Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Aug 2024
Next issue: Nov 2024
Avg review time: 59 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,984,401 unique visits
1,157,885 downloads
Since November 1, 2009



Robots online now
SemrushBot
Bytespider


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  








LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  1/2013 - 12

 HIGHLY CITED PAPER 

Phase Coordinate System and p-q Theory Based Methods in Active Filtering Implementation

POPESCU, M. See more information about POPESCU, M. on SCOPUS See more information about POPESCU, M. on IEEExplore See more information about POPESCU, M. on Web of Science, BITOLEANU, A. See more information about  BITOLEANU, A. on SCOPUS See more information about  BITOLEANU, A. on SCOPUS See more information about BITOLEANU, A. on Web of Science, SURU, V. See more information about SURU, V. on SCOPUS See more information about SURU, V. on SCOPUS See more information about SURU, V. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (845 KB) | Citation | Downloads: 1,087 | Views: 5,088

Author keywords
active filters, harmonic distortion, power conditioning, power system control, real time systems

References keywords
power(32), theory(10), active(10), systems(9), instantaneous(9), compensation(9), reactive(8), phase(7), current(6), voltage(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2013-02-28
Volume 13, Issue 1, Year 2013, On page(s): 69 - 74
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2013.01012
Web of Science Accession Number: 000315768300012
SCOPUS ID: 84875353604

Abstract
Quick view
Full text preview
This paper is oriented towards implementation of the main theories of powers in the compensating current generation stage of a three-phase three-wire shunt active power system. The system control is achieved through a dSPACE 1103 platform which is programmed under the Matlab/Simulink environment. Four calculation blocks included in a specifically designed Simulink library are successively implemented in the experimental setup. The first two approaches, namely those based on the Fryze-Buchholz-Depenbrock theory and the generalized instantaneous reactive power theory, make use of phase quantities without any transformation of the coordinate system and provide the basis for calculating the compensating current when total compensation is desired. The others are based on the p-q theory concepts and require the direct and reverse transformation to/from the two-phases stationary reference frame. They are used for total compensation and partial compensation of the current harmonic distortion. The experimental results, in terms of active filtering performances, validate the control strategies implementation and provide arguments in choosing the most appropriate method.


References | Cited By  «-- Click to see who has cited this paper

[1] M. Depenbrock, "Untersuchungen uber die Spannungs- und Leistungsverhältnisse bei Umrichtern ohne Energiespeicher," Dr.Ing. dissertation, Tech. Univ. Hannover, Hannover, Germany, 1962.

[2] M. Depenbrock, "The FBD-method, a generally applicable tool for analyzing power relations," IEEE Trans. Power Systems, vol. 8, no. 2, pp. 381-387, 1993.
[CrossRef] [Web of Science Times Cited 211] [SCOPUS Times Cited 367]


[3] M. Depenbrock, V. Staudt, and H. Wrede, "A theoretical investigation of original and modified instantaneous power theory applied to four-wire systems," IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1160-1167, July/Aug. 2003.
[CrossRef] [Web of Science Times Cited 84] [SCOPUS Times Cited 117]


[4] F. Z. Peng and L. M. Tolbert, "Compensation of nonactive current in power systems - Definitions from a compensation standpoint," IEEE Power Eng. Society Summer Meeting, Seattle, July 2000, pp. 983-987.
[CrossRef]


[5] Y. Xu, L. M. Tolbert, F. Z. Peng, J. N. Chiasson, and J. Chen, "Compensation-based nonactive power definition," IEEE Power Electronics Letters , vol. 99, no. 2, pp. 45-50, 2003.
[CrossRef] [SCOPUS Times Cited 51]


[6] Y. Xu, L. M. Tolbert, J. N. Chiasson, J. B. Campbell and F. Z. Peng, "A generalised instantaneous non-active power theory for STATCOM,", IET Electr. Power Appl., vol.1, issue 6, pp. 853-861, 2007.
[CrossRef] [Web of Science Times Cited 36] [SCOPUS Times Cited 41]


[7] J. Tlusty, J. Svec, J. B. Sendra, and V. Valouch, "Analysis of generalized non-active power theory for compensation of non-periodic disturbances," International Conference on Renewable Energies and Power Quality, Santiago de Compostela, March 2012.

[8] F. Z. Peng and J. S. Lai, "Generalized instantaneous reactive power theory for three-phase power systems," IEEE Trans. Instrum. Meas., vol. 45, no. 1, pp. 293-297, 1996.
[CrossRef] [SCOPUS Times Cited 700]


[9] F. Z. Peng, G. W. Ott, and D. J. Adams, "Harmonic and reactive power compensation based on the generalized reactive power theory for three-phase four-wire systems," IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1174-1181, Nov. 1998.
[CrossRef] [Web of Science Times Cited 313] [SCOPUS Times Cited 439]


[10] P. Salmeron and R. S. Herrera, "Distorted and unbalanced systems compensation within instantaneous reactive power framework," IEEE Trans. Power Del., vol. 21, no. 3, pp. 1655-1662, July 2006.
[CrossRef] [Web of Science Times Cited 43] [SCOPUS Times Cited 71]


[11] R. S. Herrera and P. Salmeron, "Instantaneous reactive power theory: a reference in the nonlinear loads compensation," IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2015-2022, 2009.
[CrossRef] [Web of Science Times Cited 87] [SCOPUS Times Cited 127]


[12] S. J. Jeon, "Unification and evaluation of the instantaneous reactive power theories," IEEE Trans. Pow. Electron., vol. 23, no. 3, pp. 1502-1510, May 2008.
[CrossRef] [Web of Science Times Cited 12] [SCOPUS Times Cited 19]


[13] H. Tedjini, Y. Meslem, M. Rahli, B. Berbaoui, "Shunt active filter in damping harmonics propagation," Advances in Electrical and Computer Engineering, vol. 10, no. 3, pp. 108-113, 2010.
[CrossRef] [Full Text] [Web of Science Times Cited 5] [SCOPUS Times Cited 9]


[14] H. Akagi, Y. Kanazawa, and A. Nabae, "Generalized theory of the instantaneous reactive power in three-phase circuits," Int. Power Electronics Conf., Tokyo, Japan, pp. 1375-1386, 1983.
[CrossRef] [SCOPUS Times Cited 75]


[15] H. Akagi, Y. Kanazawa, and A. Nabae, "Instantaneous reactive power compensators comprising switching devices without energy storage components," IEEE Trans. Ind. Appl., no. 3, pp. 625-630, 1984.
[CrossRef] [Web of Science Times Cited 2082] [SCOPUS Times Cited 3148]


[16] H. Kim, F. Blaabjerg , B. Bak-Jensen, and J. Choi," Instantaneous power compensation in three-phase systems by using p-q-r theory," IEEE Trans. Power Electron., vol. 17, no. 5, pp. 701-710, Sept. 2002.
[CrossRef] [Web of Science Times Cited 172] [SCOPUS Times Cited 238]


[17] A. Bitoleanu and, Mihaela Popescu, "How can the IRP p-q theory be applied for active filtering under nonsinusoidal voltage operation?," Przeglad Elektrot., vol. 2011, no. 1, pp. 67-71, 2011.

[18] M. Popescu and A. Bitoleanu, "A DSP-based implementation of the p-q theory in active power filtering under nonideal voltage conditions," IEEE Trans. Ind. Informat., to be published.
[CrossRef] [Web of Science Times Cited 94] [SCOPUS Times Cited 111]


[19] M. Popescu, A. Bitoleanu, and C.-A., Patrascu, " MATLAB/SIMULINK library for compensating current calculation in three-phase shunt active filtering Systems," Buletinul AGIR, nr. 4, pp. 246-250, 2012.

[20] D. Kairus, R. Wamkeue, B. Belmadani, M. Benghanem, "Variable structure control of DFIG for wind power generation and harmonic current mitigation," Advances in Electrical and Computer Engineering, vol. 10, no. 4, pp. 167-174, 2010.
[CrossRef] [Full Text] [Web of Science Times Cited 10] [SCOPUS Times Cited 13]


[21] S. George and V. Agarwal, "A DSP based optimal algorithm for shunt active filter under nonsinusoidal supply and unbalanced load conditions," IEEE Trans. Power Electron, vol. 22, no. 2, pp. 593-601, March 2007.
[CrossRef] [Web of Science Times Cited 84] [SCOPUS Times Cited 113]


[22] S. George and V. Agarwal, "Optimum control of selective and total harmonic distortion in current and voltage under nonsinusoidal conditions," IEEE Trans. Power Del., vol. 23, no. 2, pp. 937-944, Apr. 2008.
[CrossRef] [Web of Science Times Cited 25] [SCOPUS Times Cited 30]


[23] M. Popescu and A. Bitoleanu, "Control loops design and harmonic distortion minimization in active filtering-based compensation power systems," Internat. Review Modelling and Simulations, vol. 3, no. 4, pp. 581-589, Aug. 2010.

[24] A. Bitoleanu, M. Popescu, M. Dobriceanu, and F. Nastasoiu, "DC-bus voltage optimum control of three-phase shunt active filter system," in Proc. 12th Int. Conf. OPTIM Brasov Romania, 2010, pp. 538-543.

[25] L. R. Limongi, R. Bojoi, G. Griva, and A. Tenconi, "Comparing the performance of digital signal processor-based current controllers for three-phase active power filters," IEEE Ind. Electron. Mag., pp. 20-31, Mar. 2009.
[CrossRef] [Web of Science Times Cited 112] [SCOPUS Times Cited 126]


[26] C. Buccella, C. Cecati, and H. Latafat, "Digital control of power converters - A survey", IEEE Trans. Ind. Informat., vol 8, no. 3, pp. 437-447, Aug. 2012.
[CrossRef] [Web of Science Times Cited 225] [SCOPUS Times Cited 273]


[27] B. V. Reddy and B. C. Babu, "Hysteresis controller and delta modulator- Two viable schemes for current controlled voltage source inverter," IEEE Int. Conf. on Technical Postgraduates, Kuala Lumpur, Dec. 2009.



References Weight

Web of Science® Citations for all references: 3,595 TCR
SCOPUS® Citations for all references: 6,068 TCR

Web of Science® Average Citations per reference: 128 ACR
SCOPUS® Average Citations per reference: 217 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-11-16 01:26 in 144 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy