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1Abstract—The main purpose of DNS is to convert domain 

names into IPs. Due to the inadequate precautions taken for 
the security of DNS, it is used for malicious communication or 
data leakage. Within the scope of this study, a real-time deep 
network-based system is proposed on live networks to prevent 
the common DNS tunneling threats over DNS. The decision-
making capability of the proposed system at the instant of 
threat on a live system is the particular feature of the study. 
Networks trained with various deep network topologies by 
using the data from Alexa top 1 million sites were tested on a 
live network. The system was integrated to the network during 
the tests to prevent threats in real-time. The result of the tests 
reveals that the threats were blocked with success rate of 
99.91%. Obtained results confirm that we can block almost all 
tunnel attacks over DNS protocol. In addition, the average time 
to block each tunneled package was calculated to be 0.923 ms. 
This time clearly demonstrates that the network flow will not 
be affected, and no delay will be experienced in the operation 
of our system in real-time. 
 

Index Terms—artificial neural networks, computer 
networks, intrusion detection, Domain Name System, machine 
learning. 

I. INTRODUCTION 

DNS (Domain Name System) is one of the important 
protocols and services used on the Internet. DNS consists of 
a collection of servers that allow quick response not to be 
affected by the increase in domain names and number of 
users and can be accessed from anywhere in the world [1]. 
Although it has multiple purposes, the most important 
function of DNS is to convert domain names and IP 
addresses both ways. For example, when the user enters the 
address www.kocaeli.edu.tr in the browser, the IP address 
corresponding to this address is obtained through the 
following steps (Fig. 1). 
1. The resolver looks up in its own cache for the IP 

address corresponding to the address. If it is stored in its 
cache, it responds to the query and provides access to 
the corresponding web page. 

2. If the IP address is not stored in the cache of the 
resolver, the resolver will query Root Name Servers for 
the address to be accessed. Root servers send the 
incoming requests to TLD (Top-Level Domain) server 
addresses known to them in the next level of the 
hierarchy. The operations performed in this step are 
shown by arrows 1, 2, 3 and 4 respectively, in Fig. 1. 

3. The TLD server is where the top-level domain address 
information (such as .com, .org., .net) is stored and the 
workload distribution is initially performed. For 

 
 

example, in the www.kocaeli.edu.tr address, .edu 
addresses an educational institution and .tr addresses the 
country domain code for Turkey. After the TLD server, 
the query is transferred to Authoritative Name Server 
(ANS), which is the last step in the hierarchy. The 
operations performed in this step are shown by arrows 5 
and 6 respectively, in Fig. 1.   

4. To ensure efficient address resolution, an authorized 
ANS is associated with each geographic region. As the 
name ANS suggests, they are the servers that send the 
IP addresses in DNS queries to the resolver. The IP 
address received by the resolver is then sent to the 
computer requesting the DNS, which enables access to 
the associated web page [2]. The operations performed 
in this step are shown by arrows 7 and 8 respectively, in 
Fig. 1. 

 
Figure 1. DNS protocol working scheme 

 

Although a typical DNS query uses the UDP/53 port, 
DNS queries with a response greater than 512 bytes use the 
TCP/53 port. Since the main purpose of DNS is not to 
convey data, DNS is generally not perceived as a threat for 
malicious communications or data leakage. Therefore, these 
ports (port 53) are usually enabled on firewalls. Having 
these ports enabled constitutes a security flaw with regards 
to various types of attacks, such as the file transfer system in 
the DNS protocol. Tunneling method is generally used in 
these attacks that take advantage of this vulnerability. The 
transfer of data belonging to one protocol over another 
protocol is called tunneling, whereas the transfer of the data 
via DNS packets is called DNS tunneling [3]. 

It will become clearer to explain what can be achieved 
through DNS tunneling over a scenario. For example, the 
following steps are carried out respectively when querying 
the address abc.tunnel.mali.com from a system on the local 
network (Fig. 2): 
1. The local DNS server checks the records in its cache for 

the received query and if there is a record, it returns a 
response. 
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2. If there are no records in its cache, it first finds out the 
DNS server associated with mali.com. 

3. After finding the DNS server associated with mali.com, 
it queries the server that is associated with the 
tunnel.mali.com subdomain and queries the address 
abc.tunnel.mali.com on that server. 

Thus, any DNS request from the local network reaches 
the DNS server associated with abc.tunnel.mali.com (let’s 
assume that it is netsec.mali.com). If we assume that a 
malicious user creates a special DNS request and placed the 

data he wants (xyz byte instead of abc) in the field outside 
the query section, this request will be received at port 
UDP/53 of netsec.mali.com without any changes. By 
running a special application at netsec.mali.com, data from a 
specific client can be interpreted and thus data is leaked via 
DNS tunneling [4]. Briefly, DNS tunneling consists of a 
client and a server that will recognize the packets generated 
by this client. It runs on the DNS port of the server, making 
it look like a real DNS server. 

 
Figure 2. A general scheme of DNS tunneling 

 

There are several DNS tunneling tools that allow data to 
be injected into DNS queries and responses. The most 
popular among these tools are Iodine [5], DNSCAT2 [6] and 
DNS2TCP [7] due to ease of installation or platform 
independence. DNS Tunneling tool is responsible for 
exchanging the data that it previously placed in the 
appropriate section of DNS packets while sending DNS 
queries and responses between the tunnel client and the 
server. This way, the DNS tunneling server can perform the 
data leak operation by transmitting the received data to a 
target client [8]. Although their purposes are the same, each 
tool has its own unique architecture for creating a tunnel 
between the DNS tunneling client and the server. 

In this study, a deep learning-based system is proposed 
that detects and prevents DNS tunneling attacks in real-time. 
The proposed system has three main contributions. Our first 
contribution is to obtain a comprehensive analysis data 
according to the real DNS traffic and to extract the IP 
length, query name length and query name entropy 
properties that will distinguish between legal queries and 
DNS tunneling attacks from the obtained DNS messages. 
Our second contribution is to develop and train a deep 
learning-based algorithm that will detect DNS tunneling 
attacks using the attributes listed above. Our last and most 
important contribution is that the obtained tunneling data is 
injected into an academic network in real-time, showing that 
the proposed deep learning-based system detects tunneling 
attacks with high accuracy and prevents them in real-time. 
The rest of the study is organized as follows. Section II 
provides information on the studies in the literature and 

mentions the incentives behind the study. Section III 
describes the steps for the implementation of the decision 
mechanism that detects DNS tunneling in detail. Section IV 
provides information on the operations performed to block 
tunneled DNS queries in real-time. The configuration 
implemented for testing the suggested system, success rates 
and real-time system performances are provided in Section 
V. We complete this paper with the conclusion. 

II. RELATED WORK  

In general, two features of network packets are used in the 
detection of DNS Tunneling. These are load and traffic 
analysis. In the load analysis, DNS tunneling is detected by 
analyzing some properties of each DNS request and 
response one by one, such as domain length, number of 
bytes and content. Whereas in traffic analysis, DNS 
tunneling is detected by using statistical features of traffic in 
general (volume of DNS traffic, number of computer names 
per domain, geographic location, etc.) and domain history 
[9]. 

After the properties of the network packets are 
determined, the method to be used for DNS tunneling 
detection should be specified. When the studies in the 
literature are examined, classification-based machine 
learning techniques are generally used in DNS Tunneling 
detection. Aiello et al. [10] performed real-time DNS 
tunneling detection using one of the supervised learning 
techniques, the Bayesian classification method. Statistical 
properties of DNS queries and responses were used in the 
study. 
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In another study, Aiello et al. [11] performed real-time 
DNS tunneling detection with a different method by using 
statistical features such as arrival times between packets and 
packet sizes of DNS data. The results of machine learning 
techniques for DNS tunneling detection were compared in 
the study and it was concluded that the classification-based 
methods yielded more successful results. 

Sammour et al. [3] used classification-based machine 
learning techniques for DNS Tunneling detection. In this 
study, DNS request length, IP packet sender length, IP 
packet response length, encoded DNS query name length, 
request application layer entropy, IP packet entropy and 
query name entropy properties of each DNS packet were 
used. Support Vector Machine (SVM), Naive Bayes (NB) 
and J48 algorithms were used as the methods and 
comparative analysis results of these algorithms were 
presented. When the results were analyzed, it was concluded 
that SVM was more successful than other methods with an 
f-measure ratio of 83%. 

Almusawi and Amintoosi [12] suggested a multi-label 
SVM to distinguish between tunnel types along with DNS 
tunnel detection. A tunnel data set consisting of 4 different 
protocols (FTP, HTTP, HTTPS, and POP3) and 530 samples 
were used in the study. To distinguish between the tunnel 
types, 7 different properties were used, including DNS 
length, IP length and entropy information. Additionally, the 
suggested multi-label SVM method was compared with the 
multilabel Bayesian classifier, and it was observed that the 
suggested method yielded more successful results with an f-
measure ratio of 80%. 

Liu et al. [13] also implemented a classification-based 
DNS tunnel detection mechanism. The implemented system 
performed the detection process by taking the time intervals, 
DNS record types and DNS query lengths into consideration 
along with the differences in character distribution between 
the normal data and tunneled data. SVM, Decision Tree and 
Logistical Regression were used as classification methods in 
the study, and SVM was concluded to yield better results. 

Buczak et al. [14] also suggested a classifier-based 
method for DNS Tunneling detection. In the study, tunnel 
dataset and legal DNS data were collected via Iodine 
DNSCat2 and Cobalt Strike. Then, 16 properties of the 
network data were addressed and subjected to the Random 
Forest method. In the study, it was stated that the tunnel 
types collected via each tool were detected by 95%. 

Cambiaso et al. [15] proposed a new DNS tunneling 
system to examine the internal structure of the DNS 
tunneling system as opposed to detection. The approach they 
suggested was based on the extraction of statistical 
properties, such as average of network traffic, standard 
deviation, and arrival times of DNS queries and responses. 
For this aim, they used the Principal Component Analysis 
and Mutual Information methods. 

Homem et al. [16] designed a system that aimed to 
estimate the protocol of the data tunneled by DNS traffic. In 
this study, the internal structure of DNS tunneling 
techniques were analyzed and the protocol type was 
estimated using the entropy of packet bytes. The data set 
that consisted of 20 samples was collected via Iodine in the 
study. As a result of the study, a success rate of 75% was 
achieved. 

Nadler et al. [17] proposed a machine learning-based 
method to detect low-efficiency data leakage in addition to 
DNS Tunneling detection. In the study, first, the DNS traffic 
was collected and transformed into a feature vector 
corresponding to the domain. Then, a pre-trained one-class 
classifier was used to identify the domains that perform 
DNS Tunnel detection. In the study, the domain names that 
perform tunnel detection were blacklisted. The study was 
evaluated, and its accuracy was tested by using two DNS 
Tunneling tools (Iodine and Dns2tcp). 

In another study on DNS tunneling detection, Aiello et al. 
[18] used K-Means and Logic Learning Machine (LLM) 
methods. In the study, first, a clustering method (K-Means) 
was used to reduce the frequency of anomaly. Then, the data 
obtained from the cluster, rule extraction from the decision 
tree and the classification method LLM algorithm were used 
to detect DNS Tunneling. The study concluded successful 
results even though the behavior of the test data used in the 
study differed from the training data. 

Bubnov [19] performed DNS Tunneling detection by 
using a classifier-based artificial neural network. In the 
study, the type, count, name length, name entropy, data 
length, data entropy properties of the packets were analyzed 
and DNS Tunneling was detected through the three-layer 
feedforward neural network model. A success rate of 83% 
was achieved in the study. 

Van Thuan Do et al. [20] suggested the One-Class 
Support Vector Machine (OCSVM) and K-Means 
algorithms for DNS tunneling detection on mobile networks. 
The proposed machine learning-based methods could detect 
DNS tunneling in the mobile network by 96% by using 
features such as time, target, protocol and length of the DNS 
query. 

Ahmed et al. [21] developed a real-time system to detect 
data leakage and tunneling over DNS. In the study, attribute 
extraction was performed on the DNS data collected from 
two organizations, and then abnormalities in DNS queries 
were detected on a live network using the machine learning 
method. 

Although there are studies in the literature that detect 
DNS tunneling in real-time, it is clear that there are no 
systems designed to block DNS tunneling in real-time. In 
order to prevent situations as the stealing of 25K credit card 
information of Sally Beauty customers and 56M credit card 
information of Home Depot customers mentioned in [21], it 
is of great importance not only to detect DNS tunneling but 
also to block DNS tunneling attacks in real-time. Our aim in 
the study is to develop a system that blocks the attacks over 
DNS traffic on a network in real-time by using a DFF-based 
decision mechanism. Developing such a system will 
eliminate the requirement for an operator to continuously 
monitor network traffic to prevent tunnel attacks over DNS 
and will automate this process. The DFF method used in the 
decision mechanism of the system achieved a higher success 
rate in blocking threats, compared to the studies proposed in 
the literature.  

III. MATERIALS AND METHODS 

In this section, the phases for the offline preparation of 
the decision mechanism will be described. First, the 
collection of the data for the decision mechanism, and then 
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the process of converting these data into their features will 
be described. DFF-based architecture was used for decision 
making in the study. Detailed information on the structure of 
this architecture and training results will be provided. 

A. Dataset Collection 

Alexa top 1 million sites [22] list were used to obtain the 
legal DNS data. Access to these sites was provided by 
coding a web browser application, and the legal DNS data 
was obtained by monitoring the network by using the 
wireshark and tcpdump applications. 

To obtain DNS tunnel data, Iodine, Dns2cat and Dns2tcp 
DNS tunneling tools were used. These tools were run on the 
Ubuntu operating system on the same computer and the 
same network. Again, as in the legal DNS data, tunneled 
DNS data is collected by sending a request to the Alexa top 
1 million sites through a shell script and monitoring the 
network with the tunnel through the wireshark and tcpdump 
applications. The distribution of the legal and tunnel data is 
presented in Table I. 

 
TABLE I. DISTRIBUTION OF THE DATASET 

Legal DNS Data (Packets) Tunnel DNS Data (Packets) 
 Iodine DnsCat2 Dns2Tcp 
 164692 127496 93921 

Total : 412587 Total: 386109 

B. Preprocessing and Feature Extraction 

The preprocessing phase of the data we collected must be 
completed before modeling the data with deep learning. 
Data preprocessing is one of the main stages that directly 
influence the learning ability of the model in deep learning. 
Increasing the quality of the data by preprocessing helps in 
reducing the training period and preventing poor 
classification performances [23]. The processes performed 
in the pre-processing stage of our study are described below: 
 Each DNS packet was merged into a single line. Rows 

of legal and tunnel data were merged and distributed 
randomly, thus, a dataset comprised of both legal and 
tunneled data was generated. 

 The features of the DNS data contained in a single row 
were parsed into columns. 

 Non-numerical features and values in DNS data are 
encoded and labeled. 

 After the encoding process, the properties that we did 
not use in tunnel detection were removed to get rid of 
noise in the data. Since one of the properties used in 
tunnel detection is the entropy information of the query 
name, these values were also calculated and included in 
the data set. 

 In the final stage of the pre-processing, feature scaling 
was performed. Feature scaling is an important step in 
preprocessing to standardize the values that the features 
can take [24]. In our study, the feature scaling process 
was performed on the properties used for tunnel 
detection to determine the effectiveness of the change in 
the values of the properties. Thus, it was confirmed by 
feature scaling that the use of IP length, Query Name 
length and Query Name entropy information in DNS 
packets is suitable   for the detection of DNS tunneling. 

C. Deep Feedforward (DFF) Neural Network 

Deep Feedforward (DFF) Neural Network, which is one 
of the most common supervised learning models, was used 
as the decision mechanism in the study. Several hidden 
layers are combined in a chain to achieve the desired output 
in DFF. These layers consist of neurons or units with an 
input vector, whose activation is calculated by the formula 
in (1). 

( ) ( )Ta x g x     (1) 

In (1), θ is a vector of n weights and g activation function. 
The activation of unit k in layer m when input n is given 

is calculated as shown in (2). 
     (2) 1 1 1 1 1 1

0 0 1 1( ...m m m m m m m
k k k kn na g a a a          )

i

Weights are used to optimize a cost function that shows 
the similarity between the desired outputs and actual 
outputs. During the learning process in DFF, weights of 
each unit are updated using backpropagation [25]. 

Training was performed by using 3 different network 
architectures and their performances were tested within the 
scope of the study (Table II). In all architectures, the input 
layer was made up of of 3 cells: IP length (I1), Query Name 
length (I2) and Query Name entropy (I3) in DNS packets. 
Shannon equation was used for calculating the entropy value 
of the Query Name in (3). 

2
1

( ) ( ) log ( )
k

i
i

H X P x P


  x   (3) 

 
TABLE II. DFF TOPOLOGIES USED IN THE STUDY 
 Topology Activation Function 

Architecture-1 3-6-5-1 ReLU – ReLU- 
Sigmoid 

Architecture-2 3-18-20-5-1 
Leaky-ReLU- ReLU- 

ReLU-Sigmoid 

Architecture-3 3-18-20-11-7-17-1 
Leaky-ReLU- ReLU- 
ReLU- ReLU Sigmoid 

 

Architecture-1 was made up of 2 hidden layers. The first 
hidden layer was comprised of 6 and the second hidden 
layer was comprised of 5 cells. ReLU activation function 
was preferred in the hidden layers. Architecture-2 was made 
up of 3 hidden layers. The first hidden layer was comprised 
of 18, the second hidden layer was comprised of 20 and the 
last hidden layer was comprised of 5 cells. Leaky ReLU, 
ReLU, ReLU activation functions were used respectively in 
the hidden layers. 

Architecture-3 was made up of 5 hidden layers (Fig. 3). 
The first hidden layer was made up of 18, the second hidden 
layer was made up of 20, the third hidden layer was made up 
of 11, the fourth hidden layer was made up of 7 and the last 
hidden layer was made up of 17 cells. The number of cells 
being higher in the first two hidden layers, relatively less in 
the third and fourth hidden layers and higher again in the 
last hidden layer is named as dense-sparse-dense training 
flow. It is observed that the results obtained in classification 
problems are more successful when this method is used 
[27]. Leaky ReLU was preferred as the activation function 
for the first hidden layer, whereas ReLU was preferred for 
the other hidden layers. Leaky ReLU yields better results 
than ReLU, however the transaction load and time is much 
higher than ReLU. Therefore, using Leaky ReLU only in the 
first layer was observed to be the best option in terms of 
network optimization. In our DFF network, a dropout ratio 
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of 25% was used in the second hidden layer and a dropout 
ratio of 20% was used in the fifth hidden layer. Dropout 
method enables a certain part of the learned weights to be 

forgotten and to be learned again in the next repetition. 
When used in hidden layers, there is a visible increase in the 
speed and accuracy of learning [28]. 

 
Figure 3. Proposed DFF neural network structure 

 
Since DNS tunnel detection is a classification problem, 

the output layer consists of a single cell. (No tunnel = 0, 
Tunnel = 1). The sigmoid activation function takes a value 
between 0 - 1 depending on the input value. The output 
layer in our study also takes the values 0 and 1. The highest 
value in the ratio of success in this layer was obtained by the 
sigmoid activation function. For these reasons, the sigmoid 
function was found to be suitable for the output layer. 

50,000 data randomly selected from each of the 
previously collected legal and tunneled DNS data were used 
in network training. The remaining data were used for real-
time testing of the network after network training. The same 
training and test data were used for each architecture. Table 
III shows the average achievements after 50 training 
sessions. As shown in Table III, Architecture-3 made the 
right decisions for all data. 

 
TABLE III. TRAINING AND TEST DATA IN DIFFERENT ARCHITECTURES AND 

DFF ACHIEVEMENTS 
 Training (%) Test (%) 

Architecture-1 93,12 89,61 
Architecture-2 96.44 94,98 
Architecture-3 100 100 

 

Optimization algorithms are used in deep learning to 
determine the training speed and final estimation 
performance of the models. The optimization algorithms 
used are Gradient Descent (1st Derivative) based methods 
that move step by step towards the minimum point. Picking 
a large step size (learning coefficient) may cause a 
disadvantage of not reaching the minimum point, whereas 
picking a small size may cause the disadvantage of taking 
too long to reach the minimum point in terms of time. 
Therefore, the selection of optimization algorithm is one of 
the important steps in deep learning [29-30]. The 
optimization algorithms in Keras library are compared for 
Architecture-3 in our study and the accuracy rates are given 
in Table IV. As seen in Table IV, although there was not a 

high difference in the success rates among optimization 
algorithms, the most successful results were obtained with 
Adamax. Batch size was determined to be 32 and epoch 
number was 50. 

 
TABLE IV. ACCURACY RATES WITH DIFFERENT OPTIMIZERS 

Optimizer Accuracy (%) 
Sgd No learning 

Rmsprop No learning 
Adadelta 95,9034 
Nadam 97,8478 

Adagrad 98,8958 
Adam 99,1203 

Adamax 100 

IV. PRELIMINARY PREPARING FOR REAL-TIME TEST SETUP  

The process of blocking DNS packets received via tunnel 
after the DNS tunneling detection phase is described in this 
section. Section A explains the process of capturing the 
DNS packets conveyed over the live network and 
transferring them to the decision mechanism described in 
Section 3. Section B provides the details of resolution and 
blocking of the incoming DNS packets in real time. 

A. Capturing DNS Packets and Sending to System  

In order for the system to operate in real-time, it is first 
necessary to capture DNS packets on a live network. 
Netfilter / Iptables framework [31] provided by the Linux 
kernel was used for packet capturing. Iptables consists of 3 
basic structures: tables, chains and targets. Tables are the 
most important part of the packet processing system. It 
consists of 3 parts: Filter (Input, Output, Forward), Mangle 
(Prerouting, Postrouting, Input, Output, Forward) and NAT 
(Prerouting, Postrouting, Output). Filter is used if the 
packets will be processed in a standard manner and mangle 
is used if various headers such as the TCP header will be 
changed. NAT is used to rewrite the source or destination of 
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the packets. Chains are a list of rules in a table and where 
traffic can be interrupted or triggered. The goals determine 
what happens to the packet in the chain when there is a 
match with one of the rules. Writing a rule that is suitable 
with a particular traffic and routing the packet to drop or 
accept destinations can be given as an example [32]. 

 
Figure 4. Capturing DNS packets and sending to system 

 

Since the main purpose in our study is to capture DNS 
packets in network traffic, the process of routing all packets 
from port 53 of the UDP protocol Real Time DNS 
Tunneling Blocking System was added to the rules in the 
output chain of the filter table (Fig. 4).    

B.Real-Time DNS Tunneling Blocking System 

Packets from Netfilter are in binary format. Since packet 
decoding is difficult and cumbersome, Scapy library [33] 
written in Python by Philippe Biondi was used for packet 
analysis. First, the packet from Netfilter was queued. In the 
second stage, the OSI network, transport and application 
layers of the data in Binary format were decomposed for use 
via Scapy. In the decomposing process, first the IP length 
data was obtained from the network layer; since the DNS 
data is transferred via UDP port 53, whether the incoming 
data is DNS data or not was obtained from the transport 
layer; and the Query Name was obtained from the 
application layer. 

After obtaining the required information about the packet, 
the incoming packet was analyzed to check whether it was a 
DNS request packet or not. If it was not a request packet it 
was allowed to continue its process. If it is a request packet, 
the specified properties of the DNS packet were sent to the 
Deep Learning algorithm. Depending on the response of the 
algorithm, it was decided whether the packet is tunneled or 
not. If it was tunneled, it was blocked, if not, it continued its 
process. The flow chart for the Real-Time DNS Tunneling 
Blocking System is shown in Fig. 5. 

 
 
 

 
Figure 5. Flow chart of real-time DNS tunneling blocking system 

V. EXPERIMENTAL RESULTS  

Within the scope of the study, a functional real-time test 
configuration was implemented for the detection and 
blocking of DNS tunneling threats (Fig. 6). As seen in     
Fig. 6, a network was established for the test configuration. 
Among the 3 devices on the network, Computer-1 sends 
legal packets to Computer-3 and Computer-2 sends tunneled 
DNS packets to Computer-3. Computer-1 and Computer-2 
are not directly connected to the internet. They access the 
internet via the network (hotspot) on Computer-3. While 
Computer-1 makes requests on the web in a standard 
manner, Computer-2 makes requests through an external 
tunnel server running over the web. When Computer-1 and 
Computer-2 start to make requests, the system suggested 
within the scope of the study installed on Computer-3 is 
initialized. This computer decides whether the packet is 
tunneled or not, according to the algorithm's response. If it is 
tunneled, it is blocked, if not, it continues to process. The 
properties of the DNS packets from Computer-1 and 
Computer-2 are shown in Table V. IP length, query name 
length and query name entropy values of 10% of DNS 
packets are shown in Fig. 7, Fig. 8 and Fig. 9. 

 

 
Figure 6. Test scheme 
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TABLE V. REAL-TIME TEST DATASET SUMMARY 

Legal DNS packets 390992 
Tunnel DNS packets 370548 

DNS queries 412214 
DNS responses 349326 

Outgoing DNS queries 361747 
Outgoing DNS queries (only qualified) 347925 

Total DNS packets 761540 

 
Figure 7. IP length of each DNS packet sent to the live network 

 
Figure 8. Query name length of each DNS packet sent to the live network  

 
Figure 9. Query name entropy of each DNS packet sent to the live network 
 

In Table VI, the average and standard deviation values of 
the dataset obtained within the the study’s scope are given. 
When the table is examined, it is seen that the average and 
standard deviation values of legal data and tunnel data are 

significantly different. Thus, it is understood that tunnel data 
can be separated from legal data by using the selected 
features. 

 
TABLE VI. STATISTICAL ANALYSIS OF FEATURES IN REAL-TIME TEST 

DATASET 

 IP Length 
Query Name 

Length 
Query Name 

Entropy 
 Legal 

Data 
Tunnel 
Data 

Legal 
Data 

Tunnel 
Data 

Legal 
Data 

Tunnel 
Data 

Average 80.15 416.24 12.05 112.66 3.08 3.31 
Standard 
Deviation 

90.94 450.89 3.79 59.14 0.43 0.16 

 

Performance metric values of the proposed system were 
calculated by in (4-7) and shown in Table VII. 

TP TN
Accuracy

TP TN FP FN




  
  (4) 

TP
Precision

TP FP



   (5) 

TP
Recall

TP FN



   (6) 

*
1 2*

Precision Recall
F Score

Precision Recall



  (7) 

 
TABLE VII. EVALUATION METRICS   

Metric Value 
Accuracy 0,9991 
Precision 0,9998 

Recall 0,9984 
F1 Score 0,9991 

 

 
Figure 10. ROC curve of proposed DNS blocking system 
 

Accuracy in Table VII refers to the ratio of the total 
number correctly detected legal and tunneled DNS packets, 
to the total number of DNS packets. Precision is obtained by 
the ratio of the correctly detected number of tunneled 
packets, to the number of correctly and incorrectly detected 
tunneled packets. Recall refers to the ratio of correctly 
detected tunneled packets to the sum of correctly detected 
tunneled and incorrectly detected legal packets. Whereas F1 
Score is calculated by taking the harmonic average of the 
precision and recall values, to be able to evaluate these two 
values as a single value. Besides, ROC curve of the 
proposed system is shown in Fig. 10. It has been stated in 
the literature that the ROC curve of a near-perfect system 
should have a curve from vertical (0,0) to (0,1) and 
horizontally (1,1) [34]. As shown from the figure, the 
proposed system has a curve very close to the upper left 
corner. It is clear from the ROC curve that the system has a 
high accuracy rate. 
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TABLE VIII. ACCURACY VALUES OF THE PROPOSED METHOD DEPENDING 

ON THE |NUMBER OF FEATURES 
 7 Feature 3 Feature 

ip length ip_length 
query_name_length query_name_length 

query_name_entropy query_name_entropy 
ip_flag_mf  
ip_flag_rb  
ip_flag_z  

Feature Name 

ip_header_length  
Accuracy 99.32% 99.91% 

Training Time  7200 sec. 108.07 sec. 

 

For the proposed method, in Table VIII, the accuracy 
values calculated separately using 7 features and 3 features 
in the dataset are shown. The 7 features used in the first 
stage were selected among the features commonly used in 
DNS tunneling. The 3 features used in the other stage 

represent the properties obtained after the feature reduction 
process specific on the dataset. As can be seen from the 
results, the most distinguishing features on the dataset were 
obtained with the feature reduction process. Thus, the model 
has been effectively trained with both higher accuracy 
values and shorter processing times. It is understood from 
the results in the table that the use of low-impact features in 
the dataset does not have a positive effect on the success of 
the method. 

The average time to determine whether a DNS query is 
tunneled and to block the tunneled packet is shown in Table 
IX. The values in Table IX were calculated on a computer 
configured with 4 CPU cores and 8 GB of memory. 

 
TABLE IX. AVERAGE TIME COMPLEXITY OF OUR SYSTEM 

DNS tunneling detection 0.614 ms 
DNS tunneling blocking 0.309 ms 

Total time per each DNS packet 0.923 ms 

 

 
Figure 11. Comparison of the classification accuracy with other methods 

 

 
Figure 12. Comparison of the training time of proposed method with other methods 

 

The comparison of the accuracy values with the methods 
generally used in DNS tunneling are shown in Fig. 11. The 
proposed method is compared with the Naive Bayes, SVM, 
Decision Tree (DT), Gradient Boosted Trees (GBM), 
Generalized Linear Model (GLM) and Random Forest 
methods. The most successful result among traditional 

machine learning methods is obtained by Random Forest 
(94.82%), while Naive Bayes obtained 48.51%, SVM 
obtained 51.70%, DT obtained 89.65%, GBT obtained 
90.80% and GLM method obtained 92.90% accuracy. As 
can be seen from Table VIII, the 3 features selected from the 
dataset have a high effect on the classification process. 
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However, as can be seen in Fig. 11, even if operations are 
performed with these three features in classical machine 
learning methods, more successful results have been 
obtained with the proposed model.  

In addition to the results in Fig. 11, the comparison of the 
proposed method with traditional machine learning methods 
in terms of processing time is given in Fig. 12. In general, it 

is seen that the process time is higher in methods which 
have a success rate more than 90 percent. When the 
proposed model is compared with the models which have 
high success, it is seen that our model has higher success 
and completed the training process in a shorter and 
reasonable time in terms of processing time.  

 
 

TABLE X. COMPARISON OF RESULTS WITH STATE-OF-ART 

Author Proposed Method 
Accuracy 

(%) 
F-Measure 

(%) 
Real-Time Detection  Real-Time Blocking 

Buczak et. al. [14] Random Forest 95.40 - No No 
Homem et.al. [16]  Fuzzy C-Means 96.00  No No 
Ahmed et al. [21] Isolation Forest Algorithm 98.90 - Yes No 
Aiello et al. [18] K-Means+ LLM 90.70 - No No 

Bubnov [19] 
Feed Forward Neural 

Network 
83.00 - No No 

Sammour et al. [3] SVM - 83.00 No No 
Almusawi and Amintoosi [12] Kernel SVM - 80.00 No No 

 
Table X shows the comparison results of the proposed 

model with similar studies in the literature. These studies 
obtained the DNS data via Iodine tool as in our study. As 
can be seen in the table, comparisons were made with the 
accuracy values for [14], [16], [18-19], and [21]. Also F-
Measure values were used for [3] and [12] (because 
accuracy values are not given in the results of these studies). 
While the tunneling detection is done in real-time in study 
[21], it is seen that a system that will perform detection or 
prevention in real-time is not recommended in other studies. 
As can be seen in the table, with the proposed model, a high 
accuracy value has been obtained in blocking DNS 
tunneling in real time compared to the studies in the 
literature. 

VI. CONCLUSION 

In this study, a deep network-based system that blocks 
tunneling attacks over DNS in real-time is proposed. At the 
first phase of the study, legal and tunneled data were 
obtained by using the data from Alexa top 1 million sites. 
Then, networks with 3 different topologies were trained by 
using these data. At the training stage for the 3 different 
topologies, 89%, 95% and 100% success rates were 
obtained. After the topology with the highest success rate 
was integrated to our system, the performance of our system 
was tested on a live network. Throughout the tests, the 
system was integrated to the network to block incoming 
threats in real time. Statistics on the number of threats and 
the ratio of threats that were blocked by the system was 
produced by analyzes. 

It can be seen in Table VII that DNS tunneling in a live 
network was detected with 99.91% Accuracy, 99.98% 
Precision, 99.84% Recall and 99.91% F1 Score. These rates 
confirm that our system has a high success rate in blocking 
tunneling threats in DNS traffic. 

As seen in Table IX, the average time for our system to 
decide whether a packet is tunneled is 0.614 ms and the 
blocking time is 0.309 ms. Our system, which makes a 
decision in a total of 0.923 ms per DNS query, showed that 
we can respond to approximately 1080 DNS queries per 
second. When we consider that the sample campus network 
specified in study [21] responds to maximum 800 DNS 
queries per second, it can be seen that our system can 

respond sufficiently in networks with a DNS traffic similar 
to campus networks. 
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