
Advances in Electrical and Computer Engineering Volume 20, Number 1, 2020

Hardware Real-time Event Management with
Support of RISC-V Architecture for FPGA-
Based Reconfigurable Embedded Systems

Ionel ZAGAN1,2, Cristian Andy TĂNASE1,2, Vasile Gheorghiță GĂITAN1,2
1Stefan cel Mare University of Suceava, 720229, Romania

2Integrated Center for Research, Development and Innovation in Advanced Materials,
Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare

University, Suceava, Romania
zagan@eed.usv.ro

1Abstract—Task context switching, unitary management of

events, synchronization and communication mechanisms are
significant problems for each real-time operating system. For
real-time systems, another overhead factor is the processor's
time to execute the routine of treating external asynchronous
interrupts. The main objective of this paper is to describe,
implement, and validate the preemptive scheduler module as
part of the hardware accelerated real-time operating system,
using the RISC-V instruction set and Verilog HDL. The new
architecture contains the hardware structure used for static
and dynamic scheduling of the tasks, real-time management of
the events, and also defines a method used to attach interrupts
to tasks. In order to accomplish this objective, it was necessary
to structure CPU modules so as to ensure easy adaptation to
other implementations (MIPS coprocessor, ARM or RISC-V).

Index Terms—pipeline processing, field programmable gate
arrays, architecture, operating systems, scheduling.

I. INTRODUCTION

Nowadays, embedded systems are an ideal platform to
implement projects in terms of the requirements of Internet
of Things and Industry 4.0. Various real-time time systems
(RTOS), used in the automotive domain, robotics or
industrial automation, must guarantee a response within
specified time constraints. For these systems, the time
required to switch task contexts and the RTOS jitter
introduced in treating aperiodic external events are very
important parameters. In a central processing unit (CPU),
the context refers to the data in the registers and program
counter at a specific time moment. In reality, safety-critical
systems use intensive RTOS that implements complex
mechanisms for isolating the critical components from
uncritical ones. The aim of moving the operating system, or
some of its components in hardware, is to reduce the non-
determinism sources introduced by asynchronous events.
For this reason, a solution is needed to provide predictability
and accurate response from the system when its state differs
from the normal functioning mode, such as service mode.
However, a RTOS has a well-specified maximum deadline
for each task that it executes to support applications with
precise timing needs.

1This work is supported by the project ANTREPRENORDOC, in the

framework of Human Resources Development Operational Programme
2014-2020, financed from the European Social Fund under the contract
number 36355/23.05.2019 HRD OP /380/6/13 – SMIS Code: 123847.

To design and implement a real-time event management,
this paper proposes the nMPRA concept (Multi Pipeline
Register Architecture - n degree of multiplication) based on
the RISC-V architecture. The main characteristic of the
hardware accelerated processor is defined by the context
switch operation that is made in a single clock cycle, with a
worst case scenario of three clock cycles for special
instructions used in case of external memory accesses [1].
The implementation of the real-time event handling module
provides superior performance in terms of response time and
reduced time needed to switch task contexts; the architecture
is suitable for real-time small-scale applications due to the
resource consumption needed to multiply the multiplexed
storage elements. The proposed processor is a deterministic
hardware implementation, due to the integrated preemptive
scheduler and ZScale – RISC-V architecture. In this project,
the three-stage pipeline VScale implementation with the
Verilog VScale version proposed as an ”open source” at
Berkeley University, will be used in order to design the
nMPRA and the nHSE (Hardware Scheduler Engine for n
tasks). Moreover, RISC-V instruction set and the Virtex-7
VC707 development kit will be used for synthesis and
FPGA implementation. This experimental project aims to
implement, test and validate a dynamic scheduler module as
part of the proposed microprocessor [2], [3], using the
RISC-V instruction set, as well as the implementation of the
Z-Scale three-stage pipeline architecture. Implementation
will be validated in FPGA for various configurations,
considering n - the number of tasks, i - the number of
interrupts, m - the number of mutexes, and s - the number of
communication events. The functions specific to RTOS,
such as the tasks scheduler, the synchronization and inter-
task communication mechanisms, play a special role in real-
time systems (RTS). The lack of hardware implementation
of these mechanisms is a challenge for current research in
the field. Thus, FPGA circuits [4] can be used to design and
test a microprocessor implemented in hardware in order to
provide low response times, minimal jitter, and low power
consumption [5], [6]. The FPGA implementation of
hardware accelerated RTOS based on real-time event
handling module is a deterministic concept, due to the
integrated preemptive scheduler and ZScale - RISC-V
architecture.

With respect to the novelty of the paper, we believe that

 63
Digital Object Identifier 10.4316/AECE.2020.01009

1582-7445 © 2020 AECE

[Downloaded from www.aece.ro on Thursday, October 06, 2022 at 16:24:53 (UTC) by 3.236.52.68. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 20, Number 1, 2020

the paper brings the following contributions:
 Based on the current technological developments, the

proposed event handling module concept has been
implemented using the RISC-V instruction set.

 Tests have been performed in order to validate the
functionality of the proposed preemptive scheduler
module used for unitary management of events and the
Verilog VScale design.

 Obtaining the number of logical components used on
the FPGA chip for a diverse range of configurations (4,
8 and 16 degrees of resource multiplication) and
implicit real-time event handling module (number of
interrupts, mutexes and message events) in
correspondence with the RISC-V architecture.

This paper is structured as follows: the first section
contains a brief introduction and Section II describes similar
papers in the field of real-time embedded systems. Section
III presents the concept and theory of nMPRA processor
operations based on RISC-V architecture and Section IV
describes the practical results obtained during the validation
of the theoretical elements presented in the previous section.
In Section V the authors present the paper final conclusions.

II. RELATED WORK

This section analyzes and compares several CPU
implementations and projects proposed in the field of real-
time scheduling. Theoretical and practical aspects related to
the schedulers of the analyzed architectures are highlighted,
as well as the features of the real-time characteristic. The
main features of the most representative CPU and RTOS
research projects with functions implemented in hardware
refer to the implementation of the scheduler [7], the pipeline
assembly line, and the type of the implementation.

The processor core proposed in [8] is composed of two
five stages of assembly pipelines. The first one is dedicated
to a single hard real-time thread (HRT), and the second
pipeline is dedicated to non-HRT (NHRT). In a quad-core
version, each core is composed of four hardware slots. Thus,
each core can simultaneously execute one HRT and three
NHRT. To the HRT is assigned the highest priority, being
isolated from the other NHRT from the core through the
real-time scheduler. The threads priorities are fixed and
Round-Robin is the chosen scheduling scheme.

Kuacharoen, Shalan and Mooney [9] mention that a
commercial software scheduler can have a very high
overhead. When the clock frequency is 100KHz, for just 64
tasks, this overhead represents almost 46% of the CPU
usage. The time earned by making the scheduling operation
in hardware can be used to execute one or more useful tasks
in the system. The time required to switch contexts is an
intrinsic boundary of the kernel [10], which does not depend
on the scheduling algorithm or task set structure. If Q is the
tick of the system and σ is the worst-case execution time
(WCET) corresponding to the periodic task [11], the
introduced overhead can be calculated as the Ut utilization
factor obtained through the relation (1).

Ut = σ/Q (1)
The effects of scheduling operation due to preemptions

can be taken into consideration by adding the Ut to the total
usage factor corresponding to the periodic task set.

Typically, preemptive RTOS have priority inversion
scenarios, when high priority tasks are suspended by
asynchronous interrupts assigned to low priority tasks.
Ordering tasks and interrupt events in the same address
space has the role to eliminate this disadvantage. Although it
eliminates over control due to scheduling operations, the
coprocessor-processor architectures cannot eliminate the
following types of over control:
 Bus arbitration overhead (for schedulers that

communicate on the same bus to which other devices
are also connected - eg, direct memory access (DMA)).

 Time of effective data transfer through the CPU bus.
 Interrupt processing times (for events where the main

processor is triggered by the interrupt mechanism).
 Time to save and restore tasks contexts, operations that

are still performed in the conventional processors mode.
In terms of commercial processor architectures that

benefit from advanced context management mechanisms,
we mention the TriCore 1.3.1 [12] from Infineon and Intel
80960 [13]. The TriCore architecture efficiently manages
and maintains the tasks’ contexts through hardware. Context
switching occurs when an event or instruction causes a
break in program execution, in this context the CPU need to
resolve the event before continuing with the program. The
TriCore architecture uses a number of 32 registers, of which
16 are used for addresses, and the other 16 are used for data.
The register management mechanism can automatically save
registers to the stack only partially. Of the 32 registers, only
16 are saved in Context Save Area (CSA). In order to save
the other half of the registers, the user must initiate this
operation manually. Although this architecture is optimized
for efficient context switching, the main impediment is
related to the time needed for contexts to save operation
using the stack. Thus, a period of time is required to perform
manual saving of the lower half of the general purposed
register set, if it is desired to completely save the context of
the executed task.

In the I960 processors family, the user benefits from a set
of local registers that are automatically remapped over a
memory area named Stack Frame, indicated by the Frame
Pointer (FP). Register g15 is reserved for the current FP
which contains the address of the first byte in the current
(topmost) stack frame. The architecture has a circular frame
buffer available for a limited number of tasks. Even if it is a
relevant architecture, the I960 has two drawbacks. Context
saves involve stack memory transactions, which is slower
than the internal processor registers. For determinism
needed by RTS, the architecture can be improved if for these
memory frames there is no rigid correspondence of the task
- stack frame.

III. CONCEPT AND THEORY OF OPERATION OF HARDWARE

ACCELERATED PROCESSOR BASED ON RISC-V

The issues covered in this paper relate to the architecture
used for the proposed implementation, the integration of
hardware scheduler registers into the nMPRA concept [14],
the resource replication, the assembly line (the number of
stages), and the synchronization and communication
mechanisms [15]. Also, the integration into the hardware of
a preemptive scheduling algorithm based on priorities has

 64

[Downloaded from www.aece.ro on Thursday, October 06, 2022 at 16:24:53 (UTC) by 3.236.52.68. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 20, Number 1, 2020

 65

been taken into consideration. The main modules of the
pipeline assembly line are:
 The Instruction Fetch/Instruction Decode - Execute

(IF/IDEX) and the Instruction Decode -
Execute/Memory - Write Back (IDEX/MEMWB)
pipeline registers.

 The fetch stage with the Program Counter (PC) loader
module and the PC for addressing the I$ instruction
memory (as alternative, ALU, EPC and EVEC outputs
from CSR may be used as an instruction). Moreover,
the instruction memory and the simple adder (+4) can
be used in order to increment the PC register.

 The instruction decode and execution stage includes the
immediate value generator, the implementation of the
register file module as well as the forwarding
multiplexers (fwd1 and fwd2), the A and B multiplexers,
the ALU combinational unit, the data storage control
unit, the CSR module multiplexer with values in the
register file or with immediate values from instructions,
conditional jump block, and the control unit.

 The stage for accessing the memory and writing back
data in the register file involves the following modules:
the data memory, the CSR block including the hardware
real-time scheduler registers, the charging unit, the 4-bit
adder for PC-IDEX/MEMWB and the multiplexor for
selecting the value to be written back in the register file.

The project will be synthesized on xc7vx485tffg1761-2
FPGA chip, implementing nMPRA + nHSE concept for n =
1, 2, 4, 8, 16, 32, a variable number of interrupts (i = 1 ÷ 32)
and mutexes (m = 1 ÷ 32), and a variable number of signals
(s = 1 ÷ 32).

Throughout this paper, the word signal (s) is used to name

all inter-task synchronization and communication events
validated and treated by real-time scheduler. The nHSE +
nMPRA blocks must be implemented in Verilog HDL to
enable the easy synthesis of different configurations through
n, i, m and s parameters. The decision to multiply resources
will be taken by analyzing the correctness of the VScale
implementation, with three pipeline stages (Fig. 1), and the
RISC-V instruction set [16], [17]. The basic idea is that any
storage element (except data and instruction memories) in
the datapath must be multiplied by n and its output signal
must be multiplexed n to 1. The design is meant to enable
the testing of the proposed functionalities.

As shown in Fig. 1, Z-Scale is the architecture chosen for
nMPRA whereas for the implementation the Vscale
architecture has been chosen. This architecture was
implemented and validated using the Virtex-7 FPGA and
VC707 development kit produced by Xilinx.

The extremely fast context switch of the nMPRA concept
is accomplished in hardware by remapping the active
context of the task to be executed. Regarding the power
consumption by the FPGA implementation, if all tasks are
inactive, the pipeline corresponding to sCPUi’s may be set
in sleep mode using the hardware scheduler control
registers. This architecture shown in Fig. 1 is designed with
three pipeline stages, namely:
 The stage for extracting instructions (FETCH) and

IF/IDEX pipeline registers.
 The stage for decoding and executing instructions

followed by IDEX/MEMWB pipeline registers.
 The stage for memory access, CSR and write back to

register file.

Figure 1. The RISC-V (ZScale) architecture based on resource multiplication and the integrated hardware scheduler; PC-Program Counter, IR-Instruction
Register, RegFile-Register File, ALU-Arithmetic and Logic Unit, CSR-Control and Status Register, EPC-Exception PC, EVEC-Exception Handler Addr.

[Downloaded from www.aece.ro on Thursday, October 06, 2022 at 16:24:53 (UTC) by 3.236.52.68. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 20, Number 1, 2020

Subsequently are described some representative signals of
the ZScale - nMPRA datapath implementation. The
PC_src_sel (select PC source) signal is set by the control
unit (Fig. 2), which has the role to select the next value with
which the PC_IF_REG (NEW-PC) register is loaded. The
imm_type signal selects the immediate value type in
accordance with the instruction group. The implicit value for
alu_op is `ALU_OP_ADD, so that these signals select the
operation that needs to be executed by the ALU module, and
the add_or_sub variable selects the addition or subtraction
operation. Considering that funct7[5] is inst_DX (32 bit
input in the control unit), the Verilog code for updating this
value is the following:

assign add_or_sub = ((opcode == `RV32_OP) &&
(funct7[5])) ? `ALU_OP_SUB : `ALU_OP_ADD;.

The dmem_en signal indicates the access to the data
memory (in reading or writing), and the dmem_en_unkilled
signal identifies the two types of instructions working with
the memory (LOAD and STORE). The dmem_wen (data
memory write enable) signal sets a write operation in the
data memory, while the output variable dmem_size defines
the size of the data memory. The output variable
csr_imm_sel (CSR immediate select) selects the immediate
value for the CSR module directly from the instruction (= 0)
or bypass data or from the register file (= 1). The output
variable wr_reg_WB (write register in WB pipeline stage)
indicates that the MEMWB stage will have a write back
operation in the register file. The local register
dmem_en_WB represents the MEMWB stage control signal
for data memory validation (LOAD or STORE). In the
instruction decode stage, the wr_reg_DX variable indicates
that for the decoded instruction, a write back to the register
file in the MEMWB stage may take place. The output
variable reg_to_wr_WB stores the address of the register to
be written in the MEMWB stage.

As can be seen in Table I, nMPRA implements mutexes
in hardware and every grMutexi global register contains a
bit for storing the state of the mutex and m-1 bits for the
owner sCPUi identifier. The Mutex Register File (MRF)
registers can be accessed from any sCPU and therefore they
are shared resources for all sCPUi. Thus, each sCPUi
generates a MutexEvi event (crEVi[5]) every time a blocked
mutex is released (Mutex i bit from grMutexi global
register). The block and release operations of a mutex are
performed in a single processor cycle, as an atomic
operation. The real-time event handling module uses a
number of grSRFi global registers to compose the Signals
Register File (SRF).

Figure 2. PC_src_sel signal effect in RTL representation after synthesis of
the RISC-V (ZScale) architecture including the hardware scheduler

In order to implement the inter-task communication
mechanism (Table II), each grSRFi (global register Signals
Register File i) use one bit to store the event status (Event i),
2nj bits for storing the tasks ID, their source (s_IDnj-
1÷s_ID0) and destination (d_IDnj-1÷d_ID0), and k bits for
storing the message (Mess k-1÷Mess 0).

The hardware block, implemented at the level of a
preemptive scheduler, generates automatically the address
(starting from 0) of the first free event and signals if all
events are active (set to value 1). Since the Content
Addressable Memory (CAM) search in the grSRFi registers
is performed in hardware, the jump to the trap cell assigned
to message events (the crEVi[6] bit named SynEvi) is done
in only two clock cycles. An important aspect for hardware
accelerated RTOS is the Verilog implementation of sCPUi
timers (for example, as supervisor registers, etc.) and of the
debug port in order to access internal data. Based on ZScale-
nMPRA specifications were designed the Verilog HDL code
for VScale resource multiplications, including extensions,
and the Veriolg code for real-time event handling module.

The nMPRA implementation based on the RISC-V
architecture uses also the following datapath signals, which
are grouped according to the execution activity that they
affect. The stall_IF signal preserves the Instruction Fetch
stage data, this being directly influenced by the state of the
imem_wait, redirect, stall_DX and exception signals. The
wire output signal kill_IF is propagated in the
prev_killed_DX_reg and prev_killed_DX_reg bistables,
blocking the content of the PC_IF_reg[31:0] register. The
CSR address convention uses the CSR address bits to
encode the default access privileges.

TABLE I. THE IMPLEMENTATION OF THE MRF GLOBAL REGISTERS AND THE CORRESPONDING DATA AT A PARTICULAR EXECUTION TIME MOMENT
grMutex i 31 30…5 4 3 2 1 0

 Mutex i Task ID bit4 Task ID bit3 Task ID bit2 Task ID bit1 Task IDbit0
grMutex 0 0/1 (Mutex 0) 0 0 0 0 1
grMutex 1 0/1 (Mutex 1) 0 0 0 1 0

..
grMutex m-1 0/1 (Mutex m-1) 0 0 1 1 1

TABLE II. THE STATE OF THE EVENT, THE TASK ID, SOURCE AND DESTINATION AND THE CORRESPONDING MESSAGE STORED IN THE SRF

Address Register 2nj + k + 1 nj - 1 . 0 nj - 1 . 0 k - 1 . 1 0
 Event i s_IDnj-1 . s_ID0 d_IDnj-1 . d_ID0 Mess k-1 . Mess 1 Mess 0

Address 0 grSRF 0 0/1 (Event0) 0 0 0 1 0 1 1
Address 1 grSRF 1 0/1 (Event1) 0 0 0 0 0 0 0

… … … … … … … … … … … … …
Address e-1 grSRF e-1 0/1 (Evente-1) 0 0 0 1 0 0 1

 66

[Downloaded from www.aece.ro on Thursday, October 06, 2022 at 16:24:53 (UTC) by 3.236.52.68. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 20, Number 1, 2020

This simplifies error checking in hardware and provides a
larger CSR space, but constrains the mapping of CSR in the
address space. The implementations could enable a high
privilege level to gain access to other registers of the CSR,
at a low privilege level, in order to enable the interception of
these accesses. This change should be transparent for low
privilege level software. The wb_src_sel_WB register with
WB_SRC_SEL_WIDTH bit stores the selection for the
source that will generate the new value when updating the
register file in the WB stage. The wb_src_sel_DX variable
selects the source in the Instruction Decode / Execute
pipeline stage for the new value in the write backstage. The
one bit signal stall_WB stops the assembly line, beginning
with the WB stage, and the dmem_wait signal indicates that
the data memory did not perform the read or write operation.
Regarding the instructions and logic for branch operations,
the branch_taken signal indicates that the branch operation
takes place. Thus, the branch_taken_unkilled register
indicates the decryption of the BRANCH instruction and the
value cmp_true given by ALU. In this context, the wire
input cmp_true validates that the condition for the
BRANCH is true. The local variable jal implies the
execution of a JAL instruction, while jal_unkilled sets the
decoding of the same instruction. The jalr variable indicates
execution of a jalr instruction, while the local variable
replay_IF activates kill_IF, disables ex_IF, and determines
that PC_src_sel = `PC_REPLAY. The local
illegal_instructon variable indicates a non-existing
instruction, while the illegal_csr_access input signal
indicates an illegal access to the CSR. The load_use signal
mark the presence of a hazard situation if a LOAD
instruction is in the WB stage, and the load_in_WB signal
validates a load operation in the WRITE_BACK stage.

IV. PRACTICAL RESULTS BASED ON RISC-V CONCEPT

The hardware accelerated processor architecture was
implemented by multiplying all existing registers in the
RISC-V (Z-scale) architecture shown in Fig. 1. All the
memory elements were multiplied 32 times, so n = 32.
Registers in the hardware real-time event handling block
were mapped to the CSR area, between the following
addresses: 0x200-0x2BF, 0xA00-0xAFF and 0xE00-0xEFF.

The initialization of internal scheduler registers is done by
using the access instructions of these reserved areas. An
assembler program code example that configures the real-
time event handling unit internal registers is listed in Table
III. Next, we will show the operation of the RISC-V
processor when activates the timer events for sCPU0,
sCPU1 and sCPU2 at different time intervals. The INT0,
INT1, INT2, INT3 interrupts are individually assigned to the
semi-processors sCPU7, sCPU5, sCPU7, sCPU4.

Prioritization of interrupts is given by the sCPUi to which
it is assigned. Interrupts are disabled by the sCPU0 interrupt
routine (sCPU0 = maximum priority, sCPU31 = minimum
priority). Fig. 3 shows that at the occurrence of two
simultaneously interrupts, the first one with the highest
priority (sCPU5) is processed, uiSelectCPU[4:0] = 5. The
delay caused by interrupt processing is maximum of two
clock cycles.

TABLE III. THE APPLICATION SEQUENCE USED TO VALIDATE THE REAL-
TIME HARDWARE SCHEDULER

Application
code

description

Assembler instructions for real-time hardware
scheduler validation

sCPU0 and
sCPU2 treats a
time event and
sCPU7 handle
INT0 external

interrupt.

lui x16, F0000 //x16 = F0000
ori x16, x16, FF //x16 = F00000FF
csrrw 202, x16 //cr0MSTOP = F00000FF
//is activated sCPU0, 1, 2, 3, 4, 5, 6, 7, 28, 29, 30, 31
.
lui x16, 0 //x16 = 0
ori x16, x16, 7 //x16 = 7
csrrw AB0, x16 //grINT_ID0 = 00000007
//INT0 is assigned to sCPU7
.
lui x16, 400 //x16 = 0
ori x16, x16, F //x16 = 0000000F
csrrw 281, x16 //mrTEV2 = 0000000F
//the timer recharge value for sCPU2
.
lui x16, 0 //x16 = 0
ori x16, x16, 1 //x16 = 1
csrrw 240, x16 //crTR0 = 00000001
csrrw 209, x16 //cr0PageReg = 1 change to page 1
//enable timer interrupts for sCPU0 and enable
registers page for sCPU1 (the register dedicated only
sCPU1 is accessible).

An interrupt can be attached to one task only [2], while a
task can have attached more interrupts (even all of them).
No constraints have been used, this being performed
automatically at the FPGA implementation stage. After
activating the real-time event handling unit, the registers
implemented in hardware are accessed through the
wAddress and wRdData/wWrData signals. The bIdleCPU
signal is used when the entire system enters in sleeping
mode. This situation occurs when all the sCPUi are in
sleeping state. The scheduler exit from this state at the
occurrence of an active interrupt validated and attached to a
particular sCPUi. Fig. 4 shows that after the higher priority
interrupt is deactivated, the lower priority interrupt is
processed (uiSelectCPU[4:0] = 7) [18]. When INT3 (with
the highest priority) is activated, sCPU4 (uiSelectCPU[4:0]
= 4) is selected. It is also observed that as long as the
interrupts are active, the events from the timers 0, 1 and 2
are not processed, the interrupt events having the highest
priority.

Figure 3. Simultaneous interrupts activations and threating based on
prioritization scheme implemented in hardware

 67

[Downloaded from www.aece.ro on Thursday, October 06, 2022 at 16:24:53 (UTC) by 3.236.52.68. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 20, Number 1, 2020

 68

Fig. 5 shows the timer events handling when there are no
interrupts. Timer events occur depending on the reload
values defined by the following registers: mrTEV0 = 0x3f,
mrTEV1 = 0x1f and mrTEV2 = 0xf. Timer counters
(uiTCounter) decrease until they reach 0 value. Then, they
generate a timer event (crEVi[0] = 1), triggering the sCPUi
for which the event was generated [19]. When the timer
event is disabled (crTR1[0] = 0), the uiSelectCPU[4:0]
signal is no longer 1 logic when the timer event occurs at
sCPU1. The selection of these events can be achieved by
executing a simple assembler instruction [2]. In order to be
tested and validated in the FPGA, the RISC-V (Z Scale)
architecture has been extended to develop software
applications for the new hardware scheduler concept.

Figure 5. Timer events handling based on hardware real-time event
management unit

The attempts to access a non-existing CSR raise an
exception to illegal instructions. Also, in case of a CSR
access without an adequate level of privileges, or trying to
write a read-only register, generates exceptions indicating an
illegal instruction execution [19].

Each sCPUi runs the code that is between the start label
and the jrx29 instruction. For example, the code running on
the sCPU0 is located between start0: and jrx29. The code
running on sCPU3 is between start3: lui x5, 0 //x5 = 0 and
jrx29 //go to start3. The instruction code address of each
sCPUi starts at address 200h for sCPU0, 300h for sCPU1,
and ends at address 2100h for sCPU31. The response time
of the nMPRA processor can be simulated and measured
when an asynchronous external event occurs; also the time
required to switch contexts can be determined. Thus, an
assembly code has been implemented in order to program
nHSE registers to generate different time events, but also to
respond to external events, such as asynchronous interrupts
[20], [21]. Activating the events at the level of each sCPUi
can be achieved executing a simple nHSE instruction. The
interrupts are very versatile and do not require a dedicated
controller, the priority being the same as the sCPUi on
which it is attached.

In order to generate a delay, a loop has been implemented
for each sCPUi separately. After the execution exit from this
loop, the instruction csrrw 780, x28 indicates through the
Virtex-7 development kit LEDs the number assigned to the
processor and jumps back to the start address stored in the
x29 register. Thus, when a sCPUi is active, its ID can be
seen by turning on the combination of binary LEDs specific
to the attached sCPUi.

The highest priority semi-processor, sCPU0, has multiple
code lines because it has to configure the real-time event
handling unit. Thus, it writes the cr0MSTOP register with
the value 0xF00000FF, thus activating 12 sCPUi’s.

sCPU0 loads registers mrTEV0 = 0x0060003F, mrTEV1 =
0x0050001F, mrTEV2 = 0x0040000F, mrTEV31 =
0x00300007 in order to generate timer events on semi-
processors 0, 1, 2, and 31 at different time intervals; it also
programs the grINT_ID0 = 0x00000007, grINT_ID1 =
00000005, grINT_ID2 = 00000007, grINT_ID3 = 00000004
registers to assign four existing interrupts to a particular
sCPUi. It can be noted that interrupt 0 and interrupt 2 have
assigned the same sCPU7 semi-processor, so the grNrINT
register will store the address of the highest priority sCPUi.
Timer events for the semi-processors 0, 1, 2 and 31: crTR0 =
0x00000001, crTR1 = 0x00000001, crTR2 = 0x00000001
and crTR31 = 0x00000001 are also enabled.

Figure 4. Validation of the interrupts handling using the hardware real-time
event support

Regarding the response time-test for the proposed
architecture, the highest priority task threat an external
interrupt associated with the FPGA pin connected to the
Virtex-7 test button. After executing the instructions
sequence needed to initialize the hardware scheduler, the
highest priority task waits for the events validated by the
crTRi register (in this case, the external interrupt). When the
associated signal on the Virtex-7 kit changes the state (time
moment 1 on Fig. 6.a), the external interrupt is generated
and the hardware scheduler will go into the execution mode
of the task with the highest priority. This will set the second
test signal illustrated through time moment 2.

[Downloaded from www.aece.ro on Thursday, October 06, 2022 at 16:24:53 (UTC) by 3.236.52.68. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 20, Number 1, 2020

a. b.

c. d.
Figure 6. a) The context switching time of the most priority task in accordance with the logic implemented in the hardware scheduler at the CSR level; b)

Experimental tests for event synchronization when considering µC/OS-II RTOS and STR912FAW44; c) External interrupts and event synchronization with
RTX RTOS and STM32F429; d) Response time for event synchronization when using FreeRTOS and ARM Cortex-M4 microcontroller (STM32F429)

Fig. 6.a shows the test results for the hardware RTOS
architecture based on a RISC-V processor at 33MHz. Time
moment 1 represents the external event activation, and time
moment 2 indicates when the preemptive scheduler has
activated the task (sCPU0) with the highest priority (68ns).
Thus, by multiplying each memory resource from the
original pipelined datapath, is obtained the architecture
illustrated in Fig. 1. The figure shows that each pipeline
register is multiplied, and the context switch operation is
done using the uiSelectCPU (select) signal. The register file
has also been multiplied. The 5-bit uiSelectCPU signal is
generated by the hardware scheduler implemented within
the CSR unit [22]. Fig. 6.b shows the response time Dt =
38.36µs for event synchronization mechanism when using
µC/OS-II real-time operating system and five-stage 32-bit
RISC ARM966E-S microcontroller running at 25MHz. Fig.
6.c and Fig. 6.d shows the results obtained with RTX RTOS
(Dt = 10.48µs) and FreeRTOS (Dt = 91.45µs) using
STM32F429 microcontroller and event synchronization. It
can be observed the response time from the moment when
the synchronization event appears until the state of the
microcontroller pin changes. In the context of external
interrupts handling, the jitter depends on the current
instruction executed by the CPU, Nested Vectored Interrupt
Controller (NVIC), interrupt service routine (ISR) length,
interrupt priority and Cortex-M4 hardware architecture
(typical latency is 12 cycles followed by saving general
purpose registers R0-R3, R12, Link Register, PC and
Program Status Register).

Fig. 7 shows the distribution of logic cells used to
implement the proposed processor with the preemptive
dynamic scheduler (n = 32 sCPUs). The FPGA

implementation incorporates the hardware handling block
for time related events, external interrupts, and also
synchronization and communication events. In this context,
the HW-RTOS provides sCPUi management, mutexes,
messages, hardware timers and asynchronous interrupts.
During the implementation, tests were carried out for
different configurations of the nMPRA architecture. The
analysis refers to the percentage of resources used in the
FPGA circuit and the processing frequency for different
degrees of multiplication n, i, m, s = 1, 2, 4, 8, 16 and 32.
These results are presented in Table IV.

Figure 7. Distribution of the logic components on the FPGA chip, including
the hardware handling block for events (n = 32 sCPUs)

 69

[Downloaded from www.aece.ro on Thursday, October 06, 2022 at 16:24:53 (UTC) by 3.236.52.68. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 20, Number 1, 2020

TABLE IV. TESTS FOR DIFFERENT CONFIGURATIONS OF THE NMPRA ARCHITECTURE

Virtex-7 FPGA Resource
(XC7VX485T-2ffg1761C)

32 sCPU/i/m/s,
20 MHz

16 sCPU/i/m/s,
30 MHz

8 sCPU/i/m/s,
30 MHz

4 sCPU/i/m/s,
40 MHz

2 sCPU/i/m/s,
40 MHz

1 sCPU/i/m/s,
100 MHz

LUT (Look Up Table) 10.32 5.37 3.45 2.70 2.35 1.14
LUTRAM 2.89 2.30 2.01 1.86 1.79 0.70

FF (Flip-Flop) 3.08 1.54 0.77 0.39 0.20 0.18
IO (Input/Output pins) 12.00 12.00 12.00 12.00 12.00 12.00

BUFG (Global Clock Buffer) 37.50 37.50 37.50 37.50 9.38 3.13
PLL (Phase-locked Loops) 7.14 7.14 7.14 7.14 7.14 7.14

The real-time aspects of task context switching time
validation, FPGA implementation, and also the distribution
of the logic components on the FPGA chip are presented in
order to verify the theoretical aspects proposed through this
paper.

V. CONCLUSION

The present hardware scheduler implementation is
characterized by a fast response for events because the
proposed architecture replaces the stack saving methods
with a remapping algorithm that enables the execution of the
new task starting with the next clock cycle. In this context,
the task context switching is very fast, between 1 - 3
machine cycles (there are no search operations to find a free
event). By performing practical tests, we can observe the
effect of multiplied resources related to the FPGA chip.
Also, a series of comparisons have been made with real-time
microcontroller operating systems that are implemented in
software, such as uC/OS-II, KeilRTX or FreeRTOS. This
experimental project can be used to test practical
applications developed for the hardware RTOS architecture,
the next step is to implement this concept directly into an
ASIC (application-specific integrated circuit).

Future research directions will continue the studies related
to the hardware implementation of RTOS, taking into
consideration the resource multiplication architecture and its
hardware scheduler defining component.

ACKNOWLEDGMENT

This work is supported by the project
ANTREPRENORDOC, in the framework of Human
Resources Development Operational Programme 2014-
2020, financed from the European Social Fund under the
contract number 36355/23.05.2019 HRD OP /380/6/13 –
SMIS Code: 123847.

REFERENCES
[1] I. Zagan, V. G. Găitan, “Hardware RTOS: Custom Scheduler

Implementation Based on Multiple Pipeline Registers and MIPS32
Architecture,” Electronics, vol 8, no. 2:211, 2019.
doi:10.3390/electronics8020211

[2] V. G. Găitan, N. C. Găitan, I. Ungurean, “CPU Architecture Based on
a Hardware Scheduler and Independent Pipeline Registers,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol.
23, no. 9, pp. 1661-1674, Sept. 2015.
doi:10.1109/TVLSI.2014.2346542

[3] E.-E. Ciobanu, “The Events Priority in the nMPRA and Consumption
of Resources Analysis on the FPGA,” Advances in Electrical and
Computer Engineering, vol. 18, no. 1, pp. 137-144, 2018.
doi:10.4316/AECE.2018.01017

[4] R. Paul, S. Shukla, “Partitioned security processor architecture on
FPGA platform,” IET Computers & Digital Techniques, vol. 12, no.
5, pp. 216-226, 2018. doi: 10.1049/iet-cdt.2017.0178

[5] W. Wang, X. Zhang, Q. Hao, Z. Zhang, B. Xu, H. Dong, T. Xia, X.
Wang, “Hardware-Enhanced Protection for the Runtime Data Security
in Embedded Systems,” MDPI Electronics, vol. 8, no. 1:52, 2019.
doi:10.3390/electronics8010052

[6] A. Melnyk, V. Melnyk, “Self-Configurable FPGA-Based Computer
Systems,” Advances in Electrical and Computer Engineering, vol. 13,
no. 2, pp. 33-38, 2013. doi:10.4316/AECE.2013.02005

[7] S. Roman, H. Mecha, D. Mozos and J. Septien, “Constant complexity
scheduling for hardware multitasking in two dimensional
reconfigurable field-programmable gate arrays,” IET Computers &
Digital Techniques, vol. 2, no. 6, pp. 401-412, November 2008. doi:
10.1049/iet-cdt:20070060

[8] F. Kluge and J. Wolf, “System-Level Software for a Multi-Core
MERASA Processor,” Institute of Computer Science, University of
Augsburg, Tech. Rep. 2009-17, October 2009.

[9] P. Kuacharoen, M. Shalan, V. J. Mooney III, “A Configurable
Hardware Scheduler for Real-Time Systems,” Proc. Engineering of
Reconfigurable Systems and Algorithms, pp. 95-101, 2003.
ISBN:193241505X

[10] J. Echague, I. Ripoll, A. Crespo, “Hard real-time preemptively
scheduling with high context switch cost,” Proceedings Seventh
Euromicro Workshop on Real-Time Systems, Odense, Denmark, pp.
184-190, 1995. doi: 10.1109/EMWRTS.1995.514310

[11] S. Altmeyer, G. Gebhard, “WCET analysis for preemptive
scheduling,” 8th International Workshop on Worst-Case Execution
Time WCET Analysis (WCET'08), Prague, Czech Republic, pp. 105-
112, July 2008. doi: 10.4230/OASIcs.WCET.2008.1664

[12] TriCore 1, 32 bit Unified Processor Core, Volume 1, Core
Architecture V 1.3 & V 1.3.1, Infineon Technologies AG, 81726
Munich, Germany, Jan. 2008, pp. 4-3 ÷ 4-13.

[13] Intel i960 Jx Microprocessor Developer’s Manual. Intel Corporation,
Order Number: 272483-002, Dec. 1997, pp. 7-1 ÷ 7-10.

[14] http://www.google.com/patents/DE202012104250U1?cl=en, Central
processing unit with combined into a bank pipeline registers. DE
202012104250 U1. Owner Dodiu E., Găitan, V. G.

[15] C. A. Tănase, “An approach of MPRA technique over ARM cache
architecture,” in 2016 International Conference on Development and
Application Systems (DAS), Suceava, Romania, pp. 86-90, 2016. doi:
10.1109/DAAS.2016.7492553

[16] A. Waterman, Y. Lee, R. Avizienis, H. Cook, D. Patterson, K.
Asanovic, “The RISC-V instruction set,” 2013 IEEE Hot Chips 25
Symposium (HCS), Stanford University, CA, USA, 2013. doi:
10.1109/HOTCHIPS.2013.7478332.

[17] A. Waterman, Y. Lee, D. Patterson, K. Asanovic, “The RISC-V
Instruction Set Manual Volume I: User-Level ISA, Version 2.1,”
Technical Report UCB/EECS-2016-118, EECS Department,
University of California, Berkeley, May 2016, pp. 9-23.

[18] I. Zagan, C. A. Tănase, V. G. Găitan, “FPGA IMPLEMENTATION
OF A CUSTOMIZED PROCESSOR BASED ON RISC-V
ARCHITECTURE – CONCEPT AND THEORY OF OPERATION,”
Proceedings of 148th IASTEM International Conference, Rome, Italy,
2018, pp. 24-29.

[19] Y. Lee et al., “An Agile Approach to Building RISC-V
Microprocessors,” IEEE Micro, vol. 36, no. 2, pp. 8-20, 2016. doi:
10.1109/MM.2016.11

[20] E. E Moisuc, A. B. Larionescu, V. G. Găitan, “Hardware Event
Treating in nMPRA,” in 12rt International Conference on
Development and Application Systems – DAS, Suceava, Romania,
pp. 66-69, 15–17 May, 2014. doi:10.1109/DAAS.2014.6842429

[21] S. Kelinman and J. Eykholt, “Interrupts as threads,” ACM SIGOPS
Operating Syst. Rev., vol. 29, no. 2, pp. 21–26, Apr. 1995.
doi:10.1145/202213.202217

[22] A. Waterman, Y. Lee, D. Patterson, K. Asanovic, “The RISC-V
Instruction Set Manual, Volume II: Privileged Architecture Version
1.7,” Technical Report UCB/EECS-2015-49, EECS Department,
University of California, Berkeley, May 2015, pp. 7-13.

 70

[Downloaded from www.aece.ro on Thursday, October 06, 2022 at 16:24:53 (UTC) by 3.236.52.68. Redistribution subject to AECE license or copyright.]

