
Advances in Electrical and Computer Engineering Volume 21, Number 3, 2021

Deep Learning Based DNS Tunneling Detection
and Blocking System

Mehmet Ali ALTUNCU, Fidan KAYA GÜLAĞIZ, Hikmetcan ÖZCAN, Ömer Faruk BAYIR,
Alperen GEZGİN, Ata NİYAZOV, Mehmet Ali ÇAVUŞLU, Suhap ŞAHİN

Computer Engineering, Kocaeli University, Kocaeli, 41001, Turkey
hikmetcan.ozcan@kocaeli.edu.tr

1Abstract—The main purpose of DNS is to convert domain

names into IPs. Due to the inadequate precautions taken for
the security of DNS, it is used for malicious communication or
data leakage. Within the scope of this study, a real-time deep
network-based system is proposed on live networks to prevent
the common DNS tunneling threats over DNS. The decision-
making capability of the proposed system at the instant of
threat on a live system is the particular feature of the study.
Networks trained with various deep network topologies by
using the data from Alexa top 1 million sites were tested on a
live network. The system was integrated to the network during
the tests to prevent threats in real-time. The result of the tests
reveals that the threats were blocked with success rate of
99.91%. Obtained results confirm that we can block almost all
tunnel attacks over DNS protocol. In addition, the average time
to block each tunneled package was calculated to be 0.923 ms.
This time clearly demonstrates that the network flow will not
be affected, and no delay will be experienced in the operation
of our system in real-time.

Index Terms—artificial neural networks, computer
networks, intrusion detection, Domain Name System, machine
learning.

I. INTRODUCTION

DNS (Domain Name System) is one of the important
protocols and services used on the Internet. DNS consists of
a collection of servers that allow quick response not to be
affected by the increase in domain names and number of
users and can be accessed from anywhere in the world [1].
Although it has multiple purposes, the most important
function of DNS is to convert domain names and IP
addresses both ways. For example, when the user enters the
address www.kocaeli.edu.tr in the browser, the IP address
corresponding to this address is obtained through the
following steps (Fig. 1).
1. The resolver looks up in its own cache for the IP

address corresponding to the address. If it is stored in its
cache, it responds to the query and provides access to
the corresponding web page.

2. If the IP address is not stored in the cache of the
resolver, the resolver will query Root Name Servers for
the address to be accessed. Root servers send the
incoming requests to TLD (Top-Level Domain) server
addresses known to them in the next level of the
hierarchy. The operations performed in this step are
shown by arrows 1, 2, 3 and 4 respectively, in Fig. 1.

3. The TLD server is where the top-level domain address
information (such as .com, .org., .net) is stored and the
workload distribution is initially performed. For

example, in the www.kocaeli.edu.tr address, .edu
addresses an educational institution and .tr addresses the
country domain code for Turkey. After the TLD server,
the query is transferred to Authoritative Name Server
(ANS), which is the last step in the hierarchy. The
operations performed in this step are shown by arrows 5
and 6 respectively, in Fig. 1.

4. To ensure efficient address resolution, an authorized
ANS is associated with each geographic region. As the
name ANS suggests, they are the servers that send the
IP addresses in DNS queries to the resolver. The IP
address received by the resolver is then sent to the
computer requesting the DNS, which enables access to
the associated web page [2]. The operations performed
in this step are shown by arrows 7 and 8 respectively, in
Fig. 1.

Figure 1. DNS protocol working scheme

Although a typical DNS query uses the UDP/53 port,
DNS queries with a response greater than 512 bytes use the
TCP/53 port. Since the main purpose of DNS is not to
convey data, DNS is generally not perceived as a threat for
malicious communications or data leakage. Therefore, these
ports (port 53) are usually enabled on firewalls. Having
these ports enabled constitutes a security flaw with regards
to various types of attacks, such as the file transfer system in
the DNS protocol. Tunneling method is generally used in
these attacks that take advantage of this vulnerability. The
transfer of data belonging to one protocol over another
protocol is called tunneling, whereas the transfer of the data
via DNS packets is called DNS tunneling [3].

It will become clearer to explain what can be achieved
through DNS tunneling over a scenario. For example, the
following steps are carried out respectively when querying
the address abc.tunnel.mali.com from a system on the local
network (Fig. 2):
1. The local DNS server checks the records in its cache for

the received query and if there is a record, it returns a
response.

 39
1582-7445 © 2021 AECE

Digital Object Identifier 10.4316/AECE.2021.03005

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:05:32 (UTC) by 3.90.33.254. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 3, 2021

2. If there are no records in its cache, it first finds out the
DNS server associated with mali.com.

3. After finding the DNS server associated with mali.com,
it queries the server that is associated with the
tunnel.mali.com subdomain and queries the address
abc.tunnel.mali.com on that server.

Thus, any DNS request from the local network reaches
the DNS server associated with abc.tunnel.mali.com (let’s
assume that it is netsec.mali.com). If we assume that a
malicious user creates a special DNS request and placed the

data he wants (xyz byte instead of abc) in the field outside
the query section, this request will be received at port
UDP/53 of netsec.mali.com without any changes. By
running a special application at netsec.mali.com, data from a
specific client can be interpreted and thus data is leaked via
DNS tunneling [4]. Briefly, DNS tunneling consists of a
client and a server that will recognize the packets generated
by this client. It runs on the DNS port of the server, making
it look like a real DNS server.

Figure 2. A general scheme of DNS tunneling

There are several DNS tunneling tools that allow data to
be injected into DNS queries and responses. The most
popular among these tools are Iodine [5], DNSCAT2 [6] and
DNS2TCP [7] due to ease of installation or platform
independence. DNS Tunneling tool is responsible for
exchanging the data that it previously placed in the
appropriate section of DNS packets while sending DNS
queries and responses between the tunnel client and the
server. This way, the DNS tunneling server can perform the
data leak operation by transmitting the received data to a
target client [8]. Although their purposes are the same, each
tool has its own unique architecture for creating a tunnel
between the DNS tunneling client and the server.

In this study, a deep learning-based system is proposed
that detects and prevents DNS tunneling attacks in real-time.
The proposed system has three main contributions. Our first
contribution is to obtain a comprehensive analysis data
according to the real DNS traffic and to extract the IP
length, query name length and query name entropy
properties that will distinguish between legal queries and
DNS tunneling attacks from the obtained DNS messages.
Our second contribution is to develop and train a deep
learning-based algorithm that will detect DNS tunneling
attacks using the attributes listed above. Our last and most
important contribution is that the obtained tunneling data is
injected into an academic network in real-time, showing that
the proposed deep learning-based system detects tunneling
attacks with high accuracy and prevents them in real-time.
The rest of the study is organized as follows. Section II
provides information on the studies in the literature and

mentions the incentives behind the study. Section III
describes the steps for the implementation of the decision
mechanism that detects DNS tunneling in detail. Section IV
provides information on the operations performed to block
tunneled DNS queries in real-time. The configuration
implemented for testing the suggested system, success rates
and real-time system performances are provided in Section
V. We complete this paper with the conclusion.

II. RELATED WORK

In general, two features of network packets are used in the
detection of DNS Tunneling. These are load and traffic
analysis. In the load analysis, DNS tunneling is detected by
analyzing some properties of each DNS request and
response one by one, such as domain length, number of
bytes and content. Whereas in traffic analysis, DNS
tunneling is detected by using statistical features of traffic in
general (volume of DNS traffic, number of computer names
per domain, geographic location, etc.) and domain history
[9].

After the properties of the network packets are
determined, the method to be used for DNS tunneling
detection should be specified. When the studies in the
literature are examined, classification-based machine
learning techniques are generally used in DNS Tunneling
detection. Aiello et al. [10] performed real-time DNS
tunneling detection using one of the supervised learning
techniques, the Bayesian classification method. Statistical
properties of DNS queries and responses were used in the
study.

 40

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:05:32 (UTC) by 3.90.33.254. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 3, 2021

In another study, Aiello et al. [11] performed real-time
DNS tunneling detection with a different method by using
statistical features such as arrival times between packets and
packet sizes of DNS data. The results of machine learning
techniques for DNS tunneling detection were compared in
the study and it was concluded that the classification-based
methods yielded more successful results.

Sammour et al. [3] used classification-based machine
learning techniques for DNS Tunneling detection. In this
study, DNS request length, IP packet sender length, IP
packet response length, encoded DNS query name length,
request application layer entropy, IP packet entropy and
query name entropy properties of each DNS packet were
used. Support Vector Machine (SVM), Naive Bayes (NB)
and J48 algorithms were used as the methods and
comparative analysis results of these algorithms were
presented. When the results were analyzed, it was concluded
that SVM was more successful than other methods with an
f-measure ratio of 83%.

Almusawi and Amintoosi [12] suggested a multi-label
SVM to distinguish between tunnel types along with DNS
tunnel detection. A tunnel data set consisting of 4 different
protocols (FTP, HTTP, HTTPS, and POP3) and 530 samples
were used in the study. To distinguish between the tunnel
types, 7 different properties were used, including DNS
length, IP length and entropy information. Additionally, the
suggested multi-label SVM method was compared with the
multilabel Bayesian classifier, and it was observed that the
suggested method yielded more successful results with an f-
measure ratio of 80%.

Liu et al. [13] also implemented a classification-based
DNS tunnel detection mechanism. The implemented system
performed the detection process by taking the time intervals,
DNS record types and DNS query lengths into consideration
along with the differences in character distribution between
the normal data and tunneled data. SVM, Decision Tree and
Logistical Regression were used as classification methods in
the study, and SVM was concluded to yield better results.

Buczak et al. [14] also suggested a classifier-based
method for DNS Tunneling detection. In the study, tunnel
dataset and legal DNS data were collected via Iodine
DNSCat2 and Cobalt Strike. Then, 16 properties of the
network data were addressed and subjected to the Random
Forest method. In the study, it was stated that the tunnel
types collected via each tool were detected by 95%.

Cambiaso et al. [15] proposed a new DNS tunneling
system to examine the internal structure of the DNS
tunneling system as opposed to detection. The approach they
suggested was based on the extraction of statistical
properties, such as average of network traffic, standard
deviation, and arrival times of DNS queries and responses.
For this aim, they used the Principal Component Analysis
and Mutual Information methods.

Homem et al. [16] designed a system that aimed to
estimate the protocol of the data tunneled by DNS traffic. In
this study, the internal structure of DNS tunneling
techniques were analyzed and the protocol type was
estimated using the entropy of packet bytes. The data set
that consisted of 20 samples was collected via Iodine in the
study. As a result of the study, a success rate of 75% was
achieved.

Nadler et al. [17] proposed a machine learning-based
method to detect low-efficiency data leakage in addition to
DNS Tunneling detection. In the study, first, the DNS traffic
was collected and transformed into a feature vector
corresponding to the domain. Then, a pre-trained one-class
classifier was used to identify the domains that perform
DNS Tunnel detection. In the study, the domain names that
perform tunnel detection were blacklisted. The study was
evaluated, and its accuracy was tested by using two DNS
Tunneling tools (Iodine and Dns2tcp).

In another study on DNS tunneling detection, Aiello et al.
[18] used K-Means and Logic Learning Machine (LLM)
methods. In the study, first, a clustering method (K-Means)
was used to reduce the frequency of anomaly. Then, the data
obtained from the cluster, rule extraction from the decision
tree and the classification method LLM algorithm were used
to detect DNS Tunneling. The study concluded successful
results even though the behavior of the test data used in the
study differed from the training data.

Bubnov [19] performed DNS Tunneling detection by
using a classifier-based artificial neural network. In the
study, the type, count, name length, name entropy, data
length, data entropy properties of the packets were analyzed
and DNS Tunneling was detected through the three-layer
feedforward neural network model. A success rate of 83%
was achieved in the study.

Van Thuan Do et al. [20] suggested the One-Class
Support Vector Machine (OCSVM) and K-Means
algorithms for DNS tunneling detection on mobile networks.
The proposed machine learning-based methods could detect
DNS tunneling in the mobile network by 96% by using
features such as time, target, protocol and length of the DNS
query.

Ahmed et al. [21] developed a real-time system to detect
data leakage and tunneling over DNS. In the study, attribute
extraction was performed on the DNS data collected from
two organizations, and then abnormalities in DNS queries
were detected on a live network using the machine learning
method.

Although there are studies in the literature that detect
DNS tunneling in real-time, it is clear that there are no
systems designed to block DNS tunneling in real-time. In
order to prevent situations as the stealing of 25K credit card
information of Sally Beauty customers and 56M credit card
information of Home Depot customers mentioned in [21], it
is of great importance not only to detect DNS tunneling but
also to block DNS tunneling attacks in real-time. Our aim in
the study is to develop a system that blocks the attacks over
DNS traffic on a network in real-time by using a DFF-based
decision mechanism. Developing such a system will
eliminate the requirement for an operator to continuously
monitor network traffic to prevent tunnel attacks over DNS
and will automate this process. The DFF method used in the
decision mechanism of the system achieved a higher success
rate in blocking threats, compared to the studies proposed in
the literature.

III. MATERIALS AND METHODS

In this section, the phases for the offline preparation of
the decision mechanism will be described. First, the
collection of the data for the decision mechanism, and then

 41

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:05:32 (UTC) by 3.90.33.254. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 3, 2021

the process of converting these data into their features will
be described. DFF-based architecture was used for decision
making in the study. Detailed information on the structure of
this architecture and training results will be provided.

A. Dataset Collection

Alexa top 1 million sites [22] list were used to obtain the
legal DNS data. Access to these sites was provided by
coding a web browser application, and the legal DNS data
was obtained by monitoring the network by using the
wireshark and tcpdump applications.

To obtain DNS tunnel data, Iodine, Dns2cat and Dns2tcp
DNS tunneling tools were used. These tools were run on the
Ubuntu operating system on the same computer and the
same network. Again, as in the legal DNS data, tunneled
DNS data is collected by sending a request to the Alexa top
1 million sites through a shell script and monitoring the
network with the tunnel through the wireshark and tcpdump
applications. The distribution of the legal and tunnel data is
presented in Table I.

TABLE I. DISTRIBUTION OF THE DATASET

Legal DNS Data (Packets) Tunnel DNS Data (Packets)
 Iodine DnsCat2 Dns2Tcp
 164692 127496 93921

Total : 412587 Total: 386109

B. Preprocessing and Feature Extraction

The preprocessing phase of the data we collected must be
completed before modeling the data with deep learning.
Data preprocessing is one of the main stages that directly
influence the learning ability of the model in deep learning.
Increasing the quality of the data by preprocessing helps in
reducing the training period and preventing poor
classification performances [23]. The processes performed
in the pre-processing stage of our study are described below:
 Each DNS packet was merged into a single line. Rows

of legal and tunnel data were merged and distributed
randomly, thus, a dataset comprised of both legal and
tunneled data was generated.

 The features of the DNS data contained in a single row
were parsed into columns.

 Non-numerical features and values in DNS data are
encoded and labeled.

 After the encoding process, the properties that we did
not use in tunnel detection were removed to get rid of
noise in the data. Since one of the properties used in
tunnel detection is the entropy information of the query
name, these values were also calculated and included in
the data set.

 In the final stage of the pre-processing, feature scaling
was performed. Feature scaling is an important step in
preprocessing to standardize the values that the features
can take [24]. In our study, the feature scaling process
was performed on the properties used for tunnel
detection to determine the effectiveness of the change in
the values of the properties. Thus, it was confirmed by
feature scaling that the use of IP length, Query Name
length and Query Name entropy information in DNS
packets is suitable for the detection of DNS tunneling.

C. Deep Feedforward (DFF) Neural Network

Deep Feedforward (DFF) Neural Network, which is one
of the most common supervised learning models, was used
as the decision mechanism in the study. Several hidden
layers are combined in a chain to achieve the desired output
in DFF. These layers consist of neurons or units with an
input vector, whose activation is calculated by the formula
in (1).

() ()Ta x g x  (1)

In (1), θ is a vector of n weights and g activation function.
The activation of unit k in layer m when input n is given

is calculated as shown in (2).
 (2) 1 1 1 1 1 1

0 0 1 1(...m m m m m m m
k k k kn na g a a a         )

i

Weights are used to optimize a cost function that shows
the similarity between the desired outputs and actual
outputs. During the learning process in DFF, weights of
each unit are updated using backpropagation [25].

Training was performed by using 3 different network
architectures and their performances were tested within the
scope of the study (Table II). In all architectures, the input
layer was made up of of 3 cells: IP length (I1), Query Name
length (I2) and Query Name entropy (I3) in DNS packets.
Shannon equation was used for calculating the entropy value
of the Query Name in (3).

2
1

() () log ()
k

i
i

H X P x P


  x (3)

TABLE II. DFF TOPOLOGIES USED IN THE STUDY
 Topology Activation Function

Architecture-1 3-6-5-1 ReLU – ReLU-
Sigmoid

Architecture-2 3-18-20-5-1
Leaky-ReLU- ReLU-

ReLU-Sigmoid

Architecture-3 3-18-20-11-7-17-1
Leaky-ReLU- ReLU-
ReLU- ReLU Sigmoid

Architecture-1 was made up of 2 hidden layers. The first
hidden layer was comprised of 6 and the second hidden
layer was comprised of 5 cells. ReLU activation function
was preferred in the hidden layers. Architecture-2 was made
up of 3 hidden layers. The first hidden layer was comprised
of 18, the second hidden layer was comprised of 20 and the
last hidden layer was comprised of 5 cells. Leaky ReLU,
ReLU, ReLU activation functions were used respectively in
the hidden layers.

Architecture-3 was made up of 5 hidden layers (Fig. 3).
The first hidden layer was made up of 18, the second hidden
layer was made up of 20, the third hidden layer was made up
of 11, the fourth hidden layer was made up of 7 and the last
hidden layer was made up of 17 cells. The number of cells
being higher in the first two hidden layers, relatively less in
the third and fourth hidden layers and higher again in the
last hidden layer is named as dense-sparse-dense training
flow. It is observed that the results obtained in classification
problems are more successful when this method is used
[27]. Leaky ReLU was preferred as the activation function
for the first hidden layer, whereas ReLU was preferred for
the other hidden layers. Leaky ReLU yields better results
than ReLU, however the transaction load and time is much
higher than ReLU. Therefore, using Leaky ReLU only in the
first layer was observed to be the best option in terms of
network optimization. In our DFF network, a dropout ratio

 42

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:05:32 (UTC) by 3.90.33.254. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 3, 2021

 43

of 25% was used in the second hidden layer and a dropout
ratio of 20% was used in the fifth hidden layer. Dropout
method enables a certain part of the learned weights to be

forgotten and to be learned again in the next repetition.
When used in hidden layers, there is a visible increase in the
speed and accuracy of learning [28].

Figure 3. Proposed DFF neural network structure

Since DNS tunnel detection is a classification problem,

the output layer consists of a single cell. (No tunnel = 0,
Tunnel = 1). The sigmoid activation function takes a value
between 0 - 1 depending on the input value. The output
layer in our study also takes the values 0 and 1. The highest
value in the ratio of success in this layer was obtained by the
sigmoid activation function. For these reasons, the sigmoid
function was found to be suitable for the output layer.

50,000 data randomly selected from each of the
previously collected legal and tunneled DNS data were used
in network training. The remaining data were used for real-
time testing of the network after network training. The same
training and test data were used for each architecture. Table
III shows the average achievements after 50 training
sessions. As shown in Table III, Architecture-3 made the
right decisions for all data.

TABLE III. TRAINING AND TEST DATA IN DIFFERENT ARCHITECTURES AND

DFF ACHIEVEMENTS
 Training (%) Test (%)

Architecture-1 93,12 89,61
Architecture-2 96.44 94,98
Architecture-3 100 100

Optimization algorithms are used in deep learning to
determine the training speed and final estimation
performance of the models. The optimization algorithms
used are Gradient Descent (1st Derivative) based methods
that move step by step towards the minimum point. Picking
a large step size (learning coefficient) may cause a
disadvantage of not reaching the minimum point, whereas
picking a small size may cause the disadvantage of taking
too long to reach the minimum point in terms of time.
Therefore, the selection of optimization algorithm is one of
the important steps in deep learning [29-30]. The
optimization algorithms in Keras library are compared for
Architecture-3 in our study and the accuracy rates are given
in Table IV. As seen in Table IV, although there was not a

high difference in the success rates among optimization
algorithms, the most successful results were obtained with
Adamax. Batch size was determined to be 32 and epoch
number was 50.

TABLE IV. ACCURACY RATES WITH DIFFERENT OPTIMIZERS

Optimizer Accuracy (%)
Sgd No learning

Rmsprop No learning
Adadelta 95,9034
Nadam 97,8478

Adagrad 98,8958
Adam 99,1203

Adamax 100

IV. PRELIMINARY PREPARING FOR REAL-TIME TEST SETUP

The process of blocking DNS packets received via tunnel
after the DNS tunneling detection phase is described in this
section. Section A explains the process of capturing the
DNS packets conveyed over the live network and
transferring them to the decision mechanism described in
Section 3. Section B provides the details of resolution and
blocking of the incoming DNS packets in real time.

A. Capturing DNS Packets and Sending to System

In order for the system to operate in real-time, it is first
necessary to capture DNS packets on a live network.
Netfilter / Iptables framework [31] provided by the Linux
kernel was used for packet capturing. Iptables consists of 3
basic structures: tables, chains and targets. Tables are the
most important part of the packet processing system. It
consists of 3 parts: Filter (Input, Output, Forward), Mangle
(Prerouting, Postrouting, Input, Output, Forward) and NAT
(Prerouting, Postrouting, Output). Filter is used if the
packets will be processed in a standard manner and mangle
is used if various headers such as the TCP header will be
changed. NAT is used to rewrite the source or destination of

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:05:32 (UTC) by 3.90.33.254. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 3, 2021

the packets. Chains are a list of rules in a table and where
traffic can be interrupted or triggered. The goals determine
what happens to the packet in the chain when there is a
match with one of the rules. Writing a rule that is suitable
with a particular traffic and routing the packet to drop or
accept destinations can be given as an example [32].

Figure 4. Capturing DNS packets and sending to system

Since the main purpose in our study is to capture DNS
packets in network traffic, the process of routing all packets
from port 53 of the UDP protocol Real Time DNS
Tunneling Blocking System was added to the rules in the
output chain of the filter table (Fig. 4).

B.Real-Time DNS Tunneling Blocking System

Packets from Netfilter are in binary format. Since packet
decoding is difficult and cumbersome, Scapy library [33]
written in Python by Philippe Biondi was used for packet
analysis. First, the packet from Netfilter was queued. In the
second stage, the OSI network, transport and application
layers of the data in Binary format were decomposed for use
via Scapy. In the decomposing process, first the IP length
data was obtained from the network layer; since the DNS
data is transferred via UDP port 53, whether the incoming
data is DNS data or not was obtained from the transport
layer; and the Query Name was obtained from the
application layer.

After obtaining the required information about the packet,
the incoming packet was analyzed to check whether it was a
DNS request packet or not. If it was not a request packet it
was allowed to continue its process. If it is a request packet,
the specified properties of the DNS packet were sent to the
Deep Learning algorithm. Depending on the response of the
algorithm, it was decided whether the packet is tunneled or
not. If it was tunneled, it was blocked, if not, it continued its
process. The flow chart for the Real-Time DNS Tunneling
Blocking System is shown in Fig. 5.

Figure 5. Flow chart of real-time DNS tunneling blocking system

V. EXPERIMENTAL RESULTS

Within the scope of the study, a functional real-time test
configuration was implemented for the detection and
blocking of DNS tunneling threats (Fig. 6). As seen in
Fig. 6, a network was established for the test configuration.
Among the 3 devices on the network, Computer-1 sends
legal packets to Computer-3 and Computer-2 sends tunneled
DNS packets to Computer-3. Computer-1 and Computer-2
are not directly connected to the internet. They access the
internet via the network (hotspot) on Computer-3. While
Computer-1 makes requests on the web in a standard
manner, Computer-2 makes requests through an external
tunnel server running over the web. When Computer-1 and
Computer-2 start to make requests, the system suggested
within the scope of the study installed on Computer-3 is
initialized. This computer decides whether the packet is
tunneled or not, according to the algorithm's response. If it is
tunneled, it is blocked, if not, it continues to process. The
properties of the DNS packets from Computer-1 and
Computer-2 are shown in Table V. IP length, query name
length and query name entropy values of 10% of DNS
packets are shown in Fig. 7, Fig. 8 and Fig. 9.

Figure 6. Test scheme

 44

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:05:32 (UTC) by 3.90.33.254. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 3, 2021

TABLE V. REAL-TIME TEST DATASET SUMMARY

Legal DNS packets 390992
Tunnel DNS packets 370548

DNS queries 412214
DNS responses 349326

Outgoing DNS queries 361747
Outgoing DNS queries (only qualified) 347925

Total DNS packets 761540

Figure 7. IP length of each DNS packet sent to the live network

Figure 8. Query name length of each DNS packet sent to the live network

Figure 9. Query name entropy of each DNS packet sent to the live network

In Table VI, the average and standard deviation values of
the dataset obtained within the the study’s scope are given.
When the table is examined, it is seen that the average and
standard deviation values of legal data and tunnel data are

significantly different. Thus, it is understood that tunnel data
can be separated from legal data by using the selected
features.

TABLE VI. STATISTICAL ANALYSIS OF FEATURES IN REAL-TIME TEST

DATASET

 IP Length
Query Name

Length
Query Name

Entropy
 Legal

Data
Tunnel
Data

Legal
Data

Tunnel
Data

Legal
Data

Tunnel
Data

Average 80.15 416.24 12.05 112.66 3.08 3.31
Standard
Deviation

90.94 450.89 3.79 59.14 0.43 0.16

Performance metric values of the proposed system were
calculated by in (4-7) and shown in Table VII.

TP TN
Accuracy

TP TN FP FN




  
 (4)

TP
Precision

TP FP



 (5)

TP
Recall

TP FN



 (6)

*
1 2*

Precision Recall
F Score

Precision Recall



 (7)

TABLE VII. EVALUATION METRICS

Metric Value
Accuracy 0,9991
Precision 0,9998

Recall 0,9984
F1 Score 0,9991

Figure 10. ROC curve of proposed DNS blocking system

Accuracy in Table VII refers to the ratio of the total
number correctly detected legal and tunneled DNS packets,
to the total number of DNS packets. Precision is obtained by
the ratio of the correctly detected number of tunneled
packets, to the number of correctly and incorrectly detected
tunneled packets. Recall refers to the ratio of correctly
detected tunneled packets to the sum of correctly detected
tunneled and incorrectly detected legal packets. Whereas F1
Score is calculated by taking the harmonic average of the
precision and recall values, to be able to evaluate these two
values as a single value. Besides, ROC curve of the
proposed system is shown in Fig. 10. It has been stated in
the literature that the ROC curve of a near-perfect system
should have a curve from vertical (0,0) to (0,1) and
horizontally (1,1) [34]. As shown from the figure, the
proposed system has a curve very close to the upper left
corner. It is clear from the ROC curve that the system has a
high accuracy rate.

 45

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:05:32 (UTC) by 3.90.33.254. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 3, 2021

 46

TABLE VIII. ACCURACY VALUES OF THE PROPOSED METHOD DEPENDING

ON THE |NUMBER OF FEATURES
 7 Feature 3 Feature

ip length ip_length
query_name_length query_name_length

query_name_entropy query_name_entropy
ip_flag_mf
ip_flag_rb
ip_flag_z

Feature Name

ip_header_length
Accuracy 99.32% 99.91%

Training Time  7200 sec. 108.07 sec.

For the proposed method, in Table VIII, the accuracy
values calculated separately using 7 features and 3 features
in the dataset are shown. The 7 features used in the first
stage were selected among the features commonly used in
DNS tunneling. The 3 features used in the other stage

represent the properties obtained after the feature reduction
process specific on the dataset. As can be seen from the
results, the most distinguishing features on the dataset were
obtained with the feature reduction process. Thus, the model
has been effectively trained with both higher accuracy
values and shorter processing times. It is understood from
the results in the table that the use of low-impact features in
the dataset does not have a positive effect on the success of
the method.

The average time to determine whether a DNS query is
tunneled and to block the tunneled packet is shown in Table
IX. The values in Table IX were calculated on a computer
configured with 4 CPU cores and 8 GB of memory.

TABLE IX. AVERAGE TIME COMPLEXITY OF OUR SYSTEM

DNS tunneling detection 0.614 ms
DNS tunneling blocking 0.309 ms

Total time per each DNS packet 0.923 ms

Figure 11. Comparison of the classification accuracy with other methods

Figure 12. Comparison of the training time of proposed method with other methods

The comparison of the accuracy values with the methods
generally used in DNS tunneling are shown in Fig. 11. The
proposed method is compared with the Naive Bayes, SVM,
Decision Tree (DT), Gradient Boosted Trees (GBM),
Generalized Linear Model (GLM) and Random Forest
methods. The most successful result among traditional

machine learning methods is obtained by Random Forest
(94.82%), while Naive Bayes obtained 48.51%, SVM
obtained 51.70%, DT obtained 89.65%, GBT obtained
90.80% and GLM method obtained 92.90% accuracy. As
can be seen from Table VIII, the 3 features selected from the
dataset have a high effect on the classification process.

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:05:32 (UTC) by 3.90.33.254. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 3, 2021

However, as can be seen in Fig. 11, even if operations are
performed with these three features in classical machine
learning methods, more successful results have been
obtained with the proposed model.

In addition to the results in Fig. 11, the comparison of the
proposed method with traditional machine learning methods
in terms of processing time is given in Fig. 12. In general, it

is seen that the process time is higher in methods which
have a success rate more than 90 percent. When the
proposed model is compared with the models which have
high success, it is seen that our model has higher success
and completed the training process in a shorter and
reasonable time in terms of processing time.

TABLE X. COMPARISON OF RESULTS WITH STATE-OF-ART

Author Proposed Method
Accuracy

(%)
F-Measure

(%)
Real-Time Detection Real-Time Blocking

Buczak et. al. [14] Random Forest 95.40 - No No
Homem et.al. [16] Fuzzy C-Means 96.00 No No
Ahmed et al. [21] Isolation Forest Algorithm 98.90 - Yes No
Aiello et al. [18] K-Means+ LLM 90.70 - No No

Bubnov [19]
Feed Forward Neural

Network
83.00 - No No

Sammour et al. [3] SVM - 83.00 No No
Almusawi and Amintoosi [12] Kernel SVM - 80.00 No No

Table X shows the comparison results of the proposed

model with similar studies in the literature. These studies
obtained the DNS data via Iodine tool as in our study. As
can be seen in the table, comparisons were made with the
accuracy values for [14], [16], [18-19], and [21]. Also F-
Measure values were used for [3] and [12] (because
accuracy values are not given in the results of these studies).
While the tunneling detection is done in real-time in study
[21], it is seen that a system that will perform detection or
prevention in real-time is not recommended in other studies.
As can be seen in the table, with the proposed model, a high
accuracy value has been obtained in blocking DNS
tunneling in real time compared to the studies in the
literature.

VI. CONCLUSION

In this study, a deep network-based system that blocks
tunneling attacks over DNS in real-time is proposed. At the
first phase of the study, legal and tunneled data were
obtained by using the data from Alexa top 1 million sites.
Then, networks with 3 different topologies were trained by
using these data. At the training stage for the 3 different
topologies, 89%, 95% and 100% success rates were
obtained. After the topology with the highest success rate
was integrated to our system, the performance of our system
was tested on a live network. Throughout the tests, the
system was integrated to the network to block incoming
threats in real time. Statistics on the number of threats and
the ratio of threats that were blocked by the system was
produced by analyzes.

It can be seen in Table VII that DNS tunneling in a live
network was detected with 99.91% Accuracy, 99.98%
Precision, 99.84% Recall and 99.91% F1 Score. These rates
confirm that our system has a high success rate in blocking
tunneling threats in DNS traffic.

As seen in Table IX, the average time for our system to
decide whether a packet is tunneled is 0.614 ms and the
blocking time is 0.309 ms. Our system, which makes a
decision in a total of 0.923 ms per DNS query, showed that
we can respond to approximately 1080 DNS queries per
second. When we consider that the sample campus network
specified in study [21] responds to maximum 800 DNS
queries per second, it can be seen that our system can

respond sufficiently in networks with a DNS traffic similar
to campus networks.

REFERENCES
[1] T. K. Skow, “Protection against DNS tunneling abuses on mobile

networks,” MSc Thesis, Norwegian University of Science and
Technology, 2016

[2] R. Chandramouli and S. Rose, “Secure domain name system (DNS)
deployment guide,” National Institute of Standards and Technology
Special Publication, 2013. doi:10.6028/NIST.SP.800-81-2

[3] M. Sammour, B. Hussin and F. I. Othman, “Comparative analysis for
detecting dns tunneling using machine learning techniques,”
International Journal of Applied Engineering Research, vol. 12, no.
22, pp. 12762-12766, 2017

[4] H. Önal, “DNS Tünelleme,” http://www.enderunix.org/docs/
dns_tunelleme.pdf (Accessed on June 10, 2020)

[5] S. Hangal, S. Narayanan, N. Chandra and S. Chakravorty, “IODINE:
a tool to automatically infer dynamic invariants for hardware
designs,” in Proc. 42nd Design Automation Conference, 2005,
Anaheim, CA, 2005, pp. 775-778. doi:10.1109/DAC.2005.193920

[6] S. Yassine, J. Khalife, M. Chamoun et al., “A Survey of DNS
Tunnelling Detection Techniques Using Machine Learning,” in Proc.
1st International Conference on Big Data and Cyber-Security
Intelligence, Hadath, Lebanon, 2018, pp. 63-66

[7] M. Al-kasassbeh, T. Khairallah, “Winning tactics with DNS
tunneling,” Network Security, vol. 2019, no. 12, pp. 12-19, 2019.
doi:10.1016/S1353-4858(19)30144-8

[8] A. Merlo, G. Papaleo, S. Veneziano, et al., “Comparative
performance evaluation of DNS tunneling tools,” in Proc.
Computational Intelligence in Security for Information Systems,
Torremolinos-Málaga, Spain, 2011, pp. 84-91. doi:10.1007/978-3-
642-21323-6_11

[9] G. Farnham and A. Atlasis, “Detecting DNS tunneling. SANS
Institute InfoSec Reading Room,” https://www.sans.org/reading-
room/whitepapers/dns/detecting-dns-tunneling-34152 (Accessed on
June 10, 2020)

[10] M. Aiello, M. Mongelli and G. Papaleo, “Basic classifiers for DNS
tunneling detection,” in Proc. IEEE Symposium on Computers and
Communications, Split, Croatia, 2013, pp. 880-885.
doi:10.1109/ISCC.2013.6755060

[11] M. Aiello, M. Mongelli and G. Papaleo, “DNS tunneling detection
through statistical fingerprints of protocol messages and machine
learning,” International Journal of Communication Systems, vol. 28,
no. 14, pp. 1987-2002, 2015. doi:10.1002/dac.2836

[12] A. Almusawi and H. Amintoosi, “DNS Tunneling detection method
based on multilabel support vector machine,” Security and
Communication Networks, vol. 2018, 2018.
doi:10.1155/2018/6137098

[13] J. Liu, S. Li and Y. Zhang, et al., “Detecting DNS tunnel through
binary-classification based on behavior features,” in Proc. IEEE
Trustcom/BigDataSE/ICESS, Sydney, Australia, 2017, pp. 339-346.
doi:10.1109/Trustcom/BigDataSE/ICESS.2017.256

[14] A. L. Buczak, P. A. Hanke, G. J. Cancro, et al., “Detection of tunnels
in PCAP data by random forests,” in Proc. 11th Annual Cyber and

 47

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:05:32 (UTC) by 3.90.33.254. Redistribution subject to AECE license or copyright.]

Advances in Electrical and Computer Engineering Volume 21, Number 3, 2021

Information Security Research Conference, USA, 2016, pp. 1-4.
doi:10.1145/2897795.2897804

[15] E. Cambiaso, M. Aiello, M. Mongelli, et al., “Feature transformation
and Mutual Information for DNS tunneling analysis,” in Proc. Eighth
International Conference on Ubiquitous and Future Networks,
Vienna, Austria, 2016, pp. 957-959.
doi:10.1109/ICUFN.2016.7536939

[16] I. Homem, P. Papapetrou and S. Dosis, “Entropy-based prediction of
network protocols in the forensic analysis of dns tunnels,” arXiv,
2017. arXiv preprint arXiv:1709.06363

[17] A. Nadler, A. Aminov and A. Shabtai, “Detection of malicious and
low throughput data exfiltration over the DNS protocol,” Computers
& Security, vol. 80, pp. 36-53, 2019. doi:10.1016/j.cose.2018.09.006

[18] M. Aiello, M. Mongelli, M. Muselli et al., “Unsupervised learning
and rule extraction for Domain Name Server tunneling detection,”
Internet Technology Letters, vol. 2, no. 2, pp. 1-6, 2019.
doi:10.1002/itl2.85

[19] Y. Bubnov, “DNS tunneling detection using feedforward neural
network,” European Journal of Engineering Research and Science,
vol. 3, no. 11, pp. 16-19, 2018. doi:10.24018/ejers.2018.3.11.963

[20] T. V. Thuan, P. Engelstad and B. Feng, “Detection of DNS tunneling
in mobile networks using machine learning,” in Proc. International
Conference on Information Science and Applications, Macau, China,
2017, pp. 221-230. doi:10.1007/978-981-10-4154-9_26

[21] J. Ahmed, H. Gharakheili, Q. Raza, et al., “Monitoring enterprise
DNS queries for detecting data exfiltration from internal hosts,” IEEE
Transactions on Network and Service Management, vol. 17, no. 1, pp.
265-279, 2019. doi:10.1109/TNSM.2019.2940735

[22] Alexa, “The top 500 sites on the web,”
https://www.alexa.com/topsites (Accessed on February 17, 2019)

[23] J. Huang, Y. F. Li and M. Xie, “An empirical analysis of data
preprocessing for machine learning-based software cost estimation,”
Information and software Technology, vol. 67, pp. 108-127, 2015.
doi:10.1016/j.infsof.2015.07.004

[24] D. Bollegala, “Dynamic feature scaling for online learning of binary
classifiers,” Knowledge-Based Systems, vol. 129, pp. 97-105, 2017.
doi:10.1016/j.knosys.2017.05.010

[25] A. Carrio, C. Sampedro, A. Rodriguez-Ramos, et al., “A review of
deep learning methods and applications for unmanned aerial

vehicles,” Journal of Sensors, vol. 2017, pp. 1-13, 2017.
doi:10.1155/2017/3296874

[26] J. Lin, “Divergence measures based on the Shannon entropy,” IEEE
Transactions on Information Theory, vol. 37, no. 1, pp. 145-151,
1991. doi:10.1109/18.61115

[27] S. Han, J. Pool, S. Narang, et al.,”Dsd: Dense-sparse-dense training
for deep neural networks,” in Proc. International Conference on
Learning Representations (ICLR), France, 2017, pp 1-13.

[28] G. E. Dahl, T. N. Sainath and G. E. Hinton, “Improving deep neural
networks for LVCSR using rectified linear units and dropout,” in
Proc. IEEE International Conference On Acoustics, Speech And
Signal Processing, British Columbia, Canada, 2013, pp. 8609-8613.
doi:10.1109/ICASSP.2013.6639346

[29] D. Choi, C. J. Shallue, Z. Nado, et al., “On empirical comparisons of
optimizers for deep learning,” 2019. arXiv preprint:1910.05446.

[30] E. Seyyarer, T. Uçkan, C. Hark, et al., “Applications and comparisons
of optimization algorithms used in convolutional neural networks,” in
Proc. International Artificial Intelligence and Data Processing
Symposium, Malatya, Turkey, 2019, pp. 1-6.
doi:10.1109/IDAP.2019.8875929

[31] B. Wang, K. Lu and P. Chang, “Design and implementation of Linux
firewall based on the frame of Netfilter/Iptable,” in Proc. 11th
International Conference on Computer Science & Education, Japan,
2016, pp. 949-953. doi:10.1109/ICCSE.2016.7581711

[32] L. F. Xuan and P. F. Wu, “The optimization and implementation of
iptables rules set on linux,” in Proc. 2nd International Conference on
Information Science and Control Engineering, USA, 2015, pp. 988-
991. doi:10.1109/ICISCE.2015.223

[33] R. Rohith, M. Moharir, and G. Shobha, “SCAPY-A powerful
interactive packet manipulation program,” in Proc. International
Conference on Networking, Embedded and Wireless Systems, India,
2018, pp. 1-5. doi:10.1109/ICNEWS.2018.8903954

[34] L. Tomak and Y. Bek, “İşlem karakteristik eğrisi analizi ve eğri
altında kalan alanların karşılaştırılması,” Journal of Experimental and
Clinical Medicine, vol. 27, no. 2, pp. 58-65, 2009.
doi:10.5835/jecm.omu.27.02.008

 48

[Downloaded from www.aece.ro on Thursday, March 28, 2024 at 12:05:32 (UTC) by 3.90.33.254. Redistribution subject to AECE license or copyright.]

