU2 at different time intervals. The INT0, 
INT1, INT2, INT3 interrupts are individually assigned to the 
semi-processors sCPU7, sCPU5, sCPU7, sCPU4. 

Prioritization of interrupts is given by the sCPUi to which 
it is assigned. Interrupts are disabled by the sCPU0 interrupt 
routine (sCPU0 = maximum priority, sCPU31 = minimum 
priority). Fig. 3 shows that at the occurrence of two 
simultaneously interrupts, the first one with the highest 
priority (sCPU5) is processed, uiSelectCPU[4:0] = 5. The 
delay caused by interrupt processing is maximum of two 
clock cycles. 

 

TABLE III. THE APPLICATION SEQUENCE USED TO VALIDATE THE REAL-
TIME HARDWARE SCHEDULER 

Application 
code 

description 

Assembler instructions for real-time hardware 
scheduler validation 

sCPU0 and 
sCPU2 treats a 
time event and 
sCPU7 handle 
INT0 external 

interrupt. 

lui x16, F0000     //x16 = F0000 
ori x16, x16, FF  //x16 = F00000FF 
csrrw 202, x16    //cr0MSTOP = F00000FF 
//is activated sCPU0, 1, 2, 3, 4, 5, 6, 7, 28, 29, 30, 31 
. . . . . 
lui x16, 0             //x16 = 0 
ori x16, x16, 7     //x16 = 7 
csrrw AB0, x16   //grINT_ID0 = 00000007 
//INT0 is assigned to sCPU7 
. . . . . . 
lui x16, 400          //x16 = 0 
ori x16, x16, F     //x16 = 0000000F 
csrrw 281, x16     //mrTEV2 = 0000000F 
//the timer recharge value for sCPU2 
. . . . . . 
lui x16, 0              //x16 = 0 
ori x16, x16, 1      //x16 = 1 
csrrw 240, x16     //crTR0 = 00000001 
csrrw 209, x16     //cr0PageReg = 1 change to page 1 
//enable timer interrupts for sCPU0 and enable 
registers page for sCPU1 (the register dedicated only 
sCPU1 is accessible). 

 

An interrupt can be attached to one task only [2], while a 
task can have attached more interrupts (even all of them). 
No constraints have been used, this being performed 
automatically at the FPGA implementation stage. After 
activating the real-time event handling unit, the registers 
implemented in hardware are accessed through the 
wAddress and wRdData/wWrData signals. The bIdleCPU 
signal is used when the entire system enters in sleeping 
mode. This situation occurs when all the sCPUi are in 
sleeping state. The scheduler exit from this state at the 
occurrence of an active interrupt validated and attached to a 
particular sCPUi. Fig. 4 shows that after the higher priority 
interrupt is deactivated, the lower priority interrupt is 
processed (uiSelectCPU[4:0] = 7) [18]. When INT3 (with 
the highest priority) is activated, sCPU4 (uiSelectCPU[4:0] 
= 4) is selected. It is also observed that as long as the 
interrupts are active, the events from the timers 0, 1 and 2 
are not processed, the interrupt events having the highest 
priority. 

 

 
Figure 3. Simultaneous interrupts activations and threating based on 
prioritization scheme implemented in hardware 
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Fig. 5 shows the timer events handling when there are no 
interrupts. Timer events occur depending on the reload 
values defined by the following registers: mrTEV0 = 0x3f, 
mrTEV1 = 0x1f and mrTEV2 = 0xf. Timer counters 
(uiTCounter) decrease until they reach 0 value. Then, they 
generate a timer event (crEVi[0] = 1), triggering the sCPUi 
for which the event was generated [19]. When the timer 
event is disabled (crTR1[0] = 0), the uiSelectCPU[4:0] 
signal is no longer 1 logic when the timer event occurs at 
sCPU1. The selection of these events can be achieved by 
executing a simple assembler instruction [2]. In order to be 
tested and validated in the FPGA, the RISC-V (Z Scale) 
architecture has been extended to develop software 
applications for the new hardware scheduler concept. 

 
Figure 5. Timer events handling based on hardware real-time event 
management unit 

The attempts to access a non-existing CSR raise an 
exception to illegal instructions. Also, in case of a CSR 
access without an adequate level of privileges, or trying to 
write a read-only register, generates exceptions indicating an 
illegal instruction execution [19].  

Each sCPUi runs the code that is between the start label 
and the jrx29 instruction. For example, the code running on 
the sCPU0 is located between start0: and jrx29. The code 
running on sCPU3 is between start3: lui x5, 0 //x5 = 0 and 
jrx29 //go to start3. The instruction code address of each 
sCPUi starts at address 200h for sCPU0, 300h for sCPU1, 
and ends at address 2100h for sCPU31. The response time 
of the nMPRA processor can be simulated and measured 
when an asynchronous external event occurs; also the time 
required to switch contexts can be determined. Thus, an 
assembly code has been implemented in order to program 
nHSE registers to generate different time events, but also to 
respond to external events, such as asynchronous interrupts 
[20], [21]. Activating the events at the level of each sCPUi 
can be achieved executing a simple nHSE instruction. The 
interrupts are very versatile and do not require a dedicated 
controller, the priority being the same as the sCPUi on 
which it is attached. 

 

In order to generate a delay, a loop has been implemented 
for each sCPUi separately. After the execution exit from this 
loop, the instruction csrrw 780, x28 indicates through the 
Virtex-7 development kit LEDs the number assigned to the 
processor and jumps back to the start address stored in the 
x29 register. Thus, when a sCPUi is active, its ID can be 
seen by turning on the combination of binary LEDs specific 
to the attached sCPUi. 

The highest priority semi-processor, sCPU0, has multiple 
code lines because it has to configure the real-time event 
handling unit. Thus, it writes the cr0MSTOP register with 
the value 0xF00000FF, thus activating 12 sCPUi’s.  

sCPU0 loads registers mrTEV0 = 0x0060003F, mrTEV1 = 
0x0050001F, mrTEV2 = 0x0040000F, mrTEV31 = 
0x00300007 in order to generate timer events on semi-
processors 0, 1, 2, and 31 at different time intervals; it also 
programs the grINT_ID0 = 0x00000007, grINT_ID1 = 
00000005, grINT_ID2 = 00000007, grINT_ID3 = 00000004 
registers to assign four existing interrupts to a particular 
sCPUi. It can be noted that interrupt 0 and interrupt 2 have 
assigned the same sCPU7 semi-processor, so the grNrINT 
register will store the address of the highest priority sCPUi. 
Timer events for the semi-processors 0, 1, 2 and 31: crTR0 = 
0x00000001, crTR1 = 0x00000001, crTR2 = 0x00000001 
and crTR31 = 0x00000001 are also enabled. 

 

 
Figure 4. Validation of the interrupts handling using the hardware real-time 
event support 
 

Regarding the response time-test for the proposed 
architecture, the highest priority task threat an external 
interrupt associated with the FPGA pin connected to the 
Virtex-7 test button. After executing the instructions 
sequence needed to initialize the hardware scheduler, the 
highest priority task waits for the events validated by the 
crTRi register (in this case, the external interrupt). When the 
associated signal on the Virtex-7 kit changes the state (time 
moment 1 on Fig. 6.a), the external interrupt is generated 
and the hardware scheduler will go into the execution mode 
of the task with the highest priority. This will set the second 
test signal illustrated through time moment 2. 
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a.  b.  

c.  d.  
Figure 6. a) The context switching time of the most priority task in accordance with the logic implemented in the hardware scheduler at the CSR level; b) 

Experimental tests for event synchronization when considering µC/OS-II RTOS and STR912FAW44; c) External interrupts and event synchronization with 
RTX RTOS and STM32F429; d) Response time for event synchronization when using FreeRTOS and ARM Cortex-M4 microcontroller (STM32F429) 

 

Fig. 6.a shows the test results for the hardware RTOS 
architecture based on a RISC-V processor at 33MHz. Time 
moment 1 represents the external event activation, and time 
moment 2 indicates when the preemptive scheduler has 
activated the task (sCPU0) with the highest priority (68ns). 
Thus, by multiplying each memory resource from the 
original pipelined datapath, is obtained the architecture 
illustrated in Fig. 1. The figure shows that each pipeline 
register is multiplied, and the context switch operation is 
done using the uiSelectCPU (select) signal. The register file 
has also been multiplied. The 5-bit uiSelectCPU signal is 
generated by the hardware scheduler implemented within 
the CSR unit [22]. Fig. 6.b shows the response time Dt = 
38.36µs for event synchronization mechanism when using 
µC/OS-II real-time operating system and five-stage 32-bit 
RISC ARM966E-S microcontroller running at 25MHz. Fig. 
6.c and Fig. 6.d shows the results obtained with RTX RTOS 
(Dt = 10.48µs) and FreeRTOS (Dt = 91.45µs) using 
STM32F429 microcontroller and event synchronization. It 
can be observed the response time from the moment when 
the synchronization event appears until the state of the 
microcontroller pin changes. In the context of external 
interrupts handling, the jitter depends on the current 
instruction executed by the CPU, Nested Vectored Interrupt 
Controller (NVIC), interrupt service routine (ISR) length, 
interrupt priority and Cortex-M4 hardware architecture 
(typical latency is 12 cycles followed by saving general 
purpose registers R0-R3, R12, Link Register, PC and 
Program Status Register).  

Fig. 7 shows the distribution of logic cells used to 
implement the proposed processor with the preemptive 
dynamic scheduler (n = 32 sCPUs). The FPGA 

implementation incorporates the hardware handling block 
for time related events, external interrupts, and also 
synchronization and communication events. In this context, 
the HW-RTOS provides sCPUi management, mutexes, 
messages, hardware timers and asynchronous interrupts. 
During the implementation, tests were carried out for 
different configurations of the nMPRA architecture. The 
analysis refers to the percentage of resources used in the 
FPGA circuit and the processing frequency for different 
degrees of multiplication n, i, m, s = 1, 2, 4, 8, 16 and 32. 
These results are presented in Table IV.  

 

 
Figure 7. Distribution of the logic components on the FPGA chip, including 
the hardware handling block for events (n = 32 sCPUs) 
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TABLE IV. TESTS FOR DIFFERENT CONFIGURATIONS OF THE NMPRA ARCHITECTURE 

Virtex-7 FPGA Resource 
(XC7VX485T-2ffg1761C) 

32 sCPU/i/m/s, 
20 MHz  

16 sCPU/i/m/s, 
30 MHz 

8 sCPU/i/m/s, 
30 MHz 

4 sCPU/i/m/s, 
40 MHz 

2 sCPU/i/m/s, 
40 MHz 

1 sCPU/i/m/s, 
100 MHz 

LUT (Look Up Table) 10.32 5.37 3.45 2.70 2.35 1.14 
LUTRAM 2.89 2.30 2.01 1.86 1.79 0.70 

FF (Flip-Flop) 3.08 1.54 0.77 0.39 0.20 0.18 
IO (Input/Output pins) 12.00 12.00 12.00 12.00 12.00 12.00 

BUFG (Global Clock Buffer) 37.50 37.50 37.50 37.50 9.38 3.13 
PLL (Phase-locked Loops) 7.14 7.14 7.14 7.14 7.14 7.14 

 

The real-time aspects of task context switching time 
validation, FPGA implementation, and also the distribution 
of the logic components on the FPGA chip are presented in 
order to verify the theoretical aspects proposed through this 
paper. 

V. CONCLUSION 

The present hardware scheduler implementation is 
characterized by a fast response for events because the 
proposed architecture replaces the stack saving methods 
with a remapping algorithm that enables the execution of the 
new task starting with the next clock cycle. In this context, 
the task context switching is very fast, between 1 - 3 
machine cycles (there are no search operations to find a free 
event). By performing practical tests, we can observe the 
effect of multiplied resources related to the FPGA chip. 
Also, a series of comparisons have been made with real-time 
microcontroller operating systems that are implemented in 
software, such as uC/OS-II, KeilRTX or FreeRTOS. This 
experimental project can be used to test practical 
applications developed for the hardware RTOS architecture, 
the next step is to implement this concept directly into an 
ASIC (application-specific integrated circuit).  

Future research directions will continue the studies related 
to the hardware implementation of RTOS, taking into 
consideration the resource multiplication architecture and its 
hardware scheduler defining component. 
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