Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Nov 2024
Next issue: Feb 2025
Avg review time: 57 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

3,110,245 unique visits
1,214,929 downloads
Since November 1, 2009



Robots online now
AhrefsBot
SemanticScholar


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 4 / 2024
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

A Proposed Signal Reconstruction Algorithm over Bandlimited Channels for Wireless Communications, ASHOUR, A., KHALAF, A., HUSSEIN, A., HAMED, H., RAMADAN, A.
Issue 1/2023

AbstractPlus






LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  1/2014 - 18

 HIGH-IMPACT PAPER 

TV Recommendation and Personalization Systems: Integrating Broadcast and Video On demand Services

SOARES, M. See more information about SOARES, M. on SCOPUS See more information about SOARES, M. on IEEExplore See more information about SOARES, M. on Web of Science, VIANA, P. See more information about VIANA, P. on SCOPUS See more information about VIANA, P. on SCOPUS See more information about VIANA, P. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (804 KB) | Citation | Downloads: 1,082 | Views: 4,789

Author keywords
collaborative filtering, content filtering, recommendation systems, TV-Anytime

References keywords
recommendation(6), user(5), systems(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2014-02-28
Volume 14, Issue 1, Year 2014, On page(s): 115 - 120
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2014.01018
Web of Science Accession Number: 000332062300018
SCOPUS ID: 84894614863

Abstract
Quick view
Full text preview
The expansion of Digital Television and the convergence between conventional broadcasting and television over IP contributed to the gradual increase of the number of available channels and on demand video content. Moreover, the dissemination of the use of mobile devices like laptops, smartphones and tablets on everyday activities resulted in a shift of the traditional television viewing paradigm from the couch to everywhere, anytime from any device. Although this new scenario enables a great improvement in viewing experiences, it also brings new challenges given the overload of information that the viewer faces. Recommendation systems stand out as a possible solution to help a watcher on the selection of the content that best fits his/her preferences. This paper describes a web based system that helps the user navigating on broadcasted and online television content by implementing recommendations based on collaborative and content based filtering. The algorithms developed estimate the similarity between items and users and predict the rating that a user would assign to a particular item (television program, movie, etc.). To enable interoperability between different systems, programs characteristics (title, genre, actors, etc.) are stored according to the TV-Anytime standard. The set of recommendations produced are presented through a Web Application that allows the user to interact with the system based on the obtained recommendations.


References | Cited By  «-- Click to see who has cited this paper

[1] G. Adomavicius, Y. Kwon, "New Recommendation Techniques for Multicriteria Rating Systems". IEEE Intelligent Systems, vol. 22, no. 3, pp. 48-55, 2007.
[CrossRef] [Web of Science Times Cited 300] [SCOPUS Times Cited 436]


[2] J. Bar-Ilan, K Keenoy, E. Yaari, M. Levene, "User rankings of search results". Journal of the American Society for Information Science and Technology, vol. 58, no. 9, pp. 1254-1266, May 2007.
[CrossRef] [Web of Science Times Cited 35] [SCOPUS Times Cited 47]


[3] J. Bar-Ilan, M. Mat-Hassan, M. Levene, "Methods for comparing rankings of search engine results". Computer Networks, vol. 50, no. 10, pp. 1448-1463, July 2006.
[CrossRef] [Web of Science Times Cited 80] [SCOPUS Times Cited 104]


[4] T. Burke, "Hybrid recommender systems: Survey and experiments". Modelling and User-Adapted Interaction, vol. 12 , no. 4, pp. 331-370, November 2002.
[CrossRef] [Web of Science Times Cited 2089] [SCOPUS Times Cited 3072]


[5] P. Cotter, B. Smith, Barry, "PTV: Intelligent Personalised TV Guides". In: Proceedings of the 12th Innovative Applications of Artificial Intelligence Conference, pp. 957-964, 2000.

[6] G. Holbling, M. Pleschgatternig, H. Kosch, "PersonalTV - A TV recommendation system using program metadata for content filtering". Multimedia Tools Application, vol. 46, no. 2, pp. 259-288, January 2010.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 7]


[7] S. H. Hsu, M. H. Wen, H. C. Lin, C. C. Lee, C. H. Lee, "AIMED-A personalized TV Recommendation System". In Proceedings of the Interactive TV: A Shared Experience, 5th European Conference, vol. 4471, pp. 166-174, 2007. Springer Berlin/Heidelberg.

[8] J. B. Schafer, J. A. Konstan, J. Riedl, "E Recommendation Applications". GroupLens Research Project, Department of Computer Science and Engineering University of Minnesota, 2001.

[9] S. Velusamy, L. Gopal, S. Bhatnagar, S. Varadarajan, An efficient ad recommendation system for TV programs. Multimedia Systems, vol. 14 no. 2, pp. 73-87, 2008, Springer.
[CrossRef] [Web of Science Times Cited 20] [SCOPUS Times Cited 29]


[10] X. Su, T. M. Khoshgoftaar, "A Survey of Collaborative Filtering". Journal Advances in Artificial Intelligence archive, January 2009.

[11] Z. Yu, X. Zhou, Y. Hao, J. Gu, "TV program recommendation for multiple viewers based on user profile merging". User Modeling and User Adapted Interaction, vol. 16, no. 1, pp. 62-82, 2006.
[CrossRef] [Web of Science Times Cited 232] [SCOPUS Times Cited 323]




References Weight

Web of Science® Citations for all references: 2,759 TCR
SCOPUS® Citations for all references: 4,018 TCR

Web of Science® Average Citations per reference: 230 ACR
SCOPUS® Average Citations per reference: 335 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2025-01-04 02:24 in 49 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2025
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy