Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Nov 2024
Next issue: Feb 2025
Avg review time: 54 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

3,016,596 unique visits
1,170,214 downloads
Since November 1, 2009



Robots online now
bingbot
Googlebot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 4 / 2024
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  








LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  2/2017 - 11

 HIGHLY CITED PAPER 

Speech Rate Control for Improving Elderly Speech Recognition of Smart Devices

SON, G. See more information about SON, G. on SCOPUS See more information about SON, G. on IEEExplore See more information about SON, G. on Web of Science, KWON, S. See more information about  KWON, S. on SCOPUS See more information about  KWON, S. on SCOPUS See more information about KWON, S. on Web of Science, LIM, Y. See more information about LIM, Y. on SCOPUS See more information about LIM, Y. on SCOPUS See more information about LIM, Y. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,769 KB) | Citation | Downloads: 1,078 | Views: 3,387

Author keywords
automatic speech recognition, human computer interaction, speech analysis, man machine systems, human factor

References keywords
speech(15), time(4), communication(4), aging(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2017-05-31
Volume 17, Issue 2, Year 2017, On page(s): 79 - 84
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.02011
Web of Science Accession Number: 000405378100011
SCOPUS ID: 85020117598

Abstract
Quick view
Full text preview
Although smart devices have become a widely-adopted tool for communication in modern society, it still requires a steep learning curve among the elderly. By introducing a voice-based interface for smart devices using voice recognition technology, smart devices can become more user-friendly and useful to the elderly. However, the voice recognition technology used in current devices is attuned to the voice patterns of the young. Therefore, speech recognition falters when an elderly user speaks into the device. This paper has identified that the elderly's improper speech rate by each syllable contributes to the failure in the voice recognition system. Thus, upon modifying the speech rate by each syllable, the voice recognition rate saw an increase of 12.3%. This paper demonstrates that by simply modifying the speech rate by each syllable, which is one of the factors that causes errors in voice recognition, the recognition rate can be substantially increased. Such improvements in voice recognition technology can make it easier for the elderly to operate smart devices that will allow them to be more socially connected in a mobile world and access information at their fingertips. It may also be helpful in bridging the communication divide between generations.


References | Cited By  «-- Click to see who has cited this paper

[1] Korea National Statistic office. "Social Survey; Welfare Category; Difficulties Experienced by Senior Citizens, Official Statistics Research Newsletter, vol.5, pp.2-3, 2013.

[2] W. S. Kang, M. S. Kim, J. W. Ko, "Effects of the smartphone information use and performance on life satisfaction among the elderly," Korean Gerontological Society, vol.33, no.1, pp.199-214, 2013.

[3] B. C. Sonies, "Oral-motor Problems," Communication Disorders in Aging: Assessment and Management, Washington, Gallaudet University Press, pp. 185-213, 1987.

[4] J. W. Bennett, P. H. H. M. Van Lieshout, C. M. Steele, "Tongue control for speech and swallowing in healthy younger and older subjects," International Journal of Orofacial Myology," vol.33, pp.5–18, 2007.

[5] J. C. Kahane, "Anatomic and physiologic changes in the aging peripheral speech mechanism," Aging: Communication processes and disorders, pp.21-45, 1981.

[6] S. Y. Lee, "The overall speaking rate and articulation rate of normal elderly people," Graduate program in speech and language pathology, Master these, Yonsei University, 2011.

[7] W. J. Ryan, J.William, "Acoustic aspects of the aging voice", Journal of Gerontology, vol.27, no.2, pp.265-268, 1972.
[CrossRef] [SCOPUS Times Cited 66]


[8] Y. H. Kim. "Geriatric speech. plenary session IV," Yonsei University College of Medicine, Otolaryngology clinic. pp.205-207, 2003.

[9] W. H. Manning, K. L. Monte, "Fluency breaks in older speakers: implications for a model of stuttering throughout the life cycle," Journal of fluency disorders. Vol.6, no.1, pp.35–48, 1981.
[CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 17]


[10] J. D. Harnsberger, R. Shrivastav, R. Brown, W.S. Rothman, H. Hollien, "Speaking rate and fundamental frequency as speech cues to perceived age," Journal of voice, vol.22, no.1, pp.58-69, 2008.
[CrossRef] [Web of Science Times Cited 97] [SCOPUS Times Cited 108]


[11] H. Y. Pyo, H. S. Shim, "Paralytic disorder words (dysarthria) for improving the clarity of research trends: A Literature Review," Special Education, vol.4, no.1, pp.35-50, 2005

[12] M. Richardson, M. Hwang, A, Acero, X.Huang, "Improvements on speech recognition for fast talkers," Eurospeech, pp.411-414, 1999.

[13] S. Kwon, S. Kim, J. Choeh. "Preprocessing for elderly speech recognition of smart devices," Computer Speech & Language. vol.36, pp.110-121, 2016.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 19]


[14] A. Aniruddha, M. Mathew, S. Amantula, C. Sekhar, "Gammatone wavelet Cepstral Coefficients for robust speech recognition," TENCON 2013, pp.1-4, 2013.
[CrossRef] [SCOPUS Times Cited 31]


[15] W. Verhelst, M. Roelands, "An overlap-add technique based on waveform similarity (WSOLA) for high quality time-scale modification of speech," Acoustics, Speech, and Signal Processing(ICASSP), vol.2, pp. 554-557, 1993.
[CrossRef]


[16] W. Verhelst, "Overlap-add methods for time-scaling of speech. Speech Communication," vol.30, no.4, pp.207-221, 2000.
[CrossRef] [Web of Science Times Cited 45] [SCOPUS Times Cited 60]


[17] C. d'Alessandro, "Time-frequency speech transformation based on an elementary waveform representation. Speech communication," pp.419-431, 1990.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 13]


[18] D. Henja, B. Musicus "The solafs time-scale modification algorithm," Technical Report of BBN, 1991.

[19] S. Kwon, "Voice-driven sound effect manipulation," International Journal of Human-Computer Interaction, pp.373–382, 2012.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 3]


[20] S. Dusan, L.R. Rabiner, "On the relation between maximum spectral transition positions and phone boundaries," INTERSPEECH, pp.17-21, 2006.
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 6]




References Weight

Web of Science® Citations for all references: 179 TCR
SCOPUS® Citations for all references: 323 TCR

Web of Science® Average Citations per reference: 9 ACR
SCOPUS® Average Citations per reference: 15 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-11-26 20:03 in 69 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy