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1 Abstract—In this paper, we propose an attention-based 

instance and semantic segmentation joint approach, termed 
ABJNet, for addressing the instance and semantic 
segmentation of 3D point clouds simultaneously. First, a point 
feature enrichment (PFE) module is used to enrich the 
segmentation network’s input data by indicating the relative 
importance of each point’s neighbors. Then, a more efficient 
attention pooling operation is designed to establish a novel 
module for extracting point cloud features. Finally, an efficient 
attention-based joint segmentation module (ABJS) is proposed 
for combining semantic features and instance features in order 
to improve both segmentation tasks. We evaluate the proposed 
attention-based joint semantic-instance segmentation neural 
network (ABJNet) on a variety of indoor scene datasets, 
including S3DIS and ScanNet V2. Experimental results 
demonstrate that our method outperforms the start-of-the-art 
method in 3D instance segmentation and significantly 
outperforms it in 3D semantic segmentation. 
 

Index Terms—computer graphics, object segmentation, 
feature extraction, pattern recognition, machine learning. 

I. INTRODUCTION 

Recent growth in autonomous driving and robotics 
applications has increased demand for 3D scene 
understanding and perception [1][2]. Semantic segmentation 
and instance segmentation of 3D scenes are critical 
components of 3D scene understanding. Semantic 
segmentation divides the 3D scene into informative regions 
and assigns each region to a specific class. Instance 
segmentation classifies objects at the point level in a scene 
and also distinguishes between instances belonging to the 
same semantic category. Both tasks share some common 
ground that can be leveraged associatively to improve their 
performance. Semantic segmentation is required to 
categorize point clouds, which is one of the objectives of 
instance segmentation. Consistent with semantic 
segmentation, instance segmentation assigns the same label 
to points that belong to the same instance. 

Motivated by the correlation between semantic 
segmentation and instance segmentation, ASIS [3] firstly 
proposed a mutual aid module to enable these two tasks to 
benefit from each other. ASIS adopts k nearest neighbor 
(KNN) search to find out k nearest neighbors for the center 
point in instance embedding space, then fuses the semantic 
features of k neighbors to the center point. However, the 

KNN approach treats all semantic information about each 
neighbor equally, ignoring critical features. We propose an 
attention-based approach that compensates for this 
shortcoming by fusing semantic information using learnable 
soft weights. It adopts a sophisticated attention mechanism 
to automatically learn critical local features. 

 
1 This work was supported in part by National Natural Science 

Foundation of China under Grant No. 61602373; and Shaanxi Natural 
Science Foundation under Grant No. 2021JM-342, 2019JQ-740; and the 
Key Laboratory Research project of Shaanxi Provincial Education 
Department under grant No.18JS078. 

This paper introduces the attention-based joint semantic-
instance segmentation neural network (ABJNet), which is 
used to model the interaction between semantic and instance 
segmentation for the purpose of jointly addressing them. 
The proposed network ABJNet is composed of four 
components: a point feature enrichment (PFE) module, a 
shared feature encoder with attentive pooling operation, two 
paralleled branch decoders, and an attention-based joint 
segmentation (ABJS) module.  

To learn more effective high-level semantic features, the 
feature encoder and decoder are built based on PointNet++ 
[4]. To fully exploit contextual information contained in 
point clouds, a PFE module is used to capture contextual 
attention features for each point by indicating the relative 
importance of its neighbors. To further improve 
segmentation performance in our ABJNet, we propose a 
novel attentive-based joint instance and semantic 
segmentation module that promotes instance and semantic 
segmentation mutually.  

In summary, the main contributions of our work are as 
follows:  

(1) We propose a set abstract module with attentive 
pooling (AP) operation  to identify the most important local 
features. The powerful attention mechanism is used to 
determine the most important neighboring point features.  

(2) We develop a novel efficient ABJS module to exploit 
the potential reciprocal information in semantic and instance 
segmentation tasks to seamlessly fuse the heterogeneous 
features, allowing these two tasks to benefit from each other. 
This module would benefit from the discriminative feature 
by taking advantage of instance and semantic segmentation. 

(3) Experiments demonstrate that our ABJNet 
outperforms the state-of-the-art methods in both semantic 
and instance segmentation criteria on the S3DIS and 
ScanNet V2 datasets.  

The remainder of the paper is organized as follows. 
Section II provides an overview of instance segmentation. 
Section III presents the architecture overview of instance 
segmentation. The details of our ABJNet are proposed in 
Section IV. Experimental results are presented in section V. 
The last section discusses the method's limitations and 
makes recommendations for future research. 
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II. RELATED WORK 

Efficient instance and semantic segmentation of point 
clouds are of great significance in computer vision. With the 
rapid development of deep learning, many efficient and 
powerful deep learning network architectures have been 
proposed for performing semantic segmentation by directly 
processing points [5-7]. Subsequently, numerous excellent 
models for instance segmentation were proposed. The 
instance segmentation method in point clouds is further 
developed based on semantic segmentation. It then segments 
each object belonging to the same category and generates an 
instance label for each point. Existing methods for instance 
segmentation can be classified as proposal-based, proposal-
free, and semantic-instance segmentation fused methods. 

(1) Proposal-based instance segmentation  
The proposal-based method requires the acquisition of 

region proposals and further predicts each instance by 
progressively calculating and refining the region proposal.  

Hou [8] proposed a 3D Semantic Instance Segmentation 
(3D-SIS) neural network architecture for 3D semantic 
instance segmentation in commodity RGB-D scans. This 
method jointly learns from both geometric and color signals, 
thus enabling accurate instance predictions. Yi [9] proposed 
an instance segmentation network structure named 
Generative Shape Proposal Network (GSPN) to generate 3D 
proposals of objects. The GSPN is integrated with the 
Region-based PointNet (R-PointNet), which enables flexible 
proposal refinement and instance segmentation. The final 
label is determined by predicting the binary mask of each 
class label point-by-point. Yang [10] proposed 3D-BoNet 
for point cloud segmentation. This method generates rough 
3D bounding boxes for all possible instances directly and 
then labels them using a point-level binary classifier. Zhang 
[11] proposed the use of self-attention blocks to aid in the 
learning of feature representations from a bird's-eye 
perspective. Final instance labels are determined based on 
the predicted horizontal center and height constraints. 

While proposal-based methods are intuitive, they always 
require multi-stage training and make it difficult to delineate 
the object instance using a bounding box regression. 

(2) Proposal-free instance segmentation  
The proposal-free instance segmentation method regards 

instance segmentation as a post-processing task for semantic 
segmentation. They predict instances as clusters in feature 
space using a clustering algorithm.  

SGPN [12] is the pioneering work that uses deep learning 
to process 3D instance segmentation tasks. This method first 
uses PointNet [13] or PointNet++ [4] to extract a descriptive 
feature vector for each point. Then a similarity matrix is 
introduced to indicate the degree of similarity between each 
pair of points in embedded feature space. The similarity 
between the two hinge losses is used to adjust the similarity 
matrix and the semantic segmentation result, allowing for 
the learning of more discriminative features. Finally, the 
non-maximum suppression method is used to fuse 
similarities into examples. Similarly, Liu [14] first leveraged 
submanifold sparse convolution [15] to predict the semantic 
scores of each voxel and their affinity with neighboring 
voxels. They then introduced a clustering algorithm that 
used multi-scale affinity fields and semantic prediction to 
group points into instances. Liang [16] proposed a structure-

aware loss function that considers both structural and 
embedding information. An attention-based graph 
convolutional network is introduced to further refine the 
learned features adaptively by correlating information from 
different neighboring points. The mean-shift algorithm [17] 
is used to cluster refined embeddings to obtain the final 
instance predictions. PointGroup [18] proposed a clustering 
algorithm and applied it on the original point set as well as 
offset-shifted point coordinate set to generate some instance 
candidates. He [19] proposed a dynamic convolution-based 
framework called DyCo3D for 3D instance segmentation.  

Proposal-free methods grouped the objectness of instance 
segments is usually low since these methods do not 
explicitly detect object boundaries [20].  

(3) Semantic-instance segmentation fused method  
The previous works have tended to tackle the two tasks 

independently, without exploring the underlying relationship 
between them. Since there is some independence between 
semantic and instance segmentation tasks, many researchers 
combine the two tasks into a single one by associatively 
segmenting semantics and instances. Semantic and instance 
segmentation can complement one another in the semantic-
instance segmentation fused method.  

Wang [3] proposed an associatively segmenting instances 
and semantics (ASIS) module to closely associate instance 
segmentation and semantic segmentation. ASIS enables 
semantic and instance segmentation to take advantage of 
each other, resulting in a win-win situation. Pham [21] 
proposed a multi-task pointwise network (MT-PNet), for 
classifying 3D points and embedding them in a high-
dimensional features space. Then, the multi-value 
conditional random field (CRF) model is used to handle 
joint segmentation tasks by integrating both 3D and high 
dimensional embedded features. Similarly, Zhao [22] 
proposed JSNet to simultaneously address the instance and 
semantic segmentation of 3D point clouds. The framework 
is composed of a shared feature encoder, two parallel feature 
decoders, and a point cloud feature fusion (PCFF) module, 
as well as a joint instance semantic segmentation (JISS) 
module. On instance embeddings, simple mean-shift 
clustering is used to generate instance predictions. Wu [23] 
developed a Bi-Directional Attention module for 3D point 
cloud perception based on backbone neural networks. This 
module utilizes a similarity matrix calculated from the 
features of one task to help aggregate non-local information 
for the other task, avoiding feature exclusion and task 
conflict. JSPNet [24] developed a feature fusion module 
based on similarity that locates the inconspicuous area in the 
current branch’s feature and then selects related features 
from the other branch to compensate for the unclear content. 
To establish the probabilistic correlation between semantic 
and instance features, a cross-task probability-based feature 
fusion module is developed. 

The primary disadvantage of the semantic-instance 
segmentation fused method is that it typically treats each 
neighbor’s semantic information equally, which always 
ignores important features. 

III. OVERVIEW 

The entire network is depicted in Figure 1, which includes 
a PFE module, a shared feature encoder, two parallel 
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Figure 1. Architecture of our network 

 

decoders, and a module for each decoder that performs 
attention-based feature fusion. One task is to extract 
semantic features for each point, and the other is to perform 
instance segmentation. We can directly use PointNet++ as 
our backbone network for the two decoders, as the two 
decoders have the same structure. 

The input of our network is Nx9 for the whole pipeline. N 
is the number of point cloud represented by a 9-dim vector 
(XYZ, RGB and normalized location as to the room). For 
Both S3DIS and ScanNet V2 datasets, each room are split 
into 1m×1m overlapped blocks, each containing 4096 
points.  

First, a PFE module is defined to enhance the 
representation of point features. After constructing a graph 
of the point’s k-nearest neighbors, the contextual attention 
feature for each point is computed by embedding the graph 
attention mechanism within stacked Multi-Layer-Perceptron 
(MLP) layers.  

The point’s coordinates and contextual attention feature 
are then passed to the encoder module. The first layer of the 
encoder then introduces the set abstraction of PointNet++ 
into the model. The pooling layer realizes the abstraction of 
the point set.  

Due to the possibility of losing detailed information when 
using max-pooling, attentive pooling is used in the grouping 
layers. Following that, the output of the feature encoder is 
fed into two parallel decoders and processed separately by 
their subsequent components. Finally, an ABJS module is 
proposed, which consists of two coupled instance-to-
semantic and semantic-to-instance streams for extracting 
useful information while filtering out useless information.  

The semantic segmentation branch is supervised by the 
classic cross-entropy loss at training time. In terms of 
instance segmentation, we use the agnostic loss in [3] to 
supervise instance embedding learning, which draws points 
belonging to the same instance object together and 
maintains a greater distance between points belonging to 
different instances. Final instance labels can be obtained at 
test time by applying the mean-shift clustering [17] 
algorithm to the instance embedding. 

IV. PROPOSED METHOD  

A. Encoder 

(1) Point feature enrichment (PFE) module 
Extraction of local geometric features is critical for 

accurate segmentation. However, context features between 
points can be quite useful for segmenting point clouds. As a 
result, we use a PFE module as a preprocessor for the raw 
data. 

The PFE module [25] is proposed to capture contextual 
attention features by indicating different importance of each 
point's neighbors. The PFE module simultaneously learns 
self-attention and neighboring-attention features and then 
fuses them via a non-linear activation function leaky RELU 
to obtain attention coefficients. Additionally, they are 
normalized using a softmax function. Then, a linear 
combination operation is applied to finally generate the 
attention feature. The self-attention mechanism learns self-
coefficients by considering the self-geometric information 
associated with each point, whereas the neighboring-
attention mechanism concentrates on local coefficients by 
considering the neighborhood. 

(2) Set abstraction layer  
Following the PFE module, the first layer of the encoder 

incorporates the PointNet++ set abstraction into our model. 
The sampling and grouping layers in PointNet++ were used 
to obtain the local structure. The max-pooling operation was 
used to aggregate the encoded local information in the local 
region, which helps reduce the dimensionality of the 
features while also filtering out unreliable noise. However, 
the max-pooling operation may result in the loss of some 
useful information. As a result, we introduce an attention 
pooling [26] operation over the neighborhood in our work to 
identify the most critical features to further obtain local 
signature representation and enhance the robustness of the 
network.  

Given the set of local features F={f1, f2, …, fn}, we use a 
shared function g(・) to learn a unique attention score for 
each feature. The function g(・) is composed of a shared 
MLP and an activation function of softmax, which is 
defined as follows: 
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( , )i iS g f W                               (1) 

where, W is the learnable weights of a shared MLP. The 
final feature vector FW is the weighted summer as follows:  

1

( )
n

W i
i

iF f S


         (2) 

B. Mutual Aid 

(1) Feature attentive aggregation module  

Softmax

X

Y

×  + Feature E

 + Element-wise addition

× Element-wise product
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future F

C

C

 1D convolutionC

 Figure 2. The FAA module 
 

We propose a feature attentive aggregation module (FAA) 
for fusing two features. Figure 2 illustrates the details of the 
structure. The FAA module has two inputs: feature X and 
feature Y.  

First, features X and Y are transformed through a 1×1 
convolution, respectively. The attentive scores of 
transforming feature Y are computed by a softmax operation. 
Then an element-wise multiply operation of feature X and 
attentive scores are applied to generate the fused feature F . 
Finally, the fused featu  re F  and the original instance 
feature Y perform an element-wise sum operation to produce 
the final feature E: 

E = F + Y                                    (3) 
As can be inferred from Eq. (3), the final feature at each 

position is a sum of the fused features at all positions and 
original instance features. FAA module can balance two 
features and refine the output features from the decoder with 
better feature representation. 

(2) Attention-based joint segmentation (ABJS) module  
We propose an ABJS module to obtain semantic labels 

and segment instance objects simultaneously, allowing 
semantic and instance segmentation tasks to benefit from 
each other. This module is applied to fuse semantic and 
instance features. 

Figure 3 illustrates the details of the ABJS module. Fins  
and Fsem denote the output feature matrices of the two 
parallel decoder branches, respectively. For the instance 
segmentation task, the semantic feature matrix Fsem is 
transformed into instance feature space as Fsi by a 1D 
convolution. The Fsi is added to the instance feature matrix 
Fins element-wise as Fsis. Furthermore, the semantic-aware 
instance feature Fsis and semantic feature matrix Fsem are fed 
into the FAA module, with the semantic feature guiding the 
instance segmentation task. Following the FAA module, the 
output feature is combined with the original instance feature 
Fins to obtain the enhanced feature Fsisa.  

Finally, three 1D convolutions are performed in the 
enhanced feature Fsisa to generate the instance embedding 
feature Eins. The preceding procedure can be formulated as 
follows:  

1 ( )sis ins semF F Conv D F                         (4) 

( , )sisa sis sem insF FAA F F F                      (5) 

1 ( 1 ( ))insm sisaE Conv D Conv D F                     (6) 

1 ( )ins insmE Conv D E                                       (7) 

The final instance labels are generated after performing 
mean-shift clustering on Eins. 

For the semantic segmentation task, the middle feature 
Einsm obtained by two 1D convolutions in the instance 
segmentation branch is added to the semantic feature matrix 
Fsem element-wise as Fsim.  

The instance-fused semantic feature Fsim and instance 
feature matrix Fins are then passed to the FAA module, 
which refines the semantic segmentation task using the 
instance. 

The output feature of the FAA module was combined 
with the original semantic feature Fsem to obtain the fused 
feature Fsima. Three 1D convolutions are performed on Fsima 
subsequently to obtain the semantic feature Psem, which is 
used to predict the semantic categories. We also formulate 
this procedure as follows: 

sim sem insmF F E                                   (8) 

( , )sima sim ins semF FAA F F F                                  (9) 

1 ( 1 ( 1 ( )))sem simaP Conv D Conv D Conv D F          (10) 

V. EXPERIMENTAL RESULTS  

A. Datasets and Evaluation Metrics 

We evaluate our approach on two public datasets: 
Stanford 3D Indoor Semantics Dataset (S3DIS) [27] and 
Richly-annotated 3D Reconstructions of Indoor Scenes 
ScanNet V2 [28]. S3DIS is an indoor 3D point cloud dataset 
consisting of 3D scans of Matterport scanners from 6 areas. 
There are 271 rooms divided by room. Each point in the 
scene is associated with an instance annotation and one of 
the semantic labels from 13 categories. For S3DIS dataset, 
each point has a 9-dimensional feature vector including 
XYZ, RGB, and normalized coordinates. Following 
PointNet, we split the rooms into 1 m × 1 m overlapping 
blocks with a stride of 0.5m on the ground plane. Each block 
contains 4096 points in total. ScanNet V2 is an RGB-D 
video dataset containing 1513 scans with 3D object instance 
annotations. We adopt the same strategy as S3DIS that 
rooms are split into 1 m × 1 m overlapping blocks with a 
stride of 0.5 m and sample 4096 points from each block. 

(1) Evaluation metrics 
For evaluation of semantic segmentation, overall accuracy 

(oAcc), mean accuracy (mAcc), and mean Intersection over  
Union (mIoU) is calculated across all the categories. For 3D 
instance segmentation, mean precision (mPrec), mean recall 
(mRec) with 0.5 IoU threshold, coverage (Cov) and 
weighted coverage (WCov) are adopted to evaluate our 
method. Cov denotes the average instance-wise IoU of 
prediction matched with ground-truth. The score is further 
weighted by the size of ground-truth instances to obtain 
Wcov.  

Given the ground-truth regions G and predicted regions 
O, Cov and WCov are calculated as: 

1

1
( , ) max ( , )

G
G O

m n
n

m

Cov G O IoU r r
G

           (11) 

1

( , ) max ( , )
G

G O
m m

n
m

WCov G O IoU r r


  n         (12)

 22 

[Downloaded from www.aece.ro on Friday, March 29, 2024 at 13:26:40 (UTC) by 44.222.92.134. Redistribution subject to AECE license or copyright.]



Advances in Electrical and Computer Engineering                                                                      Volume 22, Number 2, 2022 

Fins
Instance seg

Semantic seg

Fsem

 + FAA  +

 + FAA  +

Eins

C

Fsis
C C C

C C C

Fsisa

Element-wise addition

 1D convolution

 +

Psem

C

 
Figure 3. Attention-based Joint Segmentation (ABJS) module 
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where, G
mr  represents the total number of points in ground 

truth region m. 
(2) Implementation details 
All the experiments are conducted on a PC with Intel(R) 

i7-8700 CPU, 32G memory and a single NVIDIA RTX 
2080Ti GPU. We train the network for 100 epochs with 
batch size of 12 and select the Adam optimizer to optimize 
the network on a single GPU. Momentum is set to 0.9. Base 
learning rate is set to 0.001, and decays by 2 every 300k 
iterations. During the inference process, we also apply 
mean-shift clustering with bandwidth 0.6 to generate 
instance objects. BlockMerging algorithm is applied to 
merge instances from different blocks. 

B. Evaluation and Comparison 

In this section, we comprehensively evaluate ABJNet and 
compare it with the state-of-the-art segmentation methods. 
We evaluate our model in the following aspects: (1) Area 5 
is treated as the testing, while residuals are used for training, 
and (2) 6-fold cross validation that each area is treated as the 
testing once. 

(1) Quantitative results on the S3DIS dataset 
Semantic segmentation   
Table I shows the performance of our method on semantic 

segmentation task on S3DIS. We compare our method with 
several state-of-the-art semantic segmentation methods 
including ASIS [3], BAN [23], 3DCFS [29] and ISSF [30]. 
Our ABJNet achieves 74.8 mAcc in 6-fold cross validation 
and 65.7 mAcc in Area 5 which is superior to other methods 
on S3DIS. Compared with ASIS, our model improves the 
indicators of mAcc, oAcc, and mIoU by 4.7, 2.2, and 4.9 on 
6-fold cross validation experiments. When evaluated by 
Area 5 of S3DIS, the improvements are still significant: 4.8 
mAcc, 2.5 oAcc and 5.6 mIoU gains. Note that all the 
precision units are percents (%). The performance has been 
improved obviously in all three evaluation metrics. 

In addition, we also compare our method with other start-
of-the-art methods including BAN, 3DCFS and ISSF. Our 
method outperforms these methods with a significant margin 
on 6-fold cross validation and Area 5 of S3DIS.  

To intuitively present our results, some visualization of 
semantic segmentation results are shown in Figure 4. At the 
same time, qualitative comparison of ASIS, BAN and our 
method are shown in Figure 4(b), (c) and (d). For semantic 
segmentation, different colors represent different categories. 

In the first row, the board in ASIS and BAN are recognized 
as another category by mistake. In the second row, the wall 
near the board in ASIS is wrongly recognized as the column 
and some points of the beam in BAN are wrongly 
recognized as the ceiling. In the last row, the windows (blue 
color) in BAN are segmented incompletely. In addition, the 
door in our method achieves a better segmentation effect 
which proves the effectiveness of our method. The proposed 
ABJNet segmented points more accurately with respect to 
the corresponding categories. 

 
TABLE I. COMPARISON OF SEMANTIC SEGMENTATION RESULTS ON S3DIS 

DATASET 
 Methods mAcc(%) oAcc(%) mIoU(%) 

ASIS[3] 70.1 86.2 59.3 
BAN[23] 71.7 87.0 60.8 

3DCFS[29] 72.4 86.3 60.3 
ISSF[30] 71.6 86.7 60.9 

6-fold 

Ours 74.8 88.4 64.2 
 

 Methods mAcc(%) oAcc(%) mIoU(%) 
ASIS[3] 60.9 86.9 53.4 
BAN[23] 62.5 87.7 55.2 

3DCFS[29] 62.7 87.8 55.5 
ISSF[30] 62.7 87.7 55.3 

Area 5 

Ours 65.7 89.4 59.0 

 
Instance segmentation  
To validate the performance of our method in instance 

segmentation, Table II depicts the experimental comparison 
with state-of-the-art methods on S3DIS. Compared with 
ASIS, the improvements of our model are significant on 
four evaluation metrics: 3.1 for mCov, 3.1 for mWCov, 0.8 
for mPrec and 2.9 for mRec on 6-fold cross validation 
experiments. When evaluated on Area 5, our method is also 
better than BAN and 3DCFS.  

Table III shows the instance and semantic segmentation 
results for specific categories. Per-class Wcov is shown in 
the first row. We find our method can outperform ISSF in 9 
out of 13 classes. Our method yields large Wcov gains on 
class “door”, class “bookcase”, and class “board”. Per-class 
mIoU is shown in the second row. Our method can 
outperform ISSF in 11 out of 13 classes. The performance 
has been improved obviously in most classes. 

Moreover, qualitative results of instance segmentation are 
illustrated in Figure 5, which indicates the well-segmented 
instance capability of our method. For instance 
segmentation, different instances are represented by 
different colors. In the first row, the clock on the top right 
wall is not segmented in ASIS and BAN. In the second row, 
two windows on the wall are also not separated in ASIS and 
BAN. In the third row, two adjacent chairs are incorrectly 
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segmented into one instance in ASIS and BAN. In the last 
row, three windows on the right wall are also not segmented 
into a single instance either. The proposed method precisely 
distinguished between different instances, especially for 
instances belonging to the same category. 

 
TABLE II. COMPARISON OF INSTANCE SEGMENTATION RESULTS ON S3DIS 

DATASET 

 Methods 
mCov 
(%) 

mWCov 
(%) 

mPrec 
(%) 

mRec 
(%) 

6-fold ASIS[3] 51.2 55.1 63.6 47.5 

BAN[23] 52.1 56.2 63.4 51.0 
3DCFS[29] 53.1 57.1 63.7 49.1 

ISSF[30] 54.2 58.1 65.3 50.8 
Ours 54.3 58.2 64.4 50.4 

 

 Methods 
mCov 
(%) 

mWCov 
(%) 

mPrec 
(%) 

mRec 
(%) 

ASIS[3] 44.6 47.8 55.3 42.4 
BAN[23] 49.0 52.1 56.7 45.9 

3DCFS[29] 49.0 52.1 55.5 45.9 
ISSF[30] 48.7 51.8 58.2 46.6 

Area 5 

Ours 50.3 53.5 57.8 48.2 

 

 

 

 

 
(a) Real Scene                            (b) ASIS                                       (c) BAN                                (d) Ours                                 (e) Ground Truth 

Figure 4. Comparison result of ASIS, BAN, and our method on semantic segmentation task on S3DIS 

 
TABLE III. PER CLASS RESULTS ON S3DIS DATASET. BOLD MEANS THE BEST METRICS 

Metrics Method mean ceiling floor wall beam column window door table chair sofa bookcase board clutter 

ISSF[30] 58.1 82.8 78.0 70.4 53.9 22.1 64.9 54.6 58.3 69.8 41.3 41.3 44.2 51.0 
Wcov 

Ours 58.2 82.9 79.3 71.4 54.1 16.4 64.4 60.3 59.2 64.1 41.0 44.9 65.0 53.0 

ISSF[30] 60.9 93.4 94.7 76.4 47.7 40.8 58.4 62.7 67.7 59.5 31.7 52.4 52.0 53.9 
IoU 

Ours 64.2 93.8 96.6 77.7 50.4 34.8 55.6 67.4 71.2 71.1 42.5 56.8 56.9 58.5 
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 (a) Real Scene                            (b) ASIS                                 (c) BAN                                      (d) Ours                                    (e) Ground Truth 

Figure 5. Comparison result of ASIS, BAN and our method on instance segmentation task on S3DIS 

(2) Quantitative results on the ScanNet V2 dataset  
We further make a thorough experiment on ScanNet V2 

which is the biggest indoor 3D point cloud dataset by now. 
We reproduced the results of ASIS [2], JSNet [22] and BAN 
[23] using the code at GitHub published by the respective 
authors to make a comparison with the same PointNet++ 
backbone. The performance comparison of semantic and 
instance segmentation between ASIS, BAN, JSNet with our 
method is shown in Table IV and Table V, respectively.  

 
TABLE IV. COMPARISON OF SEMANTIC SEGMENTATION RESULTS ON 

SCANNET V2 DATASET 
Methods mAcc(%) oAcc(%) mIoU(%) 
ASIS[3] 48.7 73.0 38.2 

JSNet[22] 52.3 73.2 40.3 
BAN[23] 49.4 72.8 38.2 

Ours 55.5 74.7 43.1 

 
As shown in Table IV, ABJNet achieves 55.5 mAcc, 74.7 

oAcc and 43.1 mIoU, which dramatically outperforms ASIS 
by 6.8 for mAcc, 1.7 for oAcc and 4.9 for mIoU on the 
semantic segmentation task, respectively. At the same time, 
the ABJNet outperforms JSNet by 3.2 for mAcc, 1.5 for 
oAcc and 2.8 for mIoU.  

 
TABLE V. COMPARISON OF INSTANCE SEGMENTATION RESULTS ON 

SCANNET V2 DATASET 

Methods 
mCov 
(%) 

mWCov 
(%) 

mPrec 
(%) 

mRec 
(%) 

ASIS[3] 27.8 29.0 33.2 26.1 

JSNet[22] 31.4 32.6 35.9 32.0 

BAN[23] 27.6 28.8 30.4 26.3 

Ours 32.6 33.9 35.9 32.0 

 
As shown in Table V, our ABJNet achieves 32.6 mCov, 

33.9 mWCov, 35.9 mPrec and 32.0 mRec which 
significantly outperforms the state-of-the-art methods ASIS 
and BAN by a large margin. Our method further 
outperforms JSNet by 1.2 for mCov and 1.3 for mWCov. 
The stable improvement in both semantic and instance 
segmentation demonstrates our novel modules can catch the 
relationship between semantic and instance features better 
than the state-of-the-art methods. 

ScanNet V2 is the biggest indoor 3D point cloud dataset 
by now which contains a diverse set of spaces ranging from 
small to large. Compared with S3DIS dataset, ScanNet V2 

dataset has more serious occlusion. It is proper to sample 
8192 points from each block to obtain better segmentation 
results. However, high sampling data cannot run on our 
computer successfully because of the memory limitation. 
We split ScanNet V2 dataset into 1 m × 1 m overlapping 
blocks and sample 4096 points from each block. Therefore, 
the segmentation results for ScanNet V2 are worse than 
those for S3DIS. 

Furthermore, Figure 6 also illustrates the qualitative 
semantic visualization of our method on the ScanNet V2 
dataset. Each column in Figure 6 represents the 
segmentation results of ASIS, BAN, JSNet, our method and 
ground truth, respectively. It can be seen that our method 
has better segmentation effects. In the first row, the front 
wall (brown points) is not segmented accurately in ASIS, 
BAN and JSNet. The sofas in the second row should be 
segmented into the same class. However, part of sofas 
(purple points) in ASIS, BAN and JSNet is wrongly 
classified as another category. In the third row, part of the 
tables in the room center are also classified by mistake. The 
proposed method performs better on classifying the entire 
semantic information. 

Figure 7 illustrates the qualitative instance visualization 
of our method on the ScanNet V2 dataset. Each column in 
Figure 7 represents the segmentation results of ASIS, BAN, 
JSNet, our method and ground truth, respectively. In the 
first row, three chairs around a table are not segmented into 
a individual instance. In the second row, the bookcases in 
ASIS, BAN and JSNet are oversegmented. Our results are 
essentially the same as the ground truth.  

To evaluate the computation and memory required of our 
networks, ASIS and BAN, we report the computation time 
and memory of training and testing process in Table VI. For 
a fair comparison, all codes are run in the same 
environment, including the same GPU (RTX 2080Ti), batch 
size (12) and data (Area 5 including 68 rooms). Note that all 
the time units are minutes, and all the memory units are MB. 
The result is the time and memory required for one epoch in 
the training and testing process. As we can see, ASIS needs 
relatively more time for training because ASIS adopts k 
nearest neighbor search to find out k nearest neighbors for 
the center point in instance embedding space. The 
construction of high-order sparse matrices needs to occupy a 
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large memory. Our approach needs 9.8 minutes while 
acquiring better performance, which is faster and more 
efficient than the state-of-the-art methods. 

C. Ablation Study 

To further validate the effectiveness of each component 
proposed in our network, we design ablation experiments 
and display them on Area 5 of S3DIS dataset. The baseline 
network includes one shared encoder and two decoders, both 
of which are built by stacking set abstraction and feature 
propagation modules from PointNet++, respectively.  

As shown in Table VII, the ABJS, PFE and AP modules 
could revise the fundamental results of semantic 
segmentation and instance segmentation. Equipped with 
different components upon the baseline network, the 
experimental results show that our proposed ABJNet 
outperforms the baseline to a large extent. 

We can find that with our ABJS module, there are 8.2% 
gains on mPrec and 1.3% gains on mIoU compared with the 
baseline. The performance of instance segmentation and 
semantic segmentation is improved with the ABJS module, 
which suggests merging instance features for semantic 
segmentation in our way is very efficient. Semantic 
awareness can help the instance predictions and improved 
instance predictions could assign more accurate semantic 
labels in semantic-instance segmentation tasks. With the 
PFE module added to the network with the ABJS module, 
the improvement is more significant for two metrics: 8.8% 
mPrec and 4.5% mIoU. Finally, compared with the baseline, 
our method has a large improvement in all evaluation 
metrics, achieving 57.8% mPrec and 59.0% mIoU for 
instance and semantic segmentation tasks, respectively. 

 

                

                   
 (a) ASIS                                 (b) BAN                                      (c) JSNet                                      (d) Ours                               (e) Ground Truth 

Figure 6. Comparison results of ASIS, BAN, JSNet and our method on semantic segmentation task on ScanNet V2 

 

 

 

 
(a) ASIS                                 (b) BAN                                      (c) JSNet                                      (d) Ours                               (e) Ground Truth 

Figure 7. Comparison results of ASIS, BAN, JSNet and our method on instance segmentation task on ScanNet V2 
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TABLE VI. COMPARISON OF COMPUTATION TIME, GPU MEMORY AND PERFORMANCE BASED ON AREA5 OF S3DIS DATASET 
Train Test 

 Methods 
Time(m) Memory(MB) Time(m) Memory(MB) 

mPrec 
(%) 

mIoU 
(%) 

ASIS[3] 12.7 7847 32.6 4944 55.3 53.4 
BAN[23] 13.2 7029 32.8 5024 56.7 55.2 Area 5 

Ours 9.8  7262 29.7 5015 57.8 59.0 
 

TABLE VII. ABLATION STUDY ON THE S3DIS DATASET IN AREA 5 

Component Instance segmentation Semantic segmentation 

ABJS PFE AP mCov 
(%) 

mWCov
(%)

mPrec 
(%)

mRec 
(%)

mAcc 
(%)

mIoU 
(%) 

oAcc 
(%) 

× × × 45.2 48.2 49.3  41.6 62.1 54.3 87.1 

√ × × 48.9 52.0 57.5 45.4 63.2 55.6 87.7 

√ √ × 50.0 53.1 58.1 46.7 65.6 58.8 89.3 

√ √ √ 50.3 53.5 57.8 48.2 65.7 59.0 89.4 

 

VI. CONCLUSION 

The 3D semantic and instance segmentation aim to detect 
specific informative region represented by sets of smallest 
units in the scene. Both of them have wide applications in 
scene understanding such as autonomous driving and 
intelligent robot. For autonomous driving, scene 
segmentation is a prerequisite for the vehicle to effectively 
obtain the drivable area and obstacles on the road. It plays a 
leading role in decision-making, trajectory planning, and 
control in difficult environments with other traffic 
participants and obstacles. For the intelligent robot, the 
result of semantic and instance segmentation helps the robot 
to establish the 3D semantic map and perceive the semantic 
categories of objects in the real environment. It lays a good 
foundation for path planning and high-level decision-
making tasks. 

In this paper, we propose an attention-based network 
named ABJNet for semantic and instance segmentation of 
point clouds. The proposed network could be used to learn 
instance-aware semantic feature maps and semantic-aware 
instance feature embedding which are more discriminative 
and accurate for 3D point cloud segmentation. An attention-
based feature fused module is designed to collaborate and 
mutually reinforce instance and semantic segmentation.  

Experiments on S3DIS and ScanNet V2 datasets 
demonstrate the effectiveness and efficiency of the proposed 
ABJNet. However, the segmentation of indoor scenes is still 
a challenging task due to its high occlusion, high clutter, and 
large variability. In addition, the segmentation methods 
based on convolutional neural network imply the time-
consuming collection of training data. When the dataset is 
small, it is difficult to collect sufficient models for training.  
The training process is also time-consuming. In the future 
work, a lightweight convolutional neural network with high 
computational efficiency and small parameter should be 
considered. It can be deployed in embedded devices and has 
a broad application prospect in the point cloud real-time 
processing. 
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