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1Abstract—This paper focus is the mathematical modeling of 

the file system performance in virtual environment when using 
type-1 hypervisors. The modeling provides a set of hypotheses 
related to the expected behavior. The presented model is 
validated based on the analysis of a collection of the results 
obtained for a specific case study. Our case study includes the 
file system performance comparison, in full hardware 
virtualization, when examining four dominant type-1 
hypervisors: ESXi, KVM, Hyper-V, and Xen. We chose 
Filebench as a benchmark tool, which guarantees 
comprehensive and versatile testing of file system performance, 
whereas for all tested hypervisors we have provided an 
equivalent environment and testing conditions. For all the 
examined hypervisors, we have tested the cases with one, two, 
and three virtual machines that are running simultaneously, 
whereas CentOS 6.3 Linux is used as the guest operating 
system. We have further validated the mathematical model and 
defined hypotheses by the means of the case study benchmark 
results. 

 
Index Terms—file systems, operating systems, performance 

evaluation, platform virtualization, virtual machine monitors. 

I. INTRODUCTION 

In the modern age, ICT (Information and Communication 
Technologies) are becoming increasingly important factors, 
whereas virtualization techniques are constantly taking up 
new fields and applications. 

Virtualization enables ICT resource partitioning, efficient 
utilization of resources, powerful system management, 
higher availability and better fault tolerance, all combined 
with stronger security. The major benefits of virtualization 
correspond to the cost reduction, the efficient use of ICT 
resources and the reduction of electricity consumption. As it 
contributes to environmental conservation, virtualization is 
considered as representative of the green technologies [1-2].  

There is a number of techniques for virtualization, 
whereas the choice depends on the specific needs of the 
user. Some virtualization techniques achieve better 
performance, whereas others achieve greater flexibility. 
Actually, virtualization can be applied over many different 
computer components, thus there are techniques for 
hardware, software, desktop, database, network, RAM 
memory and storage virtualization.  

Virtualization includes the abstraction and encapsulation 
of computer resources, where these resources can be used in 
the appropriate way for a particular application. The 

hardware virtualization relies on the usage of a hypervisor. 
A hypervisor is a software layer that functions as an 
intermediary between the host operating system (host OS, 
hOS) and VMs (virtual machines), and creates a simulated 
environment for VMs that may or may not have the same 
characteristics as the physical environment. 

 
1This work was supported by the Ministry of Education, Science and 

Technological Development of Republic of Serbia. 

The hypervisors can be of two types. Hypervisor of type-
1, the native hypervisor, runs directly on physical hardware 
(so-called bare metal). Examples of type-1 hypervisor are 
Citrix XenServer, Linux KVM, MS Windows Hyper-V and 
VMWare ESXi, which have been tested in this paper. 
Hypervisor of the type-2 runs as an application within the 
host OS (Operating System). Examples of type-2 hypervisor 
are Oracle VM Virtual Box and VMware Workstation. In 
practice, type-1 hypervisors have much better performance 
than type-2 hypervisors. 

Hardware virtualization can be performed in different 
ways: full hardware virtualization or emulation, partial 
virtualization and paravirtualization. The full hardware 
virtualization includes software simulation of the complete 
hardware so that the guest operating system (guest OS, gOS) 
can be installed and executed without any further changes. 
This solution is the most elegant and easiest for use, but 
unfortunately provides low performance of the installed 
VMs. Hence, this poor performance can be mitigated by 
using special CPU features, Intel VT-x or AMD-V. The 
paravirtualization allows significantly better performance of 
the guest OSs i.e. through the use of the VMs, with 
drawback that it requires modifications of host/guest OSs. 

II. RELATED WORK, OBJECTIVE AND MOTIVATION 

The scope of this paper covers the performance analysis 
of type-1 hypervisors. It should be emphasized that such 
performance is one of the basic factors for achieving an 
adequate level of QoS (Quality of Service) in CC (Cloud 
Computing) environment. This problem has been discussed 
in the related work from various points of view. But, one 
very common approach and methodology relies on the 
comparative performance analysis of different hypervisors 
(mostly KVM, VMWare, Xen and Hyper-V), and is mainly 
based on the use of filesystem benchmark applications such 
as Bonnie++, Iozone, LMbench, LINPACK, HD Tune Pro 
and ATTO [3-8]. 

Some recent research related papers focus on the problem 
of support for appropriate I/O speeds, enabling the full range 
of CC applications, their effective functioning and tackle the 
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problem of I/O performances in a virtual environment [9-
12]. 

It has been noticed that the experimental results mainly 
relate to the impact of the estimated costs for realizing CC 
technologies [13]. It is important to choose a solution for 
virtual infrastructure management, as cloud resources can be 
quite limited and inadequate due to the need to respond to 
changes in a dynamic and stochastic environment [14-15]. 
Just a few studies provide comparative analysis of the top 
market virtualization hypervisors, which is highly related to 
our focus as well [8], [16-19]. 

In this paper, the main contribution is the comprehensive 
mathematical modeling of the FS (File System) performance 
in VE (Virtual Environment) when using type-1 
hypervisors. The modeling of such a complex system 
includes many factors, which can be explored as 
interdependent and/or as mutually correlated. The model is 
applicable to most VE, and based on a model we interpret a 
range of practical results when targeting one particular case 
study.  

The idea is to provide a mathematical model, apply it on a 
particular case study, and then provide the interpretation of a 
range of practical results as a validation of model. 

The indicated CS (Case Study) provides the FS 
performance evaluation when examining the performances 
of four selected type-1 hypervisors, in fair play conditions. 
This fair competition assumes the use of identical hardware 
for hypervisors, the same characteristics of the generated 
VMs and the identical version of the guest OS. In this case, 
we have selected ESXi, KVM, Hyper-V, Xen, which are all 
using the full hardware virtualization. It is worth to note that 
besides full virtualization, Xen and Hyper-V can also 
support the paravirtualization. We have used the modern 
benchmark, Filebench. It is a multi-threaded based 
benchmark, easily configurable, and adequate for the 
simulation of the real-world applications. We have chosen 
the four different test workloads, which are similar to real 
applications: web server, email server, fileserver, and 
random file access. We have first set up the mathematical 
model for workloads and hypervisors; then, we defined the 
hypotheses related to the expected behavior of the FS, and 
finally proceeded with the benchmark measurements. The 
results were interpreted on the basis of the defined 
mathematical model and hypotheses. 

III. XEN, KVM, HYPER-V, AND ESXI 

ESXi (Fig. 1) is a type-1 hypervisor, which means that it 
runs directly on the hardware (bare metal), and therefore it 
significantly improves the system performance. It is based 
on an OS-independent ultra-thin architecture. The 
fundamental parts of the ESXi architecture are VMkernel 
and processes that run above it. VMkernel provides startup 
tools for all components, including VMs, management 
applications, and agents. 

VMkernel has control over all hardware devices on the 
server and manages the resources that are needed by VM [6, 
20]. ESXi applies one virtualization type, the original 
VMware FHV (Full Hardware Virtualization). 

 

 
Figure 1. ESXi architecture 

 
Xen (Fig. 2) is a native, bare-metal hypervisor, which 

runs directly on the hardware, allowing computer hardware 
to run multiple guest VMs at the same time [21-22]. Xen 
can work on various computer CPU architectures: x86, x86-
64, Itanium, Power PC, and ARM. It currently supports the 
following OSs for the guest side: Linux, NetBSD, FreeBSD, 
Solaris, and MS Windows OS family. Xen implements two 
virtualization types: FHV (QEMU based) and PV 
(paravirtualization) which is suitable for open-source PV 
guests. Xen hypervisor works directly on the hardware and 
represents an interface for all hardware requirements such as 
CPU, memory and I/O for gOS. Xen uses two kinds of the 
domain: 

• Dom0 (Domain0) – it is an integral part of Xen that 
operates like the real host OS. Dom0 is automatically 
launched after the Xen hypervisor is started. Dom0 has 
special privileges as it allows direct hardware access, such 
as the access to all the I/O devices. Dom0 provides access to 
hardware through real, native drivers of the hOS.  

• DomU (DomainU) – it is the gOS which is 
launched and controlled by dom0 and works in isolation. 
Guests are either started with a specially modified OS by 
using Xen paravirtualization (PV guest) or with an 
unmodified but hardware-assisted OS (HVM guest).  
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Figure 2. Xen Server architecture 

 
KVM (Fig. 3) is a set of software, techniques, and 

methods that provide Linux kernel changes in hypervisor 
type-1 [23-24]. Using KVM, the kernel is practically 
gaining an extension-kernel module that allows it to run 
VMs. It is a part of the Linux distributions from the kernel 
version 2.6.20. To make the installation possible, it is 
required the hardware support, which consists of Intel VT-x 
or AMD-V add-ons, covering almost all processors that can 
be found in use today. 
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Figure 3. KVM architecture 

 
Although initially conceived exclusively for x86 

architecture, it is adapted for the use on Power-PC, IBM 
System/390, IA-64 and ARM platforms. The host OS can be 
any modern Linux distribution. KVM can be installed in an 
extremely simple way when installing the Linux OS. When 
installed, it allows the creation, management, and deletion of 
VMs whose maximum number is limited only by the power 
of the available hardware. KVM applies only the FHV 
(QEMU based) virtualization. 

Hyper-V (Fig. 4) is type-1 (bare-metal) hypervisor-based 
virtualization system for x86-64 systems. It is installed on 
the Windows Server as any other service (Computer 
Browser, Application Layer Gateway, DNS Client, DHCP 
Client), as a role [25-26]. The hypervisor is a thin software 
that is located just above the hardware. 

 
Figure 4. Hyper-V architecture 

 
Just like a real kernel, Hyper-V manages the memory, the 

threads, and the basic system performance. Hyper-V 
supports the isolation of VMs and uses the partitions in 
which the OS will execute. There is a basic parental 
partition as real hOS and child partitions as gOSs. Hyper-V 
implement two kind of virtualizations, FHV (MS original) 

and PV (paravirtualization) for MS Windows OS which use 
VM bus, VSP and other PV components. 

IV. MATHEMATICAL MODELING OF FS PERFORMANCE FOR 

VIRTUAL ENVIRONMENT  

The proposed filesystem performance mathematical 
modeling encompasses: (1) the WL (Workload) 
characteristics; (2) characteristics of the VMs (with the 
characteristics of the accompanying gOS and gOS FS); (3) 
modeling of the hypervisors; and (4) characteristics of the 
hOS and hOS FS (where the hypervisor operates as kernel in 
hOS). 

The modeling is accomplished in three phases. We start 
from FS performance in the context of WL, then in the 
context of FS characteristics and finally in the context of the 
VE characteristics.  

In order to evaluate the FS performance, it can be used 
the benchmark or real application testing approach, where 
all testing procedures generate specific WLs in FS.  

For each workload, we used the parameter TW as the total 
workload processing time. TW is defined from the three point 
of views. The first point of view refers to kind of disk cycles 
in WL, calculated using the equation (1): 

 

W RR SR RW ST T T T T W                                 (1) 

 
where, TRR and TSR denote the time components for random 
and sequential reading and TRW and TSW are the components 
for random and sequential writing. Writing can be 
synchronous or asynchronous, so writing performance 
depends significantly on the FS cache characteristics.  

The second point of view refers to the analysis of the 
workload time, but in the FS context. It includes at least six 
components, as shown in the equation (2): 

 

W DIR Meta FL FB J HKT T T T T T T                     (2) 

 
where, TW represents the total processing time to complete 
all operations for this workload. TDIR, TMeta, TFL, TFB, TJ, THK 
represent the processing time components required to 
perform all operations related to the directory, metadata, 
free lists, file blocks, journaling and house-keeping 
operations in the FS, respectively.  

The third point of view refers to the analysis of the 
workload processing time when considering the VE with 
hypervisors influence. FS performance characteristics in 
VEs depend on a larger number of factors, as there is an 
impact of a range of virtualization effects that the applied 
virtualization technology enforces. Additionally, 
considering the context of the hypervisor VE environment, 
the overall data path becomes quite complex. Overall data 
path of the WL relies on five components: benchmark, gOS 
FS, hypervisor, VM image file and hOS FS.  

The first component, the benchmark application, is 
running in VM and generates the workload, which can be 
assumed as a function of benchmark request characteristics, 
and gOS FS processing, which includes virtual disk drivers. 
The gOS output workload is further redirected to the 
hypervisor, which maps it to a large VM image file, and 
further redirects it to the hOS FS that generates requests 
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towards physical disk drivers. The whole data path depends 
on various factors, such as: characteristics of gOS-FS/hOS-
FS, gOS file caching/hOS file caching (with specific 
cooperation of these two caches), hypervisor interconnection 
of physical and virtual disk drivers, hypervisor-CPU 
scheduling and other. 

For Tw in VE, there are five components that have an 
impact to the workload time (equation 3): 

 
( , , , ,WT f bench gOS FS VH proc Hyp proc hOS FS    )

)

   (3) 

 
1. Benchmark (bench) represents the interaction between 

the benchmark and gOS FS. The chosen benchmark will 
generate WL with the random and sequential components.  

2. For the guest OS FS time component, gOS-FS and hOS 
-FS component, 2d and 5th component, the time for both OS-
FS processing is represented by the function of FS 
processing and FS cache processing (equation 4): 

 
/ ( ,g hOS FS f FSproc FScache                    (4) 

 
3. Virtual hardware processing, VH-proc, represents the 

processing time of the virtual disk hardware, and depends on 
the connection between the virtual disk drivers for gOS and 
the physical disk drivers of hOS.  

VH-proc strongly depends on the type of virtualization. 
We are interested in two types of virtualization, FHV (full 
hardware virtualization) and PV (paravirtualization). FHV 
represents the full hardware emulation for storage 
components (storage hardware emulated in software). The 
guest disk drivers pass through virtual disk hardware, which 
contacts hypervisor for services in host OS. FHV shows 
great flexibility because gOSs are unchanged, but full 
hardware emulation in the software and a large number of 
context switches between gOS and hOS cause low FS 
performance. 

PV requires the big changes in gOS as well as in host OS. 
PV drivers are created on the gOS and hOS side, fast 
asynchronous channels are established between them (IO 
rings for Xen, VM bus for Hyper-V). Fast channel and a 
small number of context switches between guest and host 
OS cause high FS performance, but the disadvantage of PV 
are the necessary major changes in OSs. 

4. Hypervisor processing time, Hyp-proc, is the time 
necessary for the hypervisor to receive the requests from the 
VM (virtual disk driver) and forward them to the host 
physical disk drivers. FS requests from the guest FS (gOS-
FS) are forwarded to the host FS (hOS-FS), via hypervisor 
and mapping through the VM image file. Many hypervisor 
parameters can affect FS performance.  

5. Host OS FS processing, hOS-FS, is a component 
targeting the host FS processing. It works with big VM 
image file and is a function of FS processing and cache 
processing effects (equation 5): 

 
( ,hOS FS f hOS FSproc hOS FScache    )

)

          (5) 

 
Actually, some components of equation (3) are closely 

interrelated, especially 2nd and 5th. As kernel for VE (Virtual 
Environment), each hypervisor has the hOS, which provides 

it with virtual disk drivers and physical disk drivers. The 
hOS can have one or several hOS FS types as a choice for 
the application. 

Thus, in hypervisor-based VE there is always a FS pair to 
consider, gOS-FS/hOS-FS, therefore the 2nd and 5th 
components are in very complex interaction. These 
components rely on a pair of chosen FSs, whereas the 
number of the combinations in pair theoretically can be 
extremely large. Usually, there is a need to consider an 
interaction between two FS caches. The interaction of 2nd 
and 5th component as FS-pair is given in equation (6): 

 
( / , / ,FS pair f gFSt hFSt gFSc hFSc HypFSparm      (6) 

 
The first component in equation (6) comprises a FS pair, 

(gFSt is guest OS FS type, hFSt is host OS FS type) where 
each FS type in a pair has specific characteristics. There is a 
number of modern FSs that can be implemented as g/h-OS 
FSs. Most of them are 64-bit, extent based, and use 
accelerating techniques for allocation and searching (H-
tree/B-trees). For write/update method, FSs use the 
overwriting or CoW (Copy on Write) techniques. The 
performance of the FSs highly depend on their own file 
caching characteristics, journaling methods, and different 
tunable parameters. FSs expose constant development, new 
versions are appearing, constantly.  

For VE, there is need to emphasize the importance of the 
choice for the OSs, as there are Linux-like or MS Windows-
based. Linux supports almost 100 types of FSs, including 
the most popular ext4, xfs, jfs, btrfs, wafl, zfs, and F2FS. 
MS Windows OSs implement only one NTFS, whereas 
rarely one can come across the FAT-32. The typical Linux-
based hOS hypervisors are ESXi, Xen and KVM, whereas 
Hyper-V can be found as MS Windows-based. In this 
context, if we analyze FS pairs (gOS FS on hOS FS), the 
following can be assumed: 

• for Linux hypervisors and Linux guests, there are a very 
large number of pairs (gOS FS on hOS FS)  

• for MS Windows hypervisors and Linux guests, there 
are still large number of combinations for pairs (gOS FS on 
NTFS) 

• for MS Windows hypervisors and Windows guests, 
there is only one pair (NTFS on NTFS) 

The true is that there is no universal/best FS pair due to a 
large number of factors in the FS itself, and we expect that 
the optimal FS pair highly depends on WL characteristics. 

The second component of equation (6) gFSc/hFSc, (gFSc 
is guest FS cache, hFSc is host FS cache) is a pair of two FS 
caches, precisely the interaction of these two caches. In 
hypervisor VE, we detect FS pair, and therefore two FS 
caches exist, FS cache on gOS and FS cache on hOS. These 
caches can be cooperative or exclusive. Two caches can be 
in the cooperation with WB (Write Back) or WT (Write 
Through) semantics, or excluded (none mode), when 
hypervisor excludes hOS FS cache. For exclude mod, 
hypervisor exclude host FS cache for VM data and thus 
frees RAM space for VMs. The hypervisor parameters 
determine the behavior of the two FS caches between each 
other. 

The third component of equation (6) corresponds to the 
hypervisor (kernel) tunable parameters for FS in VE (HypFS 
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parm are Hypervisor FS parameters).  
Each hypervisor has a number of kernel tunable 

parameters, and some of them can affect FS performance. 
Besides the two FS caches impacts, there is need to 
emphasize CPU scheduling, which is very important in the 
case of a large number of VM running. All hypervisors have 
their own schedulers, for example: Borrowed Virtual Time 
(BVT), Simple Earliest Deadline First (SEDF), Credit 
Scheduler are used by XEN, whereas CFS is used by KVM, 
as Linux Kernel's native CPU scheduler [23-25].   

The storage space for VM image files has a lot of impact 
on FS performance. We consider DAS, a storage space 
created from local disks in a server, where the combination 
of SSD/HDD technology and RAID implementation has a 
great impact. However, VM images can be in NAS/SAN 
storage systems, which are based on network storage 
protocols such as NFS, SMB, FC, and iSCSI. 

Also, the performances are affected by the HW extension 
for virtualization in the CPU itself and the chipset (Intel VT-
x, VT-d), which depend on the model/version of the 
implemented CPU. With each new CPU model, a new 
version for HW extension for virtualization appears. 

Finally, an impact is obvious when assuming the 
appearance of new versions of FSs, gOSs and their kernels, 
hypervisors and accompanying hOS, and CPU models with 
HW extensions that are being developed.  

When all VE factors are considered, we cannot expect 
that there is a universal type-1 hypervisor, which is the best 
for FS performance. Hypervisors with PV are very 
promising for PV guests, such as PV Linux guests on Xen 
Hypervisor, or MS Windows guests on Hyper-V. In the case 
of FHV, the choice of the hypervisor strongly depends on 
WL characteristics. In the future, the advent of new versions 
of VE factors is also strongly influencing the choice of the 
optimal hypervisor.  

We also expect that it is very complex to choose the 
optimal FS pair (gOS-FS on hOS-FS) in VE, whereas all 
depends mostly on WL characteristics. 

V. CASE STUDY AND EXPECTED BEHAVIOR 

The discussed CS relies on the examination of four 
dominant type-1 hypervisors, ESXi, Xen, Hyper-V, and 
KVM, in full virtualization mode, and having the same 
Linux OS as gOS, with some default parameters for all 
hypervisors. The chosen benchmark testing software is 
Filebench.  

All four hypervisors belong to the type-1 category, rely 
on the microkernel architecture, and are very thin and 
without drivers, except in the case of the KVM. The gOS FS 
type is ext4, whereas hOS FSs are ext4 or NTFS. There are 
two possible FS pair, {ext4 on ext4}, and {ext4 on NTFS}, 
referring to equation (6).  

Next, we are discussing in further detail the five 
components that have an impact to the workload time in 
equation (3). 

1. bench: All the candidates have the same WL. As the 
performance measurement relies on the use of the identical 
benchmark environment, VMs, gOS, gOS-FS (in this case 
the ext4), it is expected that this component has an identical 
effect on Tw for all the tested hypervisors. 

2. gOS-FS: time needed for gOS FS processing, gOS-FS 
is a function of the chosen FS characteristics, in this case 
ext4 (equation 7): 
 

( 4 , 4 )gOS FS f ext proc ext FScache             (7) 

 
Since the installed VMs for all the evaluated hypervisors are 
identical and based on ext4 as the gOS FS, this time value is 
almost the same for all tested hypervisors. 

3. VH-proc: Depending on the used hypervisor, it relies 
on a specific FHV type: ESXi relies on the VMware FHV, 
KVM relies on the QEMU FHV, Xen relies on the QEMU 
FHV, Hyper-V relies on the Microsoft FHV. 
Although all of these hypervisors rely on the FHV 
emulations, the performance will be different, because each 
hypervisor deploys FHV in its own way. KVM and Xen use 
open source QEMU FHV, whereas ESXi and Hyper-V 
implement the own solutions. 

4. Hyp-proc: Each hypervisor has its own processing 
delay, thus brings a certain small, but different overhead. 

5. hOS-FS: three out of four evaluated hypervisors (ESXi, 
KVM, Xen) rely on the use of the same type hOS-FS, in this 
study the ext4. Thus, it is expected that for ESXi, KVM and 
Xen this component will consume the similar processing 
time. On the other side, Hyper-V implements very different 
hOS FS, NTFS. This time is different for all the hypervisors, 
but shows the greatest differences in the case of Hyper-V. 
Each hypervisor also has its own FS caching in hOS. 

Generally, all five components from the equation (3) will 
affect the performance of the tested hypervisors. Some of 
them have a similar impact, and some will cause solid 
performance differences. As all the tests are focused on the 
performance of natively virtualized guests (FHV emulation), 
for all of the evaluated hypervisors it is expected the 
dominant influence of the 3rd (VH-proc) and 4th (Hyp-proc) 
component from the equation (3), but also the 5th component 
is significant. In the case of Hyper V and NTFS FS it is 
expected the stronger influence of the 5th component (hOS-
FS), as a difference from the other tested hypervisor.  

Regardless of the fact that Linux based hypervisors have 
the same type of hOS FS (ext4), these are not the same 
versions and each hypervisor has their own host FS caching, 
so the 5th component will be different. In the context of 
equation (6) (1st and 2nd component), we expect Linux based 
hOS to operate faster with Linux gOS (ext4 on ext4) 
compared to Hyper-V (ext4 on NTFS). 

In general, for our CS, we expect Linux based hypervisors 
to be better than Hyper-V. Among Linux based hypervisors, 
we expect there is no best/optimal hypervisor, but the 
performance depends on WL characteristics. 

We expect all hypervisors to have a solid drop in FS 
performance compared to Native OS, due to FHV. The 
performance drop depends on the WL. 

VI. TEST CONFIGURATION AND BENCHMARK APPLICATION 

The assumption for the fair-play testing procedure is 
based on the use of the identical hardware, the OS on the 
guest or host side and the same benchmark measurement. 
The hardware configuration of the testing server and its 
components are shown in Table I. As guest OS we have 
chosen the CentOS 6.3 as a free Red Hat Enterprise Linux 
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(RHEL) version. Our hypervisors for the competition are as 
follows: ESXi 6.0, Windows Server 2016, Linux QEMU-
KVM version 1.5.3, kernel 3.10.0-862 and XenServer 6.5. 

 
TABLE I. SERVER REST ENVIRONMENT 

HPE ProLiant DL 180 G6 
Component Characteristics 

Processor Intel Xeon E5520 Quad Core 2.26GHz 
Memory 24 GB DDR3 
Cache 8MB L3 

Hard Disk 
Seagate Barracuda ES.2, 7.2k, 750GB 

SATA 
Network 2 x 1Gb/s 

 

All hypervisors were installed on the hard disks (DAS), 
where one part of DAS storage serves exclusively for 
servicing the hypervisor platform, and the other as a 
repository of data, applications and VM images. The two 
identical disk drives were mounted on the server HPE 
ProLiant DL 180G6. The first disk drive is used for 
hypervisor (XenServer, Hyper-V, KVM or ESXi), whereas 
the other is used as the storage repository for installed VMs. 
The same hardware was used for all hypervisors.  

All hypervisors were installed on the hard disk with 
characteristics provided in Table II. 

 
TABLE II. HARD DISK TEST ENVIRONMENT 

Seagate Barracuda® ES.2 
Component Characteristics 

Model Number ST3750330NS 
Capacity 750 GB 
Interface SATA 3 Gbps 

External tr. Rate 3 Gbps 
Max Sustained 105 Mbps 

Cache 32 MB 
Avg. latency 4.16 msec 

Spindle Speed 7200 rpm 
Av. read seek time  8.5 msec 
Av. write seek time  9.5 msec 

 

The characteristics of the VM are shown in Table III. All 
VMs are identical. 

 
TABLE III. VIRTUAL MACHINE PARAMETERS 

Component Characteristics 
vCPU 4 

Memory 6 GB 
HDD 2 partitions – 180 GB  
sda1 system partition with CentOS - 20 GB 
sda2 additional test partition for testing -  

150 GB 
Swap 10 GB 

 
Performance tests are carried out using the Filebench 

benchmark. It is a modern benchmark software designed to 
measure the FS performance of storage resources. Filebench 
is capable of generating multiple workload types in order to 
simulate different service environments such as web server, 
email, file server, database, and random file access. 

We have chosen the four workloads for Filebench 
software: web, email, fileserver, and random file access 
(RFA) access. All workload environments rely on the use of 
a modified source files: File Server (fileserver.f), Web 
Server (webserver.f), Mail Server (varmail.f) and Random 
File Access - RFA (randomfileaccess.f). The fundamental 
parameters for chosen workload files, which provide 
realistic application conditions, are shown in Table IV. In 
order to achieve accurate results, for each workload test, the 
duration is set to 120 seconds. 

TABLE IV. PARAMETERS OF THE SOURCE CODE *F FILE 
 Fileserver Webserver Varmail RFA 

Nfiles 10000 1000 1000 10000 
meandir 
width 20 20 1000000 20 

meanfile 
size 128000 16000 16000 Random 

Nthreads 50 100 16 5 

VII. TEST RESULTS AND ANALYSIS 

The goal of this CS is to measure the FS performance for 
popular virtualization platforms such as Xen, KVM, Hyper-
V, and ESXi. Our interest is to evaluate the situation where 
more than one instance of VMs is used, when we can prove 
that the number of VM instances causes significant 
performance decrease, for all kind of hypervisors. All four 
virtual platforms have been tested with the guest in full 
hardware virtualization environments.   

We have chosen the four workloads for Filebench 
software: web, email, fileserver, and random file access 
(RFA) access. Initially, we have tested all hypervisors with 
one running VM. The testing procedure is further repeated 
for the case of the 2 and 3 running VMs. With the same 
VMs we provide fair play conditions, as stated in equation 
(7). The test results of different workloads as well as of the 
native OS, are shown in Tables V - VIII and Figures 3 - 6. 

 
TABLE V. WEB SERVER BENCHMARK RESULTS 

Webserver [MB/s] 
Native OS 71.43 

 1VM  2VM  3VM  
ESXi 57.1 51.7 40.5 
KVM 14.7 12.9 11.6 
Xen 35.9 35.1 31.3 

Hyper-V 28.5 23.3 21.4 

 

 
Figure 5. Native and four hypervisors Webserver test results 

 
For the Webserver workload, which is characterized by a 

dominant random read component and a small amount of 
random write data (asynchronous writes) as covered in 
equations (1) and (2), the results clearly show that ESXi is 
totally superior when compared to other evaluated 
hypervisors. It is followed by Xen, then the Hyper-V, 
whereas KVM shows far the worst results.  

 
TABLE VI. MAIL SERVER BENCHMARK RESULTS 

Mailserver [MB/s] 
Native OS 8.46 

 1VM  2VM  3VM  
ESXi 4.9 2.7 1.7 
KVM 4.5 2.4 1.3 
Xen 5.4 2.9 2.3 

Hyper-V 1.4 0.5 0.3 
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Figure 6. Native and four hypervisors Mail Server test results 

 
For the Mail server workload, which is characterized by 

the dominant random reads and random writes, where 
random writes are represented by the synchronous transfers 
covered by equation (1) and (2), the results clearly show that 
Xen hypervisor provides the best performances, whereas it 
is followed by ESXi and KVM, whereas Hyper-V shows the 
worst results. 

 
TABLE VII. FILE SERVER BENCHMARK RESULTS 

Fileserver [MB/s] 
Native 114.52 

 1VM  2VM  3VM  
ESXi 29.4 15 12.5 
KVM 56.9 54.9 49.4 
Xen 21.2 13.2 8.6 

Hyper-V 28 13.8 8.8 

 

 
Figure 7. Native and four hypervisors File Server test results 

 
For the Fileserver workload, which is characterized by all 

kinds of data transfers, when considering equations (1) and 
(2), the obtained results clearly show that KVM performs 
with far the best results. It is followed by ESXi, then with 
Hyper-V, whereas Xen hypervisor shows the worst results. 
KVM is remarkably the best, whereas the differences 
between the other three hypervisors are slight, especially in 
the case of the larger number of VMs. 

 
TABLE VIII. RFA BENCHMARK RESULTS 

RFA [KB/s] 
Native 12067.74 

 1VM  2VM  3VM  
ESXi 6863.8 6312.5 5303.8 
KVM 5767.4 5618.5 4833.1 
Xen 1286.9 1125.8 1005.9 

Hyper-V 3466.9 2417.1 1499.2 

 
The Random File Access workload is characterized by the 

dominant random components (RW and RR), where random 
writes mostly represent the asynchronous transfers and rely 
on the FS cache, equations (1) and (2). The obtained results 
clearly show that ESXi hypervisor is convincingly the best 
option, whereas the system relying on KVM is also offering  

 
Figure 8. Native and four hypervisors File RFA test results 

 
very good performances. 

Hyper-V provides less acceptable performances, whereas 
Xen shows the worst results. 

We will now present the result analysis for four 
hypervisors and four workloads.  

First, let’s analyze the performance drop caused by 
hypervisors relative to the native OS. For native OS, in 
equation (3), there are no 2nd, 3th and 4th components. 
Performances for native OS are a function of benchmark and 
host OS FS. Thus, native OS doesn’t contain two important 
factors that dominate VE: large image file for VM and FS 
pair. If we look at the FS performance for native OS and the 
case for only 1VM when applying any of the selected 
hypervisors, it is noticeable a solid drop of FS performance 
in the case of the hypervisors. It is most pronounced for 
fileserver and RFA WLs, and slightly less for webserver and 
mailserver WLs. We believe that this is a consequence of 
the nature of WLs, due to the reduced benefit of FS cache. 
The webserver is dominated by RR cycles, and the 
mailserver is dominated by synchronous RW cycles. For 
both types of cycles, the beneficial impact of FS cache is 
very small. 

Let's explain a connection between the mathematical 
model and Filebench workloads (WLs). Webserver 
workload is dominated by random read components, RR. 
Due to the RR dominance, the FS caches on both sides 
(guest/host) have no effect, thus the FS performance is 
determined primarily by the 3rd (VH-proc) and 4th (Hyp-
proc) component of equation (3). The webserver workload 
FS performance is also under the influence of the 5th (hOS 
FS) component of equation (3) and the specific physical 
characteristics derived from the FS types in the interactive 
FS pair, reflected through the 1st component (gFSt/hFSt) of 
equation (6). 

Mail Server workload is dominated by the synchronous 
RW, so there is no FS writeback cache effect. We consider 
that for mail server workload the FS performance is 
determined by the 3rd, 4th, 5th components of equation (3), 
and also by the characteristics of the interactive FS pair that 
are determined with the 1st component of equation (6). 

The one of the most complex environments, File Server 
workload is dominated by all the components (RR, RW, SR, 
SW). FS workload is affected by most of the components 
(namely 3rd, 4th, and 5th) of equation (3) and the 1st and 2nd 
component of equation (6). Especially significant is the 
interactive influence of both FS caches defined by equations 
(4) - (6), as well as the mutual interactions of these two 
caches, defined in 2nd (gFSc/hFSc) and 3rd (HypFS parm) 
components of equation (6).  
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Random File Access workload is dominated by random 
read and asynchronous random write components. For 
asynchronous RW components it is typical the powerful 
influence of the writeback FS cache effect, which is defined 
by equations (4) - (6). RFA WL is also influenced by the 
interaction of two FS that make the pair (gOS-FS/hOS-FS), 
which is defined as 1st component of equation (6) and as 2nd 
and 5th components of equation (3). There is also noticeable 
mutual interaction of two FS caches, defined by 2nd and 3rd 
components of equation (6). 

If we analyze the hypervisors individually in the context 
of the used workload, we can state the following: 

1. ESXi is the best option for two analyzed workloads 
(Webserver and RFA workloads) and in two WL cases the 
second-best option (Mail server and Fileserver workloads), 
so ESXi could be nominated as the best hypervisor for our 
CS.  

2. Xen was best for one workload (Mail server workload), 
but was also the worst option in the case of two other 
workloads (Fileserver and RFA workloads).  

3. KVM was best option for only one workload 
(Fileserver workload), and the worst option for one 
workload (Webserver workload).  

4. Hyper-V was mostly third in a row for the most 
optimum hypervisor, whereas for one workload it was the 
worst option (Mail Server). 

As all the evaluated hypervisors are thin and 
microkernelized, it is expected to obtain the similar effects 
from the 4th component (Hyp-proc), whereas the strongest 
influence has the 3rd component (VH-proc), as in this case it 
relies on the full hardware virtualization in combination 
with two FS caches.  

We expect that the 2nd and the 5th components in equation 
(3) and 1st and 2nd components in equation (6) provide 
similar effect on ESXi, Xen, and KVM since the used VMs 
and host FSs provide the similar characteristics for these 
hypervisors (same guest FS and similar host FS, (ext4 on 
ext4)). Hyper-V uses a completely different host FS, such as 
NTFS, so it is expected some different impact of the 5th 
component in equation (3), and FS pair (ext4 on NTFS) and 
cache pair in equation (6).  

Thus, besides ESXi, all the other evaluated hypervisors 
have shown high sensitivity to the workload choice. For all 
the evaluated hypervisors and four types of workload, it is 
noticeable that the performance solidly decreases with the 
increase of the number of VMs (one, two and three VMs in 
our case). The effects of the file caching are strongly 
noticeable for all tested hypervisors.  

General results overview for each hypervisor separately 
are following. 

ESXi: The deeper analysis of the obtained results 
distinguishes ESXi as far the best of all hypervisors, for the 
workload which is dominated by random read component 
(Web Server) (Fig. 3), and workload that is dominated by 
random read and asynchronous random write components 
(RFA) (Fig. 6). In the case of the File Server and Mail 
Server workloads, ESXi performances are slightly weaker, 
making it the second-best choice. It is obvious that 
particularly the 3rd (VH-proc) and in some percent the 4th 
(Hyp-proc) components of the equation (3) have an impact 
on the random reads, whereas two interactive FS caches 

with writeback feature have the strongest impact to random 
writes. All these characteristics make ESXi the best option 
effect when compared to other evaluated hypervisors.  

We think ESXi has an excellent own FHV, which is 
expressed in 3rd component (VH-proc) of equation (3) and 
therefore it wins solidly for the workload with RR (Web 
Server). We also think that ESXi makes the best use of the 
writeback FS cache effect compared to other hypervisors, so 
it wins in workload with dominant asynchronous RW 
components (RFA). The ESXi virtual disk drivers, when 
combined with writeback FS caching on the hOS side, can 
operate more efficiently for RR and asynchronous RW 
components when compared to the Xen/KVM QEMU and 
MS Hyper-V virtual disk drivers, equations (3) – (6). Thus, 
VMWare ESXi full virtualization with file caching is 
considerably more efficient when compared to QEMU full 
virtualization and Hyper-V full virtualization.  

KVM: At the other side, KVM is far the best choice when 
there is need to operate in one of the most complex 
environments, such as the File Server workload, which is 
dominated by random and sequential components (Fig. 5). 
For such workload we have a combined effect of most 
components (3rd, 4th, 5th) in equation (3) and (1st and 2nd) in 
equation (6). So, in the combined impact of most of the VE 
components, where many cache benefits are expected, KVM 
has proven to be excellent. But for workloads where the FS 
cache effect is weak, the KVM FS performance are also 
weak. Thus, KVM is recommended to be avoided for the 
case of the workload with dominant RR and for those with 
dominant synchronous RW component, which means that 
KVM is poor choice for workloads with weak cache impact 
(Web Server, Mail Server). 

Xen: Xen should be chosen in the case of the Mail Server 
environment, which is dominated by synchronous RWs (Fig. 
4), meaning that all the writes to the disk are forwarded to 
the hOS FS (hOS-FS) disk driver. However, it is highly 
recommendable to avoid it when dealing with Random File 
Access workload, which is dominated by asynchronous 
RWs. Our experiment shows that Xen is very sensitive to the 
nature of the RW component. Xen is the best option when 
working with synchronous writes, as in that case when the 
system skips the file caching. On the other hand, Xen is the 
worst option for the case of working with asynchronous 
writes, as these intensively use the cache effects. Xen has an 
excellent impact of the 4th component (Hyp-proc) in 
equation (3) and a relatively good QEMU-Based FHV (VH-
proc), so we think that it is the best candidate for Mail 
Server workload and second-best option for the Web Server 
workload. But, when many VE factors are involved, 
especially cache effects, Xen performances decrease. 
Definitely, Xen uses writeback cache effects significantly 
less than others, so it is the worst option for RFA and FS 
workloads. 

Hyper-V: Unfortunately, neither of the evaluated 
workloads has proved the Hyper-V as the best choice, 
whereas it is highly recommendable to be especially avoided 
when working in workloads with synchronous RW (Mail 
Server) environments. For synchronous RW workload, 
without WB cache effects, we detected worst impact on 
Hyper-V mostly because of the 3rd, 4th, and 5th components 
of the equation (3), and 1st and 2nd components in equation 
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(6). We consider the main reason of this behavior is the hOS 
FS (NTFS) component in equation (3) and FS pair (ext4 on 
NTFS) component in equation (6). 

Definitely, ESXi has a great VH-proc component and 
writeback cache effect, Xen has a great Hyp-proc 
component but is inferior with FS caching, KVM does well 
in the most complex workloads with the combined influence 
of many VE factors with strong FS cache effects, and 
Hyper-V is inferior to Linux guest due to its NTFS as hOS 
FS and FS pair (ext4 on NTFS). 

VIII. CONCLUSION 

Virtualization has brought great efficiency, flexibility, 
reliability with huge savings in power consumption. 
Therefore, virtualization has made significant changes in the 
computer industry and information technology (ICT). 
Certainly, virtualization has a significant impact on 
performance and we have tried in this paper to examine this 
impact in specific conditions, such as for different 
hypervisors from the FS performance point of view. 

Based on the proposed model, our definitive conclusion is 
that for different applications in the context of FS 
performance there is no optimal (the best) type-1 hypervisor, 
but the choice of the best drastically depends on WL. The 
reason is a complex VE with a large number of input 
variables, which are in the complex interaction.  

The optimal pairing of FS types on the host and guest side 
is particularly complex. Administrators of VE have a 
complex problem to determine the optimal VE for their 
applications of interest. We consider that a pool with 4 type-
1 hypervisors should be created. Then, for each hypervisor 
with own hOS a pool of hOS FS with different types should 
be created, on which they can place VMs and migrate if 
necessary. For VMs with gOS, possible variation of gOS FS 
types should also be provided.  

Administrators have two serious and intensive tasks. The 
first is to determine the optimal hypervisor for the 
applications of interest. The second is to determine the 
optimal FS pair for applications of interest. The model can 
be used for hypotheses about expected behavior, a good 
benchmark can give relatively good results for validation, 
but only real-app testing can give real validation. 

In addition, administrators should tune the 
hypervisor/kernel tunable parameters and monitor changes 
that occur with the introduction of new versions of: CPUs, 
gOS, gOS FS, hypervisors with hOS, and hOS FS. And after 
performance analysis of its applications of interest, it is 
necessary to migrate of VMs to the optimal hypervisor and 
optimal FS pair. 

For our specific CS, our results fit into the previous 
conclusions. Results show that in case of FHV, with Linux 
as a gOS, there is no possibility to choose a hypervisor of 
type 1 that would be universally the best choice, because the 
performance mostly depends on WL characteristics. 

The obtained experimental results show that there are 
remarkable differences between hypervisors that rely on 
their own full emulation (ESXi and Hyper-V) and 
hypervisors that are based on the open source QEMU full 
emulation, such as Xen and KVM.  

Our recommendation for CS with Linux based full 
virtualized guests is as follows:  

 For typical web application environments, it is optimal 
to use ESXi whereas avoiding KVM.  

 For typical email application environments, it is optimal 
to use Xen whereas avoiding Hyper-V.  

 For complex application environments such as 
fileserver, it is optimal to use KVM.  

 For typical random file access environments with lot 
asynchronous RWs, it is advisable to avoid Xen. 

 Compared to native OS (without hypervisors), we 
detected significantly lower FS performance of all 
hypervisors, most pronounced for fileserver and RFA 
WL. 

Future work can take place in several directions, and 
these are practically new CSs.  

One direction is the problem of optimal pairing FS types 
in VE. For choice of FS type for the hOS, there is a large 
number of candidates (ext4, xfs, jfs, btrfs, NTFS). Precisely, 
Hyper-V has only one candidate for the role, it is the NTFS 
FS. The remaining three hypervisors have a large number of 
candidates of which the most dominant in use are: ext4, xfs, 
jfs, and btrfs FS. But, for Linux as a gOS, a similar FS 
variation can be made on the gOS side. Future work may 
include a variation of the FS types on the h/g OS side.  

Second direction for future work is to evaluate the CSs 
based on FHV with MS Windows guests. The similar CS is 
to perform an identical experiment with MS Windows 
guests, where the four mentioned hypervisors would 
similarly compete in identical conditions for the effects of 
full hardware virtualization, using a suitable benchmark 
program, as HD Tune Pro or ATTO Benchmark. The MS 
Windows guests function exclusively as a fully virtualized 
guests, except in the case of the Hyper-V hypervisor, when 
they become PV guests. 

Third direction for future work is PV, CSs based on PV. 
As the true power of Xen and Hyper-V is expected to be 
shown when working with the solutions that rely on the 
paravirtualization, our future work will include testing of the 
full and paravirtualization cases for these for hypervisors.  

Two cases of analyzing the effects of paravirtualization 
are particularly interesting. The first is referred to Xen 
hypervisor who supports full hardware virtualization for all 
guest types, whereas for Xen-aware PV guests Xen supports 
the PV.  The second case is referred to Hyper-V hypervisor, 
which supports full hardware virtualization for all guest 
types and paravirtualization for Hyper-V PV guests such as 
most MS Windows server OSs.   

Additionally, our model is open for upgrades.  
We give the idea for creation of KDB (Knowledge Data 

Base) related to the FS performance in VE. After realization 
a large number of CSs, KDB can be created. Each CS is 
specific and gives FS performance results, whereas our 
model will help to predict and interpret the results. 

Each CS can represent the FS performance for a specific 
VE, which includes: benchmark/WLs, 4 dominant type-1 
hypervisors in their current versions with following hOS, 
CPU version, specific gOS version, FS pairs (guest on host 
FS), hypervisor parameters tuning. Based on the measured 
FS performance depending on WL, the optimal hypervisors, 
FS pairs, and hypervisor parameters can be proposed for 
certain CS. Very bad combinations in terms of performance 
are also detected, in that CS. The KDB should include a 
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large number of CS and will constantly grow over time. 
With a large number of CSs, the KDB will contain optimal 
combinations {hypervisors, FS pairs, Hypervisor-
Parameters} for a number of WLs, which can serve 
administrators to create VE for certain system case. 
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