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1 Abstract—To reduce the adverse effects of the inherent 

stochastic volatility and uncontrollability of new energy on 
wind energy forecasting, this paper starting from the two 
aspects of improving the deterministic forecast and enhancing 
the predictability of volatility risk, the combination of 
variational modal decomposition (VMD), neural network and 
statistical model is applied to point forecasting, and the 
forecast model selection is based on the statistical 
characteristics of the components to enhance the degree of 
preciseness of wind speed forecasting. Then Monte Carlo-
Markov Chain (MCMC) stimulation based on different 
quantiles is proposed to make interval prediction, and a new 
interval evaluation method is introduced, pinball loss function 
and Winkler score, to select the best interval prediction results 
for achieving precise control of wind power within a certain 
period of time. Finally, through experimental case verification, 
the performance of the advanced hybrid deterministic 
forecasting model is more advantageous than that of the 
traditional model.  At the same time, the proposed interval 
prediction method better quantifies the uncertainty risk of 
wind power, makes up for the lack of a single evaluation 
method in the current interval prediction research, and can 
provide information support for the stable operation. 
 

Index Terms—wind speed forecasting, variational modal 
decomposition, neural network, Monte Carlo-Markov Chain 
stimulation, Winkler score. 

I. INTRODUCTION 

As a renewable, green and clean energy, wind energy has 
gradually become the most important energy consumption 
channel for future power generation in the world. However, 
its inherent random volatility and uncontrollability have 
brought high levels of undesirable effects to the power 
generation on the supply and demand side of the new energy 
power system. Solving this type of uncertainty problem can 
be based on a high-level wind power forecasting system, 
and the forecasting system relies on high-precision 
forecasting of wind power. Therefore, the establishment of 
an innovative and high-precision wind power portfolio 
forecasting program is of great importance in accelerating 
the construction of a new power system with new energy as 
the main body, and promoting energy industry structure 
optimization and green energy saving development. 

At present, wind power prediction is directly linked to the 
characteristics of wind speed series, data preprocessing 
techniques and forecast methods. General preprocessing 

methods contain Empirical Mode Decomposition (EMD) [1-
2] and Wavelet decomposition (WD) [3-4], multi-factor 
PCA analysis [5], and so on. WD and EMD are mainly used 
for single variable and time series with strong volatility. 
However, it is difficult to select wavelet basis and 
decomposition scale in the wavelet transform. EMD has 
fixed algorithm without parameter selection difficulty, but 
the endpoint effect is obvious. And the decomposition 
amount is too large in some cases, resulting in a problem of 
information loss. Compared with the above, the more 
popular VMD not only has superior denoising performance, 
but also the instantaneous frequency of each decomposed 
component has practical physical meaning. From the 
prediction techniques, the current mainstream methods 
include physical techniques, statistical methods and artificial 
intelligence means. Physical method [6] is mainly to predict 
wind speed through meteorological information such as 
terrain characteristics, atmospheric pressure, ambient 
temperature, and so on. Numerical weather prediction is a 
typical physical prediction method, however, which has a 
large and sophisticated solution. Traditional statistical 
methods and artificial intelligence methods mainly contain 
time series model [7-8], machine learning model [9-12], 
wind speed distribution fitting model [13], and mixed 
application of various models [14-19]. 
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However, the strong stochastic volatility and intermittent 
nature of the wind hinder the accuracy improvement of the 
single forecasting model. Using a single model to predict the 
relevant wind series cannot accurately mine the feature 
information of the data. Therefore, mixture models 
including preprocessing techniques for denoising 
decomposition are widely emerging. At the same time, from 
the perspective of the forecast form, although the point 
forecast gives the theoretical forecast value of the wind 
speed at some point in the future, the single deterministic 
forecast cannot capture the uncertainty and fluctuation risk 
of the wind speed. Therefore, interval prediction gives the 
upper and lower limits of wind speed under a certain 
confidence level in this period of time, which has more 
accurate practical guiding significance [20]. 

To better mine wind speed characteristics, this article 
introduces the VMD algorithm [21-22] to decompose the 
wind speed into multiple components for separate research. 
By extracting the unstable non-linear part and the stable 
linear part of the data, the artificial neural network with 
strong non-linear mapping ability and the autoregressive 
integrated moving average model (ARIMA) which has the 
advantage in fitting linear time series are respectively used 
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up to the nonlinear and linear characteristics of wind speed 
to build a deterministic predictive model. Meanwhile, for 
accurately controlling the risk of wind speed fluctuations, 
MCMC technique is applied to construct a discrete 
distribution [23]. Through this method, multiple random 
prediction curves can be obtained, and then different interval 
predictions can be obtained. However, the traditional 
evaluation methods [24-27] cannot comprehensively 
consider the relationship between interval prediction results 
and confidence. Therefore, this paper selects Winkler score 
[28] for evaluation, which can improve the wind speed 
interval prediction results, decrease the effect of grid-
connected wind power on the electric grid, and improve the 
control level of wind turbines and the economy of the power 
grid. The innovations of this article are as follows: 

(1) Denoising and Decomposition of original wind power 
data using VMD, in which the nonlinear features are 
extracted by neural network, and ARIMA is used to obtain 
linear information, thereby constructing a mixed point 
prediction model considering component characteristics. At 
the same time, MCMC is introduced for interval prediction, 
and a sampling mode based on the quantile method is 
innovatively proposed, which makes the sampling data more 
suitable for the sample data, and the final prediction result is 
more realistic; 

(2) The more comprehensive evaluation criterion, Pinball 
Loss Function and Winkler Score, are introduced to 
comprehensively evaluate interval prediction so as to find a 
better prediction interval. 

The structure of this article is introduced as followings: 
The second part expounds the theoretical basis, the model 
integration process and related evaluation methods are in the 
third part, the fourth part is case verification, and finally the 
summary of the paper and the prospect of further research. 

II. THEORETICAL BASIS  

A. VMD Algorithm  

As a self-adaptable completely non-recursive 
decomposition [29], VMD can extract the corresponding 
center frequency by decomposing the signal sequence into k 
natural mode functions which has limited bandwidth. The 
specific iterative formula is given as follows: 
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where, k is the decomposition quantity, while uk means 
shorthand notations for the set of all modes and ωk are their 
center frequencies respectively, λ is Lagrange multiplier in 
order to render the problem unconstrained. 

According to the above iterative formula, the 
decomposition algorithm of VMD can be obtained as 
follows: 

Step1: Initialization      1 1 1
, ,k k ku     

Step2: For k=1, 2, …, K, update   
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to formula (1), (2). 
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Step4: Judge whether the current mode converges 
according to the following convergence conditions (4). If 
converging, output K IMF components, otherwise return 
Step2: 
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B. ARIMA 

ARIMA (p, d, q) is a model that regresses on different 
time structures, including serial lag values, current values of 
random error terms and lag values, and is modeled based on 
difference stationary. Then, the specific steps are shown 
below: 

Step1: Judging the stationarity of the sequence. If it is 
non-stationary, perform the difference operation and 
perform the non-white noise test on the sequence. 

Step2: Model evaluation. Traverse the values of p, d, q, 
and select the optimal model according to the lowest AIC: 

AIC=2k-2ln(L)                        (5) 
where, k is the number of parameters and L is the likelihood 
function. 

Step3: Model validation. Use the built model to make 
predictions and perform Durbin-Watson (DW) tests on the 
residuals to assess model value: 
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Among them, ei represents the residual value at the i-th 
time, i=1, 2 ,…, T. When the dw value is close to 2, there is 
no residual autocorrelation, indicating that the model is 
better. 

C. BP Neural Network  

BP is a three layers feedforward neural network including 
input layer, hidden layer and output layer. It is composed of 
m input elements and n output elements, in which several 
hidden neurons are set. The neurons nodes of each layer are 
calculated by the linear operation of the previous layer and 
the activation function. The commonly used activation 
function is sigmoid function: 
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This function can map an arbitrary real number x to (0, 1), 
and the mapping near x = 0 is relatively gentle, but when x 
is large, it can be pressed to 0 or 1. By adding the correction 
value to the linear function of each layer, the basic value of 
the activation value of the next layer can be controlled: 
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D. MCMC Discrete Distribution  

For random unstable data series, we use Monte Carlo 
method [30] to create random matrices to obtain 
corresponding random sampling results. Meanwhile, 
because of the repeatability of the method, the interval 
estimation can be obtained by taking quantiles from 
repeated tests. Fig. 1 displays the specific sampling principle 
of MCMC, which is explained in detail as follows: 

Step1: Construct transfer matrix G based on training set 
Given the number of states k, the data X is divided into k 

states {S1, S2,…, Sk}, it is easy to know that the interval 
length of each state is (Xmax-Xmin)/k, and the number of 
transitions from state i to j is represented by nij, so as to gain 
the transition matrix n by dividing the elements of the 
matrix n by the sum of the elements of each row, which is 
the probability transition matrix G. As the training data 
increases, the element gij can be roughly looked upon as 
P(xn+1=j|xn=i), and it meets the following requirements: 
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Step2: Use matrix G to generate random samples 
For a state i, in the i-th row of G, according to the 

probability (gi1, gi2, …,gik) randomly selects stat j as the next 
state, and generates a uniform distribution of random 
number r from (0,1). Meanwhile, in state Sj, r quantiles are 
selected as the specific values of this sampling. At the same 
time, using quantile sampling instead of uniform sampling 
can more effectively retain the information of distribution 
differences in different states. 

Step3: Cyclic sampling  
Let i=j sample iteratively until the requirements are met. 

And in view of the randomness of Monte Carlo, the above 
sampling process can be repeated m times. After getting m 
sequences, we can get their quantile series, and get the 
interval forecast of series based on quantile series. 

 

 
Figure 1. Quantile estimation of MCMC discrete distribution 

III. MODEL INTEGRATION AND EVALUATION METHOD 

A. Model Establishment 

 
 
 

To weaken the negative effects of sequence fluctuations 
and noise on wind power forecasting, this paper proposes a 
point forecasting hybrid model based on VMD 
decomposition, and uses the MCMC method to quantify the 
fluctuation risk to obtain an effective forecast interval. The 
specific operation is shown in Fig. 2. 
1) Point-predictive hybrid model: VMD-BP-ARIMA 

Based on the VMD decomposition algorithm, the original 
sequence y(1~1000) containing 1000 points is firstly divided 
into the component yIMF1(1~1000) with nonlinear trend 
characteristics and the component yIMF2(1~1000) with linear 
characteristics and random volatility. The former is used as 
the data set of BPNN [31-33], and the nonlinear information 
is completely extracted through the mapping activation 
between hidden layer and output layer and error back 
propagation, and the prediction result Pred1 is obtained after 
N=100 predictions. Then, an ARIMA model is established 
for yIMF2(1~1000) based on the stationary principle, and the 
model is estimated by the AIC criterion to obtain the best 
predicted value Pred2, so as to accurately mine the linear 
features of the sequence. Finally, the above results are 
integrated according to equation (10) to gain the ultimate 
point-predictive result Pred of the point forecast module. 

Pred= Pred1+ Pred2                       (10)  
2) Interval Model Based on MCMC: VMD-BP-MCMC 

According to the MCMC theory, M times of Monte Carlo 
Markov chain sampling is carried out on the yIMF2(1~1000)  
sequence, and M random sampling results of yIMF2(1~1000)  
are obtained, forming a E1,…,EM sampling result matrix. For 
each column Ei=[Ei1, Ei2,…,EiN] (i=1, 2,…,M) of the matrix, 
the quantile is calculated, Get the quantile prediction result 
for that point.  

That is, for any time 1 ≤ t ≤ N, on the m random 
sequences, the quantile statistics of M different predicted 
values at this time can be calculated. For example, for any 
given confidence level 1-2q, it is only necessary to calculate 
the closed interval composed of the upper and lower q 
quantiles Dt(q) and Ut(1-q) of the (y1

IMF2(t), y
2
IMF2(t), …, 

yM
IMF2(t)), at time t, and predict it with the Pred1 according 

to equation (11). After traversing t from 1 to N, the interval 
predictive result (P1,q, P2,q,…, Pt,q, …, PN,q) corresponding to 
the q quantile in the investigated time period can be 
obtained. 

   , 1 1, , 1,2,...,i j j jP D q pred U q pred j N       (11) 

B. Evaluation Method 

1) Evaluation of Point Estimation 
The performance of the proposed hybrid forecasting 

model and other models is evaluated based on the following 
three important error metrics [34-35], where Vt represents 
actual value and Predt is the predicted value: 
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Figure 2. Flow chart of model establishment 

2) Evaluation of Interval Estimation 
Accuracy is evaluated in terms of the proportion of true 

values in the prediction interval and the average interval 
width: 
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Coverage and interval width are evaluated in opposite 
directions, so the advantages and disadvantages of interval 
estimates cannot be fully drawn. Thus, the pinball loss 
function and Winkler score are introduced in [36], which 
can evaluate interval estimation comprehensively in 
accuracy and effectiveness: 

The pinball loss function can measure quantile prediction 
error, which can be expressed as: 
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By calculating the pinball losses across all given 
quantiles, we can gain the pinball losses matching quantiles. 
And the lower the score is, the better the prediction interval 
is. 

Another comprehensive measure is the Winkler score, 
which considers both width and coverage in interval series 
given by the confidence (1-α). Equation (19) represents the 
corresponding Winkler score value under the condition of 

prediction interval of center (1-α)x100%, where δt=Ut-Dt 

represents the interval width. It means that if the actual wind 
speed is outside the interval, the Winkler score is penalized. 
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IV. EXAMPLE ANALYSIS 

A. Data Analysis and Parameter Introduction 

This section shows the wind speed prediction results of 
the proposed prediction model, and gives the optimal wind 
speed interval prediction results based on the VMD-BPNN-
MCMC model and various interval evaluation indicators. 
The specific parameter information can be seen in Table I. 
In order to verify the validity of the model, 1000 wind speed 
data of a wind farm in Yunnan with an interval of 10 
minutes in March 2020 were selected. The first 90% are 
used as the training set, and the last 10% are used to verify 
the model effect, as shown in Fig. 3. 

 
Figure 3. Original wind speed data 
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TABLE I. INTRODUCTION TO MODEL PARAMETERS 

Method Parameters 
Corresponding 

value 

Decomposition number 2 

The balancing parameter 0.9 VMD 
Tolerance of convergence 

criterion 
1e-6 

Number of input nodes 5 

Number of output nodes 1 

Number of hidden layer nodes 12 

Training iterations 200 

BP 

Learning rate 0.01 

Spread of radial basis functions 1 
RBF 

Maximum number of neurons 100 

Matrix order 5 
MCMC 

Sampling times 1000 

B. Point Prediction of Wind Speed 

The results of decomposition of raw data into nonlinear 
IMF1 and linear IMF2 using VMD are shown in Fig. 4. 
According to the nonlinear and linear characteristics of the 
two components and reducing the negative impact of non-
stationarity on the prediction accuracy, this paper establishes 
the mixed point model prediction of VMD-BPNN-ARIMA, 
so as to make full use of the sequence feature information 
and conduct comparative experiments with other models, as 
shown in Fig. 5. It can be seen that the proposed point 
prediction model is closer to the change trend of original 
data than other models, eliminates the problem of prediction 
lag, and shows better prediction effect. To further 
quantitatively analyze the advantages of the proposed 
framework, Table II gives the mean, interval and standard 
deviation between the predicted values of different models 
and the test set, and Table III calculates the prediction error 
level of different models under the equations (12) - (14). 

Among them, it can be seen from Table II that the 
prediction statistical characteristics of VMD-BP-ARIMA 
are closest to the test set, while the statistical characteristics 
predicted by RBF are most deviated from the test set. And 
from the error results of Table III, the introduction of VMD 
decomposition algorithm can improve the performance of 
the model, and mining the nonlinear or linear characteristics 
of the component also makes the model performance greatly 
improved.  

 
Figure 4. Decomposed sequences by VMD 

 
Figure 5. Comparison of different models 

  
Except for the VMD-BP model, the error indexes of the 

proposed model are optimal. Although the MAE and RMSE 
values of VMD-BP are slightly lower than the 
corresponding index values of the proposed model, the 
index values of the proposed model are significantly lower 
than those of the MAPE index. Moreover, from Fig. 5, the 
prediction of VMD-BP-ARIMA model at the peak of the 
sequence is closer to the fluctuation of the test set. 
Therefore, it can be further demonstrated that the short-term 
prediction ability of the VMD-BP-ARIMA model is 
excellent. 
 

TABLE II. STATISTICAL DATA OF DIFFERENT PREDICTION MODELS 

Model comparison Mean Std Max Min 

Test Data 10.506 3.927 17.640 4.187 

BP 11.227 3.463 16.613 6.390 

RBF 14.547 0.296 16.303 13.869 

VMD-BP 10.674 3.764 17.527 5.052 

VMD-RBF 11.843 2.704 16.730 5.253 

VMD-RBF-ARIMA 11.837 2.807 17.949 5.010 

VMD-BP-ARIMA 10.554 4.015 17.819 4.472 

 
TABLE III. ERROR ANALYSIS 

Model comparison MAE(m/s) RMSE(m/s) MAPE(%) 

BP 1.643 2.059 19.289 

RBF 4.540 5.569 64.992 

VMD-BP 0.534 0.681 6.012 

VMD-RBF 2.221 2.931 31.167 

VMD-RBF-ARIMA 2.085 2.742 29.298 

VMD-BP-ARIMA 0.544 0.696 5.575 

C. Interval Prediction of Wind Speed  

1) Interval prediction results 
The sequence IMF2 obtained by VMD decomposition has 

good randomness. Therefore, based on MCMC algorithm, 
the IMF2 is sampled 1000 times, and the corresponding 
prediction interval is obtained according to the upper and 
lower quantiles. As shown in Fig. 6, the confidence interval 
of 90% can be obtained by selecting the upper and lower 5% 
quantile at each prediction point, and the coverage rate is 
90% and the average prediction width is 3.767 according to 
the equations (15)-(17). And take q = 0.1, 0.2, …, 0.9 to 
calculate the q quantile estimation sequence, see Fig. 7. 
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Figure 6. 90% confidence interval with 5%, 95% quantile estimation 

 
Figure 7.  10%~90% quantile of wind speed prediction 

 
Based on the above quantile estimation, Table IV shows 

the interval estimated coverage and average prediction band 
width can be obtained at 90%, 80%, 60%, 40% and 20% 
confidence levels respectively. It can be seen that with the 
improvement of confidence, the accuracy of interval 
prediction, that is, the coverage rate is gradually improved, 
but it also causes the increase of prediction width. Too high 
prediction width is not conducive to accurately controlling 
the actual trend of future wind speed in the actual wind 
speed prediction. 

 
TABLE IV. EVALUATION OF INTERVAL PREDICTION 

Confidence 90% 80% 60% 40% 20% 

Cover rate 0.900 0.820 0.680 0.510 0.290 

Avg width 3.767 2.992 1.788 1.125 0.603 

 
2) Evaluation of interval prediction 

a) Pinball loss 
From the analysis of the previous section, as the 

confidence level is higher, the coverage of the prediction 
interval is wider and its width increases. Therefore, whether 
it is worth to gain the accuracy by adding the loss of width 
has to be discussed quantitively. For example, using the 
pinball loss function, the Fig. 8 and Fig. 9 below show the 
pinball loss of quantile estimation at full prediction time 
when q = 0.1, 0.3, 0.5, 0.7, 0.9. It can be seen that when the 
prediction is not accurate, the pinball loss predicted by 

different quantiles is larger, but in the time when the 
prediction is stable and accurate, with the q approaching 
50%, the pinball loss increases gradually. This shows that 
the prediction of median or approximate median has greater 
loss. 

 
Figure 8.  Pinball loss when q = 0.1, 0.3, 0.5 

 
Figure 9.  Pinball loss when q= 0.5, 0.7, 0.9 

 
Further, Fig. 10 shows the result of summing the pinball 

loss for each quantile. It can be found that when the interval 
prediction technique according to VMD-BPNN-MCMC 
model expands the confidence interval, the pinball loss 
brought by it gradually decreases, which is acceptable. 
Therefore, this method is accurate and effective. 

 
Figure 10. Total pinball loss in the whole time 
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b) Winkler score 
On the other hand, this paper attempts to find better 

interval estimation according to the Winkler score criterion. 
For simplicity, only symmetric quantiles are selected as 
upper and lower bounds for a pair of interval estimates. Fig. 
11 shows the approximate loss values of confidence 
intervals of 80%, 90% and 94% during the prediction 
accuracy period. In the prediction stage based on VMD-BP-
MCMC model, we hope that the prediction is accurate while 
the Winkler value can be kept relatively small, and the 
prediction interval can be called optimal. Therefore, based 
on the interval prediction valid condition of prediction 
interval nominal confidence (PINC), the Winkler mean in 
the whole prediction time range corresponding to each 
quantile is obtained, and the coverage rate, interval width 
and pinball loss index are measured to obtain the optimal 
interval. 

 
Figure 11.  Winkler score of 80%, 90%, 96% confidence interval 

 
Based on the high coverage requirement and the 

maximum pinball loss corresponding to the quantile of 50% 
shown in Fig. 10, we obtain the interval prediction effect 
within the quantile of 1%~49%, and select the optimal 
selection from the confidence level of more than 90%. At 
the same time, in order to highlight the advantages of VMD-
BP-MCMC, VMD-RBF-MCMC is added to the interval 
prediction, which can be seen in Table V. However, 
according to the interval validity principle that Cover rate ≥ 
PINC, the interval results under each quantile obtained by 
VMD-RBF-MCMC are not valid. The proposed interval 
model is effective at the confidence levels of 90%, 94%, 
96% and 98%.  

 
TABLE V. INTERVAL PREDICTION COMPARISON OF DIFFERENT MODELS 

Model PINC 98% 96% 94% 92% 90% 

Cover rate 0.980 0.970 0.950 0.910 0.900 

Avg width 6.606 5.411 4.682 4.161 3.767 

Pinball 
loss 

0.033 0.057 0.096 0.112 0.131 

VMD-
BP-
MCMC 

Winkler 
score 

7.168 6.519 5.813 5.655 5.271 

Cover rate 0.680 0.660 0.590 0.530 0.50 

Avg width 6.635 5.434 4.679 4.139 3.751 

Pinball 
loss 

0.447 0.604 0.731 0.823 0.898 

VMD-
RBF-
MCMC 

Winkler 
score 

54.289 37.973 31.214 27.080 24.056 

 
Figure 12.  Final interval prediction result 

 
Further, according to the change of Winkler score, with 

the decrease of confidence level, its value decreases rapidly 
before the 94% confidence level, and then its value 
decreases gently. Therefore, 94% can be selected as the 
optimal interval result, and the corresponding coverage rate 
and average interval width are 0.950 and 4.682, 
respectively. Compared with the other three confidence 
levels, it is in the middle position, and the corresponding 
pinball loss value is not very high. Therefore, Fig. 12 
displays the optimal interval performance based on 94% 
confidence level. 

V. CONCLUSION 

Based on the decomposition-integration strategy, this 
paper establishes a suitable prediction model based on the 
different feature components received by the VMD 
algorithm, and obtains the point prediction mixed prediction 
result after the integrated prediction. Meanwhile, the 
MCMC method is introduced to process the component with 
random fluctuations and linear characteristics, which not 
only effectively restores the characteristic information of the 
sequence data, but also creates the possibility of interval 
evaluation according to Monte Carlo properties. The 
experimental results display that the forecast results of the 
hybrid model proposed in this article are more accurate, the 
interval prediction performs well in the whole period, can 
almost contain all the test data, and has high reliability. To 
some extent, it can effectively avoid the wind speed 
randomness in the wind power generation, which has a 
serious adverse impact on the safety, stable operation and 
power quality of the power system. Finally, this paper does 
not fully consider the impact of other atmospheric 
environment data on wind speed, so there may be a lack of 
data for wind speed prediction. In future research, more 
variables should be considered. 
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