
Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

File System Performance Comparison in Full
Hardware Virtualization with ESXi, KVM,

Hyper-V and Xen Hypervisors

Borislav DJORDJEVIC1,2, Valentina TIMCENKO1, Nenad KRALJEVIC2, Nemanja MACEK2
1Mihajlo Pupin Institute & School of Electrical Engineering, University of Belgrade, Belgrade, Serbia

2VISER, School of Electrical and Computer Engineering of Applied Studies, Belgrade, Serbia
borislav.djordjevic@pupin.rs

1Abstract—This paper focus is the mathematical modeling of

the file system performance in virtual environment when using
type-1 hypervisors. The modeling provides a set of hypotheses
related to the expected behavior. The presented model is
validated based on the analysis of a collection of the results
obtained for a specific case study. Our case study includes the
file system performance comparison, in full hardware
virtualization, when examining four dominant type-1
hypervisors: ESXi, KVM, Hyper-V, and Xen. We chose
Filebench as a benchmark tool, which guarantees
comprehensive and versatile testing of file system performance,
whereas for all tested hypervisors we have provided an
equivalent environment and testing conditions. For all the
examined hypervisors, we have tested the cases with one, two,
and three virtual machines that are running simultaneously,
whereas CentOS 6.3 Linux is used as the guest operating
system. We have further validated the mathematical model and
defined hypotheses by the means of the case study benchmark
results.

Index Terms—file systems, operating systems, performance

evaluation, platform virtualization, virtual machine monitors.

I. INTRODUCTION

In the modern age, ICT (Information and Communication
Technologies) are becoming increasingly important factors,
whereas virtualization techniques are constantly taking up
new fields and applications.

Virtualization enables ICT resource partitioning, efficient
utilization of resources, powerful system management,
higher availability and better fault tolerance, all combined
with stronger security. The major benefits of virtualization
correspond to the cost reduction, the efficient use of ICT
resources and the reduction of electricity consumption. As it
contributes to environmental conservation, virtualization is
considered as representative of the green technologies [1-2].

There is a number of techniques for virtualization,
whereas the choice depends on the specific needs of the
user. Some virtualization techniques achieve better
performance, whereas others achieve greater flexibility.
Actually, virtualization can be applied over many different
computer components, thus there are techniques for
hardware, software, desktop, database, network, RAM
memory and storage virtualization.

Virtualization includes the abstraction and encapsulation
of computer resources, where these resources can be used in
the appropriate way for a particular application. The

hardware virtualization relies on the usage of a hypervisor.
A hypervisor is a software layer that functions as an
intermediary between the host operating system (host OS,
hOS) and VMs (virtual machines), and creates a simulated
environment for VMs that may or may not have the same
characteristics as the physical environment.

1This work was supported by the Ministry of Education, Science and

Technological Development of Republic of Serbia.

The hypervisors can be of two types. Hypervisor of type-
1, the native hypervisor, runs directly on physical hardware
(so-called bare metal). Examples of type-1 hypervisor are
Citrix XenServer, Linux KVM, MS Windows Hyper-V and
VMWare ESXi, which have been tested in this paper.
Hypervisor of the type-2 runs as an application within the
host OS (Operating System). Examples of type-2 hypervisor
are Oracle VM Virtual Box and VMware Workstation. In
practice, type-1 hypervisors have much better performance
than type-2 hypervisors.

Hardware virtualization can be performed in different
ways: full hardware virtualization or emulation, partial
virtualization and paravirtualization. The full hardware
virtualization includes software simulation of the complete
hardware so that the guest operating system (guest OS, gOS)
can be installed and executed without any further changes.
This solution is the most elegant and easiest for use, but
unfortunately provides low performance of the installed
VMs. Hence, this poor performance can be mitigated by
using special CPU features, Intel VT-x or AMD-V. The
paravirtualization allows significantly better performance of
the guest OSs i.e. through the use of the VMs, with
drawback that it requires modifications of host/guest OSs.

II. RELATED WORK, OBJECTIVE AND MOTIVATION

The scope of this paper covers the performance analysis
of type-1 hypervisors. It should be emphasized that such
performance is one of the basic factors for achieving an
adequate level of QoS (Quality of Service) in CC (Cloud
Computing) environment. This problem has been discussed
in the related work from various points of view. But, one
very common approach and methodology relies on the
comparative performance analysis of different hypervisors
(mostly KVM, VMWare, Xen and Hyper-V), and is mainly
based on the use of filesystem benchmark applications such
as Bonnie++, Iozone, LMbench, LINPACK, HD Tune Pro
and ATTO [3-8].

Some recent research related papers focus on the problem
of support for appropriate I/O speeds, enabling the full range
of CC applications, their effective functioning and tackle the

 11
1582-7445 © 2021 AECE

Digital Object Identifier 10.4316/AECE.2021.01002

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 21:31:50 (UTC) by 172.70.178.10. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

problem of I/O performances in a virtual environment [9-
12].

It has been noticed that the experimental results mainly
relate to the impact of the estimated costs for realizing CC
technologies [13]. It is important to choose a solution for
virtual infrastructure management, as cloud resources can be
quite limited and inadequate due to the need to respond to
changes in a dynamic and stochastic environment [14-15].
Just a few studies provide comparative analysis of the top
market virtualization hypervisors, which is highly related to
our focus as well [8], [16-19].

In this paper, the main contribution is the comprehensive
mathematical modeling of the FS (File System) performance
in VE (Virtual Environment) when using type-1
hypervisors. The modeling of such a complex system
includes many factors, which can be explored as
interdependent and/or as mutually correlated. The model is
applicable to most VE, and based on a model we interpret a
range of practical results when targeting one particular case
study.

The idea is to provide a mathematical model, apply it on a
particular case study, and then provide the interpretation of a
range of practical results as a validation of model.

The indicated CS (Case Study) provides the FS
performance evaluation when examining the performances
of four selected type-1 hypervisors, in fair play conditions.
This fair competition assumes the use of identical hardware
for hypervisors, the same characteristics of the generated
VMs and the identical version of the guest OS. In this case,
we have selected ESXi, KVM, Hyper-V, Xen, which are all
using the full hardware virtualization. It is worth to note that
besides full virtualization, Xen and Hyper-V can also
support the paravirtualization. We have used the modern
benchmark, Filebench. It is a multi-threaded based
benchmark, easily configurable, and adequate for the
simulation of the real-world applications. We have chosen
the four different test workloads, which are similar to real
applications: web server, email server, fileserver, and
random file access. We have first set up the mathematical
model for workloads and hypervisors; then, we defined the
hypotheses related to the expected behavior of the FS, and
finally proceeded with the benchmark measurements. The
results were interpreted on the basis of the defined
mathematical model and hypotheses.

III. XEN, KVM, HYPER-V, AND ESXI

ESXi (Fig. 1) is a type-1 hypervisor, which means that it
runs directly on the hardware (bare metal), and therefore it
significantly improves the system performance. It is based
on an OS-independent ultra-thin architecture. The
fundamental parts of the ESXi architecture are VMkernel
and processes that run above it. VMkernel provides startup
tools for all components, including VMs, management
applications, and agents.

VMkernel has control over all hardware devices on the
server and manages the resources that are needed by VM [6,
20]. ESXi applies one virtualization type, the original
VMware FHV (Full Hardware Virtualization).

Figure 1. ESXi architecture

Xen (Fig. 2) is a native, bare-metal hypervisor, which

runs directly on the hardware, allowing computer hardware
to run multiple guest VMs at the same time [21-22]. Xen
can work on various computer CPU architectures: x86, x86-
64, Itanium, Power PC, and ARM. It currently supports the
following OSs for the guest side: Linux, NetBSD, FreeBSD,
Solaris, and MS Windows OS family. Xen implements two
virtualization types: FHV (QEMU based) and PV
(paravirtualization) which is suitable for open-source PV
guests. Xen hypervisor works directly on the hardware and
represents an interface for all hardware requirements such as
CPU, memory and I/O for gOS. Xen uses two kinds of the
domain:

• Dom0 (Domain0) – it is an integral part of Xen that
operates like the real host OS. Dom0 is automatically
launched after the Xen hypervisor is started. Dom0 has
special privileges as it allows direct hardware access, such
as the access to all the I/O devices. Dom0 provides access to
hardware through real, native drivers of the hOS.

• DomU (DomainU) – it is the gOS which is
launched and controlled by dom0 and works in isolation.
Guests are either started with a specially modified OS by
using Xen paravirtualization (PV guest) or with an
unmodified but hardware-assisted OS (HVM guest).

Hardware

Hypervisor

Xen Control Interface
Virtualized Hardware

Intel VT/
AMD-V

WindowsLinux

RAM/CPU

Xen

Open
Source

Control interface

Network

Storage

Drivers

Control Domain

Network and Storage I/O

Figure 2. Xen Server architecture

KVM (Fig. 3) is a set of software, techniques, and

methods that provide Linux kernel changes in hypervisor
type-1 [23-24]. Using KVM, the kernel is practically
gaining an extension-kernel module that allows it to run
VMs. It is a part of the Linux distributions from the kernel
version 2.6.20. To make the installation possible, it is
required the hardware support, which consists of Intel VT-x
or AMD-V add-ons, covering almost all processors that can
be found in use today.

 12

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 21:31:50 (UTC) by 172.70.178.10. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

Linux	
kernel

Hardware

KVM	guest

Hardware	
emulation	
(QEMU)

iothread

Applications

File	system	and	
block	devices

Drivers

vcpu	0 vcpu	N...

KVM	
guest’s	
kernel

Ony	one	thread	can	run	
QEMU	code	at	any	time	

(qemu_mutex)

Generates	I/O	
reguests	to	the	host	
on	guest’s	behalf	an	
handles	events

KVM	(kvm.ko)

File	system	and	block	
devices

Physical	drivers

cpu	0 cpu	N

Disk Disk Disk Disk

Figure 3. KVM architecture

Although initially conceived exclusively for x86

architecture, it is adapted for the use on Power-PC, IBM
System/390, IA-64 and ARM platforms. The host OS can be
any modern Linux distribution. KVM can be installed in an
extremely simple way when installing the Linux OS. When
installed, it allows the creation, management, and deletion of
VMs whose maximum number is limited only by the power
of the available hardware. KVM applies only the FHV
(QEMU based) virtualization.

Hyper-V (Fig. 4) is type-1 (bare-metal) hypervisor-based
virtualization system for x86-64 systems. It is installed on
the Windows Server as any other service (Computer
Browser, Application Layer Gateway, DNS Client, DHCP
Client), as a role [25-26]. The hypervisor is a thin software
that is located just above the hardware.

Figure 4. Hyper-V architecture

Just like a real kernel, Hyper-V manages the memory, the

threads, and the basic system performance. Hyper-V
supports the isolation of VMs and uses the partitions in
which the OS will execute. There is a basic parental
partition as real hOS and child partitions as gOSs. Hyper-V
implement two kind of virtualizations, FHV (MS original)

and PV (paravirtualization) for MS Windows OS which use
VM bus, VSP and other PV components.

IV. MATHEMATICAL MODELING OF FS PERFORMANCE FOR

VIRTUAL ENVIRONMENT

The proposed filesystem performance mathematical
modeling encompasses: (1) the WL (Workload)
characteristics; (2) characteristics of the VMs (with the
characteristics of the accompanying gOS and gOS FS); (3)
modeling of the hypervisors; and (4) characteristics of the
hOS and hOS FS (where the hypervisor operates as kernel in
hOS).

The modeling is accomplished in three phases. We start
from FS performance in the context of WL, then in the
context of FS characteristics and finally in the context of the
VE characteristics.

In order to evaluate the FS performance, it can be used
the benchmark or real application testing approach, where
all testing procedures generate specific WLs in FS.

For each workload, we used the parameter TW as the total
workload processing time. TW is defined from the three point
of views. The first point of view refers to kind of disk cycles
in WL, calculated using the equation (1):

W RR SR RW ST T T T T W    (1)

where, TRR and TSR denote the time components for random
and sequential reading and TRW and TSW are the components
for random and sequential writing. Writing can be
synchronous or asynchronous, so writing performance
depends significantly on the FS cache characteristics.

The second point of view refers to the analysis of the
workload time, but in the FS context. It includes at least six
components, as shown in the equation (2):

W DIR Meta FL FB J HKT T T T T T T      (2)

where, TW represents the total processing time to complete
all operations for this workload. TDIR, TMeta, TFL, TFB, TJ, THK
represent the processing time components required to
perform all operations related to the directory, metadata,
free lists, file blocks, journaling and house-keeping
operations in the FS, respectively.

The third point of view refers to the analysis of the
workload processing time when considering the VE with
hypervisors influence. FS performance characteristics in
VEs depend on a larger number of factors, as there is an
impact of a range of virtualization effects that the applied
virtualization technology enforces. Additionally,
considering the context of the hypervisor VE environment,
the overall data path becomes quite complex. Overall data
path of the WL relies on five components: benchmark, gOS
FS, hypervisor, VM image file and hOS FS.

The first component, the benchmark application, is
running in VM and generates the workload, which can be
assumed as a function of benchmark request characteristics,
and gOS FS processing, which includes virtual disk drivers.
The gOS output workload is further redirected to the
hypervisor, which maps it to a large VM image file, and
further redirects it to the hOS FS that generates requests

 13

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 21:31:50 (UTC) by 172.70.178.10. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

towards physical disk drivers. The whole data path depends
on various factors, such as: characteristics of gOS-FS/hOS-
FS, gOS file caching/hOS file caching (with specific
cooperation of these two caches), hypervisor interconnection
of physical and virtual disk drivers, hypervisor-CPU
scheduling and other.

For Tw in VE, there are five components that have an
impact to the workload time (equation 3):

(, , , ,WT f bench gOS FS VH proc Hyp proc hOS FS   )

)

 (3)

1. Benchmark (bench) represents the interaction between

the benchmark and gOS FS. The chosen benchmark will
generate WL with the random and sequential components.

2. For the guest OS FS time component, gOS-FS and hOS
-FS component, 2d and 5th component, the time for both OS-
FS processing is represented by the function of FS
processing and FS cache processing (equation 4):

/ (,g hOS FS f FSproc FScache  (4)

3. Virtual hardware processing, VH-proc, represents the

processing time of the virtual disk hardware, and depends on
the connection between the virtual disk drivers for gOS and
the physical disk drivers of hOS.

VH-proc strongly depends on the type of virtualization.
We are interested in two types of virtualization, FHV (full
hardware virtualization) and PV (paravirtualization). FHV
represents the full hardware emulation for storage
components (storage hardware emulated in software). The
guest disk drivers pass through virtual disk hardware, which
contacts hypervisor for services in host OS. FHV shows
great flexibility because gOSs are unchanged, but full
hardware emulation in the software and a large number of
context switches between gOS and hOS cause low FS
performance.

PV requires the big changes in gOS as well as in host OS.
PV drivers are created on the gOS and hOS side, fast
asynchronous channels are established between them (IO
rings for Xen, VM bus for Hyper-V). Fast channel and a
small number of context switches between guest and host
OS cause high FS performance, but the disadvantage of PV
are the necessary major changes in OSs.

4. Hypervisor processing time, Hyp-proc, is the time
necessary for the hypervisor to receive the requests from the
VM (virtual disk driver) and forward them to the host
physical disk drivers. FS requests from the guest FS (gOS-
FS) are forwarded to the host FS (hOS-FS), via hypervisor
and mapping through the VM image file. Many hypervisor
parameters can affect FS performance.

5. Host OS FS processing, hOS-FS, is a component
targeting the host FS processing. It works with big VM
image file and is a function of FS processing and cache
processing effects (equation 5):

(,hOS FS f hOS FSproc hOS FScache   )

)

 (5)

Actually, some components of equation (3) are closely

interrelated, especially 2nd and 5th. As kernel for VE (Virtual
Environment), each hypervisor has the hOS, which provides

it with virtual disk drivers and physical disk drivers. The
hOS can have one or several hOS FS types as a choice for
the application.

Thus, in hypervisor-based VE there is always a FS pair to
consider, gOS-FS/hOS-FS, therefore the 2nd and 5th
components are in very complex interaction. These
components rely on a pair of chosen FSs, whereas the
number of the combinations in pair theoretically can be
extremely large. Usually, there is a need to consider an
interaction between two FS caches. The interaction of 2nd
and 5th component as FS-pair is given in equation (6):

(/ , / ,FS pair f gFSt hFSt gFSc hFSc HypFSparm  (6)

The first component in equation (6) comprises a FS pair,

(gFSt is guest OS FS type, hFSt is host OS FS type) where
each FS type in a pair has specific characteristics. There is a
number of modern FSs that can be implemented as g/h-OS
FSs. Most of them are 64-bit, extent based, and use
accelerating techniques for allocation and searching (H-
tree/B-trees). For write/update method, FSs use the
overwriting or CoW (Copy on Write) techniques. The
performance of the FSs highly depend on their own file
caching characteristics, journaling methods, and different
tunable parameters. FSs expose constant development, new
versions are appearing, constantly.

For VE, there is need to emphasize the importance of the
choice for the OSs, as there are Linux-like or MS Windows-
based. Linux supports almost 100 types of FSs, including
the most popular ext4, xfs, jfs, btrfs, wafl, zfs, and F2FS.
MS Windows OSs implement only one NTFS, whereas
rarely one can come across the FAT-32. The typical Linux-
based hOS hypervisors are ESXi, Xen and KVM, whereas
Hyper-V can be found as MS Windows-based. In this
context, if we analyze FS pairs (gOS FS on hOS FS), the
following can be assumed:

• for Linux hypervisors and Linux guests, there are a very
large number of pairs (gOS FS on hOS FS)

• for MS Windows hypervisors and Linux guests, there
are still large number of combinations for pairs (gOS FS on
NTFS)

• for MS Windows hypervisors and Windows guests,
there is only one pair (NTFS on NTFS)

The true is that there is no universal/best FS pair due to a
large number of factors in the FS itself, and we expect that
the optimal FS pair highly depends on WL characteristics.

The second component of equation (6) gFSc/hFSc, (gFSc
is guest FS cache, hFSc is host FS cache) is a pair of two FS
caches, precisely the interaction of these two caches. In
hypervisor VE, we detect FS pair, and therefore two FS
caches exist, FS cache on gOS and FS cache on hOS. These
caches can be cooperative or exclusive. Two caches can be
in the cooperation with WB (Write Back) or WT (Write
Through) semantics, or excluded (none mode), when
hypervisor excludes hOS FS cache. For exclude mod,
hypervisor exclude host FS cache for VM data and thus
frees RAM space for VMs. The hypervisor parameters
determine the behavior of the two FS caches between each
other.

The third component of equation (6) corresponds to the
hypervisor (kernel) tunable parameters for FS in VE (HypFS

 14

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 21:31:50 (UTC) by 172.70.178.10. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

parm are Hypervisor FS parameters).
Each hypervisor has a number of kernel tunable

parameters, and some of them can affect FS performance.
Besides the two FS caches impacts, there is need to
emphasize CPU scheduling, which is very important in the
case of a large number of VM running. All hypervisors have
their own schedulers, for example: Borrowed Virtual Time
(BVT), Simple Earliest Deadline First (SEDF), Credit
Scheduler are used by XEN, whereas CFS is used by KVM,
as Linux Kernel's native CPU scheduler [23-25].

The storage space for VM image files has a lot of impact
on FS performance. We consider DAS, a storage space
created from local disks in a server, where the combination
of SSD/HDD technology and RAID implementation has a
great impact. However, VM images can be in NAS/SAN
storage systems, which are based on network storage
protocols such as NFS, SMB, FC, and iSCSI.

Also, the performances are affected by the HW extension
for virtualization in the CPU itself and the chipset (Intel VT-
x, VT-d), which depend on the model/version of the
implemented CPU. With each new CPU model, a new
version for HW extension for virtualization appears.

Finally, an impact is obvious when assuming the
appearance of new versions of FSs, gOSs and their kernels,
hypervisors and accompanying hOS, and CPU models with
HW extensions that are being developed.

When all VE factors are considered, we cannot expect
that there is a universal type-1 hypervisor, which is the best
for FS performance. Hypervisors with PV are very
promising for PV guests, such as PV Linux guests on Xen
Hypervisor, or MS Windows guests on Hyper-V. In the case
of FHV, the choice of the hypervisor strongly depends on
WL characteristics. In the future, the advent of new versions
of VE factors is also strongly influencing the choice of the
optimal hypervisor.

We also expect that it is very complex to choose the
optimal FS pair (gOS-FS on hOS-FS) in VE, whereas all
depends mostly on WL characteristics.

V. CASE STUDY AND EXPECTED BEHAVIOR

The discussed CS relies on the examination of four
dominant type-1 hypervisors, ESXi, Xen, Hyper-V, and
KVM, in full virtualization mode, and having the same
Linux OS as gOS, with some default parameters for all
hypervisors. The chosen benchmark testing software is
Filebench.

All four hypervisors belong to the type-1 category, rely
on the microkernel architecture, and are very thin and
without drivers, except in the case of the KVM. The gOS FS
type is ext4, whereas hOS FSs are ext4 or NTFS. There are
two possible FS pair, {ext4 on ext4}, and {ext4 on NTFS},
referring to equation (6).

Next, we are discussing in further detail the five
components that have an impact to the workload time in
equation (3).

1. bench: All the candidates have the same WL. As the
performance measurement relies on the use of the identical
benchmark environment, VMs, gOS, gOS-FS (in this case
the ext4), it is expected that this component has an identical
effect on Tw for all the tested hypervisors.

2. gOS-FS: time needed for gOS FS processing, gOS-FS
is a function of the chosen FS characteristics, in this case
ext4 (equation 7):

(4 , 4)gOS FS f ext proc ext FScache   (7)

Since the installed VMs for all the evaluated hypervisors are
identical and based on ext4 as the gOS FS, this time value is
almost the same for all tested hypervisors.

3. VH-proc: Depending on the used hypervisor, it relies
on a specific FHV type: ESXi relies on the VMware FHV,
KVM relies on the QEMU FHV, Xen relies on the QEMU
FHV, Hyper-V relies on the Microsoft FHV.
Although all of these hypervisors rely on the FHV
emulations, the performance will be different, because each
hypervisor deploys FHV in its own way. KVM and Xen use
open source QEMU FHV, whereas ESXi and Hyper-V
implement the own solutions.

4. Hyp-proc: Each hypervisor has its own processing
delay, thus brings a certain small, but different overhead.

5. hOS-FS: three out of four evaluated hypervisors (ESXi,
KVM, Xen) rely on the use of the same type hOS-FS, in this
study the ext4. Thus, it is expected that for ESXi, KVM and
Xen this component will consume the similar processing
time. On the other side, Hyper-V implements very different
hOS FS, NTFS. This time is different for all the hypervisors,
but shows the greatest differences in the case of Hyper-V.
Each hypervisor also has its own FS caching in hOS.

Generally, all five components from the equation (3) will
affect the performance of the tested hypervisors. Some of
them have a similar impact, and some will cause solid
performance differences. As all the tests are focused on the
performance of natively virtualized guests (FHV emulation),
for all of the evaluated hypervisors it is expected the
dominant influence of the 3rd (VH-proc) and 4th (Hyp-proc)
component from the equation (3), but also the 5th component
is significant. In the case of Hyper V and NTFS FS it is
expected the stronger influence of the 5th component (hOS-
FS), as a difference from the other tested hypervisor.

Regardless of the fact that Linux based hypervisors have
the same type of hOS FS (ext4), these are not the same
versions and each hypervisor has their own host FS caching,
so the 5th component will be different. In the context of
equation (6) (1st and 2nd component), we expect Linux based
hOS to operate faster with Linux gOS (ext4 on ext4)
compared to Hyper-V (ext4 on NTFS).

In general, for our CS, we expect Linux based hypervisors
to be better than Hyper-V. Among Linux based hypervisors,
we expect there is no best/optimal hypervisor, but the
performance depends on WL characteristics.

We expect all hypervisors to have a solid drop in FS
performance compared to Native OS, due to FHV. The
performance drop depends on the WL.

VI. TEST CONFIGURATION AND BENCHMARK APPLICATION

The assumption for the fair-play testing procedure is
based on the use of the identical hardware, the OS on the
guest or host side and the same benchmark measurement.
The hardware configuration of the testing server and its
components are shown in Table I. As guest OS we have
chosen the CentOS 6.3 as a free Red Hat Enterprise Linux

 15

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 21:31:50 (UTC) by 172.70.178.10. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

(RHEL) version. Our hypervisors for the competition are as
follows: ESXi 6.0, Windows Server 2016, Linux QEMU-
KVM version 1.5.3, kernel 3.10.0-862 and XenServer 6.5.

TABLE I. SERVER REST ENVIRONMENT

HPE ProLiant DL 180 G6
Component Characteristics

Processor Intel Xeon E5520 Quad Core 2.26GHz
Memory 24 GB DDR3
Cache 8MB L3

Hard Disk
Seagate Barracuda ES.2, 7.2k, 750GB

SATA
Network 2 x 1Gb/s

All hypervisors were installed on the hard disks (DAS),
where one part of DAS storage serves exclusively for
servicing the hypervisor platform, and the other as a
repository of data, applications and VM images. The two
identical disk drives were mounted on the server HPE
ProLiant DL 180G6. The first disk drive is used for
hypervisor (XenServer, Hyper-V, KVM or ESXi), whereas
the other is used as the storage repository for installed VMs.
The same hardware was used for all hypervisors.

All hypervisors were installed on the hard disk with
characteristics provided in Table II.

TABLE II. HARD DISK TEST ENVIRONMENT

Seagate Barracuda® ES.2
Component Characteristics

Model Number ST3750330NS
Capacity 750 GB
Interface SATA 3 Gbps

External tr. Rate 3 Gbps
Max Sustained 105 Mbps

Cache 32 MB
Avg. latency 4.16 msec

Spindle Speed 7200 rpm
Av. read seek time 8.5 msec
Av. write seek time 9.5 msec

The characteristics of the VM are shown in Table III. All
VMs are identical.

TABLE III. VIRTUAL MACHINE PARAMETERS

Component Characteristics
vCPU 4

Memory 6 GB
HDD 2 partitions – 180 GB
sda1 system partition with CentOS - 20 GB
sda2 additional test partition for testing -

150 GB
Swap 10 GB

Performance tests are carried out using the Filebench

benchmark. It is a modern benchmark software designed to
measure the FS performance of storage resources. Filebench
is capable of generating multiple workload types in order to
simulate different service environments such as web server,
email, file server, database, and random file access.

We have chosen the four workloads for Filebench
software: web, email, fileserver, and random file access
(RFA) access. All workload environments rely on the use of
a modified source files: File Server (fileserver.f), Web
Server (webserver.f), Mail Server (varmail.f) and Random
File Access - RFA (randomfileaccess.f). The fundamental
parameters for chosen workload files, which provide
realistic application conditions, are shown in Table IV. In
order to achieve accurate results, for each workload test, the
duration is set to 120 seconds.

TABLE IV. PARAMETERS OF THE SOURCE CODE *F FILE
 Fileserver Webserver Varmail RFA

Nfiles 10000 1000 1000 10000
meandir
width 20 20 1000000 20

meanfile
size 128000 16000 16000 Random

Nthreads 50 100 16 5

VII. TEST RESULTS AND ANALYSIS

The goal of this CS is to measure the FS performance for
popular virtualization platforms such as Xen, KVM, Hyper-
V, and ESXi. Our interest is to evaluate the situation where
more than one instance of VMs is used, when we can prove
that the number of VM instances causes significant
performance decrease, for all kind of hypervisors. All four
virtual platforms have been tested with the guest in full
hardware virtualization environments.

We have chosen the four workloads for Filebench
software: web, email, fileserver, and random file access
(RFA) access. Initially, we have tested all hypervisors with
one running VM. The testing procedure is further repeated
for the case of the 2 and 3 running VMs. With the same
VMs we provide fair play conditions, as stated in equation
(7). The test results of different workloads as well as of the
native OS, are shown in Tables V - VIII and Figures 3 - 6.

TABLE V. WEB SERVER BENCHMARK RESULTS

Webserver [MB/s]
Native OS 71.43

 1VM 2VM 3VM
ESXi 57.1 51.7 40.5
KVM 14.7 12.9 11.6
Xen 35.9 35.1 31.3

Hyper-V 28.5 23.3 21.4

Figure 5. Native and four hypervisors Webserver test results

For the Webserver workload, which is characterized by a

dominant random read component and a small amount of
random write data (asynchronous writes) as covered in
equations (1) and (2), the results clearly show that ESXi is
totally superior when compared to other evaluated
hypervisors. It is followed by Xen, then the Hyper-V,
whereas KVM shows far the worst results.

TABLE VI. MAIL SERVER BENCHMARK RESULTS

Mailserver [MB/s]
Native OS 8.46

 1VM 2VM 3VM
ESXi 4.9 2.7 1.7
KVM 4.5 2.4 1.3
Xen 5.4 2.9 2.3

Hyper-V 1.4 0.5 0.3

 16

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 21:31:50 (UTC) by 172.70.178.10. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

Figure 6. Native and four hypervisors Mail Server test results

For the Mail server workload, which is characterized by

the dominant random reads and random writes, where
random writes are represented by the synchronous transfers
covered by equation (1) and (2), the results clearly show that
Xen hypervisor provides the best performances, whereas it
is followed by ESXi and KVM, whereas Hyper-V shows the
worst results.

TABLE VII. FILE SERVER BENCHMARK RESULTS

Fileserver [MB/s]
Native 114.52

 1VM 2VM 3VM
ESXi 29.4 15 12.5
KVM 56.9 54.9 49.4
Xen 21.2 13.2 8.6

Hyper-V 28 13.8 8.8

Figure 7. Native and four hypervisors File Server test results

For the Fileserver workload, which is characterized by all

kinds of data transfers, when considering equations (1) and
(2), the obtained results clearly show that KVM performs
with far the best results. It is followed by ESXi, then with
Hyper-V, whereas Xen hypervisor shows the worst results.
KVM is remarkably the best, whereas the differences
between the other three hypervisors are slight, especially in
the case of the larger number of VMs.

TABLE VIII. RFA BENCHMARK RESULTS

RFA [KB/s]
Native 12067.74

 1VM 2VM 3VM
ESXi 6863.8 6312.5 5303.8
KVM 5767.4 5618.5 4833.1
Xen 1286.9 1125.8 1005.9

Hyper-V 3466.9 2417.1 1499.2

The Random File Access workload is characterized by the

dominant random components (RW and RR), where random
writes mostly represent the asynchronous transfers and rely
on the FS cache, equations (1) and (2). The obtained results
clearly show that ESXi hypervisor is convincingly the best
option, whereas the system relying on KVM is also offering

Figure 8. Native and four hypervisors File RFA test results

very good performances.

Hyper-V provides less acceptable performances, whereas
Xen shows the worst results.

We will now present the result analysis for four
hypervisors and four workloads.

First, let’s analyze the performance drop caused by
hypervisors relative to the native OS. For native OS, in
equation (3), there are no 2nd, 3th and 4th components.
Performances for native OS are a function of benchmark and
host OS FS. Thus, native OS doesn’t contain two important
factors that dominate VE: large image file for VM and FS
pair. If we look at the FS performance for native OS and the
case for only 1VM when applying any of the selected
hypervisors, it is noticeable a solid drop of FS performance
in the case of the hypervisors. It is most pronounced for
fileserver and RFA WLs, and slightly less for webserver and
mailserver WLs. We believe that this is a consequence of
the nature of WLs, due to the reduced benefit of FS cache.
The webserver is dominated by RR cycles, and the
mailserver is dominated by synchronous RW cycles. For
both types of cycles, the beneficial impact of FS cache is
very small.

Let's explain a connection between the mathematical
model and Filebench workloads (WLs). Webserver
workload is dominated by random read components, RR.
Due to the RR dominance, the FS caches on both sides
(guest/host) have no effect, thus the FS performance is
determined primarily by the 3rd (VH-proc) and 4th (Hyp-
proc) component of equation (3). The webserver workload
FS performance is also under the influence of the 5th (hOS
FS) component of equation (3) and the specific physical
characteristics derived from the FS types in the interactive
FS pair, reflected through the 1st component (gFSt/hFSt) of
equation (6).

Mail Server workload is dominated by the synchronous
RW, so there is no FS writeback cache effect. We consider
that for mail server workload the FS performance is
determined by the 3rd, 4th, 5th components of equation (3),
and also by the characteristics of the interactive FS pair that
are determined with the 1st component of equation (6).

The one of the most complex environments, File Server
workload is dominated by all the components (RR, RW, SR,
SW). FS workload is affected by most of the components
(namely 3rd, 4th, and 5th) of equation (3) and the 1st and 2nd
component of equation (6). Especially significant is the
interactive influence of both FS caches defined by equations
(4) - (6), as well as the mutual interactions of these two
caches, defined in 2nd (gFSc/hFSc) and 3rd (HypFS parm)
components of equation (6).

 17

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 21:31:50 (UTC) by 172.70.178.10. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

Random File Access workload is dominated by random
read and asynchronous random write components. For
asynchronous RW components it is typical the powerful
influence of the writeback FS cache effect, which is defined
by equations (4) - (6). RFA WL is also influenced by the
interaction of two FS that make the pair (gOS-FS/hOS-FS),
which is defined as 1st component of equation (6) and as 2nd
and 5th components of equation (3). There is also noticeable
mutual interaction of two FS caches, defined by 2nd and 3rd
components of equation (6).

If we analyze the hypervisors individually in the context
of the used workload, we can state the following:

1. ESXi is the best option for two analyzed workloads
(Webserver and RFA workloads) and in two WL cases the
second-best option (Mail server and Fileserver workloads),
so ESXi could be nominated as the best hypervisor for our
CS.

2. Xen was best for one workload (Mail server workload),
but was also the worst option in the case of two other
workloads (Fileserver and RFA workloads).

3. KVM was best option for only one workload
(Fileserver workload), and the worst option for one
workload (Webserver workload).

4. Hyper-V was mostly third in a row for the most
optimum hypervisor, whereas for one workload it was the
worst option (Mail Server).

As all the evaluated hypervisors are thin and
microkernelized, it is expected to obtain the similar effects
from the 4th component (Hyp-proc), whereas the strongest
influence has the 3rd component (VH-proc), as in this case it
relies on the full hardware virtualization in combination
with two FS caches.

We expect that the 2nd and the 5th components in equation
(3) and 1st and 2nd components in equation (6) provide
similar effect on ESXi, Xen, and KVM since the used VMs
and host FSs provide the similar characteristics for these
hypervisors (same guest FS and similar host FS, (ext4 on
ext4)). Hyper-V uses a completely different host FS, such as
NTFS, so it is expected some different impact of the 5th
component in equation (3), and FS pair (ext4 on NTFS) and
cache pair in equation (6).

Thus, besides ESXi, all the other evaluated hypervisors
have shown high sensitivity to the workload choice. For all
the evaluated hypervisors and four types of workload, it is
noticeable that the performance solidly decreases with the
increase of the number of VMs (one, two and three VMs in
our case). The effects of the file caching are strongly
noticeable for all tested hypervisors.

General results overview for each hypervisor separately
are following.

ESXi: The deeper analysis of the obtained results
distinguishes ESXi as far the best of all hypervisors, for the
workload which is dominated by random read component
(Web Server) (Fig. 3), and workload that is dominated by
random read and asynchronous random write components
(RFA) (Fig. 6). In the case of the File Server and Mail
Server workloads, ESXi performances are slightly weaker,
making it the second-best choice. It is obvious that
particularly the 3rd (VH-proc) and in some percent the 4th
(Hyp-proc) components of the equation (3) have an impact
on the random reads, whereas two interactive FS caches

with writeback feature have the strongest impact to random
writes. All these characteristics make ESXi the best option
effect when compared to other evaluated hypervisors.

We think ESXi has an excellent own FHV, which is
expressed in 3rd component (VH-proc) of equation (3) and
therefore it wins solidly for the workload with RR (Web
Server). We also think that ESXi makes the best use of the
writeback FS cache effect compared to other hypervisors, so
it wins in workload with dominant asynchronous RW
components (RFA). The ESXi virtual disk drivers, when
combined with writeback FS caching on the hOS side, can
operate more efficiently for RR and asynchronous RW
components when compared to the Xen/KVM QEMU and
MS Hyper-V virtual disk drivers, equations (3) – (6). Thus,
VMWare ESXi full virtualization with file caching is
considerably more efficient when compared to QEMU full
virtualization and Hyper-V full virtualization.

KVM: At the other side, KVM is far the best choice when
there is need to operate in one of the most complex
environments, such as the File Server workload, which is
dominated by random and sequential components (Fig. 5).
For such workload we have a combined effect of most
components (3rd, 4th, 5th) in equation (3) and (1st and 2nd) in
equation (6). So, in the combined impact of most of the VE
components, where many cache benefits are expected, KVM
has proven to be excellent. But for workloads where the FS
cache effect is weak, the KVM FS performance are also
weak. Thus, KVM is recommended to be avoided for the
case of the workload with dominant RR and for those with
dominant synchronous RW component, which means that
KVM is poor choice for workloads with weak cache impact
(Web Server, Mail Server).

Xen: Xen should be chosen in the case of the Mail Server
environment, which is dominated by synchronous RWs (Fig.
4), meaning that all the writes to the disk are forwarded to
the hOS FS (hOS-FS) disk driver. However, it is highly
recommendable to avoid it when dealing with Random File
Access workload, which is dominated by asynchronous
RWs. Our experiment shows that Xen is very sensitive to the
nature of the RW component. Xen is the best option when
working with synchronous writes, as in that case when the
system skips the file caching. On the other hand, Xen is the
worst option for the case of working with asynchronous
writes, as these intensively use the cache effects. Xen has an
excellent impact of the 4th component (Hyp-proc) in
equation (3) and a relatively good QEMU-Based FHV (VH-
proc), so we think that it is the best candidate for Mail
Server workload and second-best option for the Web Server
workload. But, when many VE factors are involved,
especially cache effects, Xen performances decrease.
Definitely, Xen uses writeback cache effects significantly
less than others, so it is the worst option for RFA and FS
workloads.

Hyper-V: Unfortunately, neither of the evaluated
workloads has proved the Hyper-V as the best choice,
whereas it is highly recommendable to be especially avoided
when working in workloads with synchronous RW (Mail
Server) environments. For synchronous RW workload,
without WB cache effects, we detected worst impact on
Hyper-V mostly because of the 3rd, 4th, and 5th components
of the equation (3), and 1st and 2nd components in equation

 18

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 21:31:50 (UTC) by 172.70.178.10. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

(6). We consider the main reason of this behavior is the hOS
FS (NTFS) component in equation (3) and FS pair (ext4 on
NTFS) component in equation (6).

Definitely, ESXi has a great VH-proc component and
writeback cache effect, Xen has a great Hyp-proc
component but is inferior with FS caching, KVM does well
in the most complex workloads with the combined influence
of many VE factors with strong FS cache effects, and
Hyper-V is inferior to Linux guest due to its NTFS as hOS
FS and FS pair (ext4 on NTFS).

VIII. CONCLUSION

Virtualization has brought great efficiency, flexibility,
reliability with huge savings in power consumption.
Therefore, virtualization has made significant changes in the
computer industry and information technology (ICT).
Certainly, virtualization has a significant impact on
performance and we have tried in this paper to examine this
impact in specific conditions, such as for different
hypervisors from the FS performance point of view.

Based on the proposed model, our definitive conclusion is
that for different applications in the context of FS
performance there is no optimal (the best) type-1 hypervisor,
but the choice of the best drastically depends on WL. The
reason is a complex VE with a large number of input
variables, which are in the complex interaction.

The optimal pairing of FS types on the host and guest side
is particularly complex. Administrators of VE have a
complex problem to determine the optimal VE for their
applications of interest. We consider that a pool with 4 type-
1 hypervisors should be created. Then, for each hypervisor
with own hOS a pool of hOS FS with different types should
be created, on which they can place VMs and migrate if
necessary. For VMs with gOS, possible variation of gOS FS
types should also be provided.

Administrators have two serious and intensive tasks. The
first is to determine the optimal hypervisor for the
applications of interest. The second is to determine the
optimal FS pair for applications of interest. The model can
be used for hypotheses about expected behavior, a good
benchmark can give relatively good results for validation,
but only real-app testing can give real validation.

In addition, administrators should tune the
hypervisor/kernel tunable parameters and monitor changes
that occur with the introduction of new versions of: CPUs,
gOS, gOS FS, hypervisors with hOS, and hOS FS. And after
performance analysis of its applications of interest, it is
necessary to migrate of VMs to the optimal hypervisor and
optimal FS pair.

For our specific CS, our results fit into the previous
conclusions. Results show that in case of FHV, with Linux
as a gOS, there is no possibility to choose a hypervisor of
type 1 that would be universally the best choice, because the
performance mostly depends on WL characteristics.

The obtained experimental results show that there are
remarkable differences between hypervisors that rely on
their own full emulation (ESXi and Hyper-V) and
hypervisors that are based on the open source QEMU full
emulation, such as Xen and KVM.

Our recommendation for CS with Linux based full
virtualized guests is as follows:

 For typical web application environments, it is optimal
to use ESXi whereas avoiding KVM.

 For typical email application environments, it is optimal
to use Xen whereas avoiding Hyper-V.

 For complex application environments such as
fileserver, it is optimal to use KVM.

 For typical random file access environments with lot
asynchronous RWs, it is advisable to avoid Xen.

 Compared to native OS (without hypervisors), we
detected significantly lower FS performance of all
hypervisors, most pronounced for fileserver and RFA
WL.

Future work can take place in several directions, and
these are practically new CSs.

One direction is the problem of optimal pairing FS types
in VE. For choice of FS type for the hOS, there is a large
number of candidates (ext4, xfs, jfs, btrfs, NTFS). Precisely,
Hyper-V has only one candidate for the role, it is the NTFS
FS. The remaining three hypervisors have a large number of
candidates of which the most dominant in use are: ext4, xfs,
jfs, and btrfs FS. But, for Linux as a gOS, a similar FS
variation can be made on the gOS side. Future work may
include a variation of the FS types on the h/g OS side.

Second direction for future work is to evaluate the CSs
based on FHV with MS Windows guests. The similar CS is
to perform an identical experiment with MS Windows
guests, where the four mentioned hypervisors would
similarly compete in identical conditions for the effects of
full hardware virtualization, using a suitable benchmark
program, as HD Tune Pro or ATTO Benchmark. The MS
Windows guests function exclusively as a fully virtualized
guests, except in the case of the Hyper-V hypervisor, when
they become PV guests.

Third direction for future work is PV, CSs based on PV.
As the true power of Xen and Hyper-V is expected to be
shown when working with the solutions that rely on the
paravirtualization, our future work will include testing of the
full and paravirtualization cases for these for hypervisors.

Two cases of analyzing the effects of paravirtualization
are particularly interesting. The first is referred to Xen
hypervisor who supports full hardware virtualization for all
guest types, whereas for Xen-aware PV guests Xen supports
the PV. The second case is referred to Hyper-V hypervisor,
which supports full hardware virtualization for all guest
types and paravirtualization for Hyper-V PV guests such as
most MS Windows server OSs.

Additionally, our model is open for upgrades.
We give the idea for creation of KDB (Knowledge Data

Base) related to the FS performance in VE. After realization
a large number of CSs, KDB can be created. Each CS is
specific and gives FS performance results, whereas our
model will help to predict and interpret the results.

Each CS can represent the FS performance for a specific
VE, which includes: benchmark/WLs, 4 dominant type-1
hypervisors in their current versions with following hOS,
CPU version, specific gOS version, FS pairs (guest on host
FS), hypervisor parameters tuning. Based on the measured
FS performance depending on WL, the optimal hypervisors,
FS pairs, and hypervisor parameters can be proposed for
certain CS. Very bad combinations in terms of performance
are also detected, in that CS. The KDB should include a

 19

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 21:31:50 (UTC) by 172.70.178.10. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 1, 2021

 20

large number of CS and will constantly grow over time.
With a large number of CSs, the KDB will contain optimal
combinations {hypervisors, FS pairs, Hypervisor-
Parameters} for a number of WLs, which can serve
administrators to create VE for certain system case.

REFERENCES
[1] C. Jiang, Y. Wang, D. Ou, Y. Li, J. Zhang, J. Wan, B. Luo, W. Shi,

“Energy efficiency comparison of hypervisors,” Sustainable
Computing: Informatics and Systems, vol. 22, pp. 311-321, 2019.
doi:10.1016/j.suscom.2017.09.005

[2] Y. Jin, Y. Wen, Q. Chen, “Energy efficiency and server virtualization
in data centres,” IEEE Conf. on Computer Communications
Workshops (INFOCOM WKSHPS), pp. 133-138, 2012.
doi:10.1109/INFCOMW.2012.6193474

[3] S. Pawar, S. Singh, “Performance comparison of VMWare and Xen
hypervisor on guest OS,” IJICSE, vol.2, num. 3, pp. 56-60, 2015.
ISSN: 2393-8528.

[4] A. Kumar, S. Shiwani, “Guest operating system based performance
comparison of VMWare & Xen hypervisor,” International Journal of
Science, Engineering and Technology, vol. 2, no. 5, pp. 286-297,
2014. ISSN: 2348-4098.

[5] A. Bhatia, G. Bhattal, “A comparative study of various hypervisors
performance,” International Journal of Scientific and Engineering
Research, Vol. 7, no. 12, pp. 65-71, 2016.

[6] V. P. Singh, “Analysis of system performance using VMWare ESXi
server virtual machines,” PhD Thesis, 2012. Online:
http://hdl.handle.net/10266/1809

[7] E. Correia, “Hypervisor based server virtualization,” Encyclopedia of
Information, Science and Technology, 3rd Edition, IGI Global, pp.
1182-1187, 2015. doi:10.4018/978-1-4666-5888-2.ch112

[8] H. Kazan, L. Perneel, M. Timmermann, “Benchmarking the
performance of Microsoft Hyper-V server, VMWare ESXi and Xen
hypervisors,” J. of Emerging Trends in Computing and Information
Sciences, vol. 4, no. 12, pp. 922-933, 2013. ISSN 2079-8407

[9] M. Polenov, V. Guzik, V. Lukyanov, “Hypervisors comparison and
their performance,” Computer Science On-line Conf., Springer,
Cham, pp. 148-157, 2018. doi:10.1007/978-3-319-91186-1_16

[10] R. Y. Ameen, A. Y. Hamo, “Survey of server virtualization,”
(IJCSIS) International Journal of Computer Science and Information
Security, vol. 11, no.3, 2013. arXiv preprint arXiv:1304.3557

[11] A. Varasteh, M. Goudarz, “Server consolidation techniques in
virtualized data centers,” IEEE System J., vol.2, no. 11, pp. 772-783,
2017. doi:10.1109/JSYST.2015.2458273

[12] P. Kedia, R. Nagpal, “Performance evaluation of virtual environment
with respect to physical environment,” International Journal of
Computer Applications (0975 – 8887), vol. 89, num. 11, 2014.
doi:10.5120/15676-4425

[13] P. Vijaya V. Reddy, L. Rajamani, “Evaluation of different hypervisors
performance in the private cloud with SIGAR framework,” (IJACSA)
International Journal of Advanced Computer Science and

Applications, vol. 5, num. 2, 2014.
doi:10.14569/IJACSA.2014.050210

[14] F. Bari, R. Boutaba, R. Estaves, L. Granville, M. Podlesny, “Data
center network virtualization: A survey,” IEEE Communications
Surveys & Tutorials, vol. 2, no. 15, pp. 909-928, 2013.
doi:10.1109/SURV.2012.090512.00043

[15] R. Marabito, J. Kjallman, M. Kamm, “Hypervisors vs. lightweight
virtualization: a performance comparison,” Cloud Engineering
(IC2E), International Conference on IEEE, pp. 386-393, 2015.
doi:10.1109/IC2E.2015.74

[16] J. Hwang, S. Zeng, F. Wu, and T. Wood, “A component-based
performance comparison of four hypervisors,” 13th IFIP/IEEE
International Symposium on Integrated Network Management (IM)
Technical Session, pp. 269-276, 2013. ISBN: 978-3-901882-50-0
978-1-4673-5229-1, 978-3-901882-51-7

[17] A. Elsayed, N. Abdelbaki, “Performance evaluation and comparison
of the top market virtualization hypervisors,” IEEE International
Conference on Computer Engineering and Systems, pp. 45-50, 2013.
doi:10.1109/ICCES.2013.6707169

[18] W. Graniszewski, A. Arciszewski, “Performance analysis of selected
hypervisors (Virtual Machine Monitors-VMMs),” International
Journal of Electronics and Telecommunications, vol. 62, num. 3, 231–
236, 2016. doi:10.1515/eletel-2016-0031

[19] S. A. Algarni, M. R. Ikbal, R. Alroobaea, A. S. Ghiduk, F. Nadeem,
“Performance evaluation of Xen, KVM, and Proxmox hypervisors,”
International Journal of Open Source Software and Processes, vol. 9,
num. 2, 2018. doi:10.4018/IJOSSP.2018040103

[20] ***, VMware, “The CPU scheduler in VMware vSphere® 5.1
performance study,” Technical White Paper, 2013.

[21] L. Cherkasova, D. Gupta, A. Vahdat, “Comparison of the three CPU
schedulers in Xen,” ACM SIGMETRICS Performance Evaluation
Review 35(2), pp. 42-51, 2007. doi:10.1145/1330555.1330556

[22] C. D. Graziano, “A performance analysis of Xen and KVM
hypervisors for hosting the Xen worlds project,” Iowa State
University (2011). Graduate Theses and Dissertations. 12215.
doi:10.31274/etd-180810-2322

[23] B. Djordjevic, N. Macek, V. Timcenko, “Performance issues in cloud
computing: KVM hypervisor’s cache modes evaluation,” vol.12, no.4,
pp. 147-165, 2015. doi:10.12700/APH.12.4.2015.4.9

[24] K. T. Raghavendra, “Virtual CPU scheduling techniques for kernel
based virtual machine (KVM),” IBM India, IEEE International
Conference on Cloud Computing in Emerging Markets (CCEM), pp.
1-6, 2013. doi:10.1109/CCEM.2013.6684443

[25] L. Carvalho, “Windows server 2012 Hyper-V cookbook,” Packt
Publishing Ltd, 2012.

[26] V. K. Manik, D. Arora, “Performance comparison of commercial
VMM: ESXi, XEN, HYPER-V & KVM,” 3rd International
Conference on Computing for Sustainable Global Development,
2016. ISBN: Electronic ISBN:978-9-3805-4421-2, DVD ISBN:978-9-
3805-4420-5, Print on Demand(PoD) ISBN:978-1-4673-9417-8

[Downloaded from www.aece.ro on Sunday, July 06, 2025 at 21:31:50 (UTC) by 172.70.178.10. Redistribution subject to AECE license or copyright.]

