4/2015 - 10 |
Analysis of RLC Elements under Stochastic Conditions Using the First and the Second MomentsWALCZAK, J. , MAZURKIEWICZ, S. , GRABOWSKI, D. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (743 KB) | Citation | Downloads: 979 | Views: 2,991 |
Author keywords
circuit analysis, linear circuits, moment methods, stochastic processes, stochastic systems
References keywords
stochastic(18), circuits(9), equations(6), kolarova(5), modeling(4), circuit(4), applications(4)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2015-11-30
Volume 15, Issue 4, Year 2015, On page(s): 75 - 80
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.04010
Web of Science Accession Number: 000368499800010
SCOPUS ID: 84949967914
Abstract
This paper describes a method of determining the first two moments of the response for basic components of electrical circuits, i.e. resistors, inductors and capacitors. The paper goal was to obtain closed form formulae for the moments describing voltage or current stochastic processes. It has been assumed that the element parameters R (resistance), L (inductance) and C (capacitance) could be random variables, deterministic functions or stochastic processes and excitations are second order stochastic processes. Moreover, two cases of dependence between the random parameters and the excitation stochastic processes have been considered. The obtained results enable determination of exact solutions for the first two moments without application of numerical algorithms. |
References | | | Cited By «-- Click to see who has cited this paper |
[1] K. Skowronek, Stochastic Approach to Electrical Circuits. Monograph, Poznan: Publishing House of Poznan University of Technology, pp. 34-76, 2011.
[2] E. Kadlecova, R. Kubasek, E. Kolarova, "RL circuits modeling with noisy parameters," in Proc. of the Int. Conf. on Applied Electronics, Pilsen, 2006, pp. 79-81. [CrossRef] [Web of Science Times Cited 1] [SCOPUS Times Cited 2] [3] D. Grabowski, "Moments of stochastic power processes for basic linear elements," in Proc. of the Int. Conf. on Fundamentals of Electrotechnics and Circuit Theory, Ustron, 2009, pp. 83-84. [4] N. Patil, B. Gawalwad, S. Sharma, "A random input-driven resistor-capacitor series circuit," in Proc. of the Int. Conf. on Recent Advancements in Electrical, Electronics and Control Engineering, Sivakasi, 2011, pp. 100-103. [CrossRef] [SCOPUS Times Cited 9] [5] E. Kolarova, "Modeling RL electrical circuits by stochastic differential equations," in Proc. of the Int. Conf. Computer as a Tool, Belgrade, 2005, pp. 1236-1238. [CrossRef] [Web of Science Times Cited 19] [6] R. Banchuin, R. Chaisricharoen, "Stochastic inductance model of on chip active inductor," in Proc. of the Int. Conf. Education Technology and Computer, vol. 5, Shanghai, 2010, pp. V5-1 - V5-5. [CrossRef] [SCOPUS Times Cited 2] [7] R. Farnoosh, P. Nabati, R. Rezaeyan, M. Ebrahimi, "A stochastic perspective of RL electrical circuit using different noise terms," COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 30, no. 2, pp. 812-822, 2011. [CrossRef] [Web of Science Times Cited 23] [SCOPUS Times Cited 31] [8] E. Kolarova, L. Brancik, "Vector linear stochastic differential equations and their applications to electrical networks," in Proc. of the 35th Int. Conf. on Telecommunications and Signal Processing, Prague, 2012, pp. 311-315. [CrossRef] [SCOPUS Times Cited 9] [9] J. Walczak, S. Mazurkiewicz, D. Grabowski, "Stochastic models of lumped elements," in Proc. of the Int. Symp. Theoretical Electrical Engineering, Pilsen, 2013, pp. II-19 - II-20. [10] L. Brancik, E. Kolarova, "Simulation of higher-order electrical circuits with stochastic parameters via SDEs," Advances in Electrical and Computer Engineering, vol. 13, no. 1, pp. 17-22, 2013. [CrossRef] [Full Text] [Web of Science Times Cited 19] [SCOPUS Times Cited 23] [11] L. Brancik, E. Kolarova, "Time-domain simulation of transmission line models with multiple stochastic excitations," in Proc. of the 24th Int. Conf. Radioelektronika, Bratislava, 2014, pp. 1-4. [CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 4] [12] L. Socha, Linearization Methods for Stochastic Dynamic Systems. Berlin Heidelberg: Springer, Lecture Notes in Physics, pp. 59-84, 2008. [CrossRef] [13] T. K. Rawat, H. Parthasarathy, "On stochastic modelling of linear circuits," International Journal of Circuit Theory and Applications, vol. 38, no. 3, pp. 259-274, 2010. [14] P. Manfredi, D. Vande Ginste, D. De Zutter, F. G. Canavero, "Stochastic modeling of nonlinear circuits via SPICE-compatible spectral equivalents," IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 61, no. 7, pp. 2057-2065, 2014. [CrossRef] [Web of Science Times Cited 49] [SCOPUS Times Cited 55] [15] P. Manfredi, I. S. Stievano, F. G. Canavero, "Stochastic simulation of integrated circuits with nonlinear black-box components via augmented deterministic equivalents," Advances in Electrical and Computer Engineering, vol. 14, no. 4, pp. 3-8, 2014. [CrossRef] [Full Text] [Web of Science Times Cited 2] [SCOPUS Times Cited 3] [16] D. Grabowski, "Stochastic power process for nonlinear inertialess elements," Przeglad Elektrotechniczny, vol. 86, no. 4, pp. 147-150, 2010. [17] M. M. Olama, S. M. Djouadi, C. D. Charalambous, "Stochastic differential equations for modeling, estimation and identification of mobile-to-mobile communication channels," IEEE Trans. on Wireless Communications, vol. 8, no. 4, pp. 1754-1763, 2009. [CrossRef] [Web of Science Times Cited 17] [SCOPUS Times Cited 22] [18] Wei Yu; B. H. Leung, "Noise analysis for sampling mixers using stochastic differential equations," IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Proc., vol. 46, no. 6, pp. 699-704, 1999. [CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 19] [19] B. G. Gawalwad, S. N. Sharma, "Noise analysis of a CMOS inverter using the Itô stochastic differential equation," in Proc. of the IEEE Int. Conf. on Control Applications, Dubrovnik, 2012, pp. 344-349. [CrossRef] [SCOPUS Times Cited 4] [20] K. Sobczyk, Stochastic Differential Equations with Applications to Physics and Engineering. Kluwer Academic Publishers, pp. 339-364, 2001. [CrossRef] [21] T. T. Soong, Random Differential Equations in Science and Engineering. New York: Academic Press, pp. 6-32, 1973. Web of Science® Citations for all references: 150 TCR SCOPUS® Citations for all references: 183 TCR Web of Science® Average Citations per reference: 7 ACR SCOPUS® Average Citations per reference: 8 ACR TCR = Total Citations for References / ACR = Average Citations per Reference We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more Citations for references updated on 2024-11-15 11:06 in 103 seconds. Note1: Web of Science® is a registered trademark of Clarivate Analytics. Note2: SCOPUS® is a registered trademark of Elsevier B.V. Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site. |
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.