Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Aug 2024
Next issue: Nov 2024
Avg review time: 57 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,990,478 unique visits
1,160,245 downloads
Since November 1, 2009



Robots online now
SemrushBot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

A Proposed Signal Reconstruction Algorithm over Bandlimited Channels for Wireless Communications, ASHOUR, A., KHALAF, A., HUSSEIN, A., HAMED, H., RAMADAN, A.
Issue 1/2023

AbstractPlus






LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  3/2015 - 18

 HIGHLY CITED PAPER 

HiGIS: An Open Framework for High Performance Geographic Information System

XIONG, W. See more information about XIONG, W. on SCOPUS See more information about XIONG, W. on IEEExplore See more information about XIONG, W. on Web of Science, CHEN, L. See more information about CHEN, L. on SCOPUS See more information about CHEN, L. on SCOPUS See more information about CHEN, L. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,702 KB) | Citation | Downloads: 1,185 | Views: 3,813

Author keywords
high performance computing, geographic information system, geocomputation, communicating sequential process

References keywords
parallel(10), computing(8), cloud(7), system(6), data(6), processing(5), geospatial(5), remote(4), performance(4), high(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2015-08-31
Volume 15, Issue 3, Year 2015, On page(s): 123 - 132
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.03018
Web of Science Accession Number: 000360171500018
SCOPUS ID: 84940739658

Abstract
Quick view
Full text preview
/Big data/ era expose many challenges to geospatial data management, geocomputation and cartography. There is no exception in geographic information systems (GIS) community. Technologies and facilities of high performance computing (HPC) become more and more feasible to researchers, while mobile computing, ubiquitous computing, and cloud computing are emerging. But traditional GIS need to be improved to take advantages of all these evolutions. We proposed and implemented a GIS married with high performance computing, which is called HiGIS. The goal of HiGIS is to promote the performance of geocomputation by leveraging the power of HPC, and to build an open framework for geospatial data storing, processing, displaying and sharing. In this paper the architecture, data model and modules of the HiGIS system are introduced. A geocomputation scheduling engine based on communicating sequential process was designed to exploit spatial analysis and processing. Parallel I/O strategy using file view was proposed to improve the performance of geospatial raster data access. In order to support web-based online mapping, an interactive cartographic script was provided to represent a map. A demostration of locating house was used to manifest the characteristics of HiGIS. Parallel and concurrency performance experiments show the feasibility of this system.


References | Cited By  «-- Click to see who has cited this paper

[1] A. G. Aly and N. M. Labib, "Proposed Model of GIS-based Cloud Computing Architecture for Emergency System," Int. J. Comput. Sci., vol. 1, no. 4, pp. 17-28, 2013.

[2] J. de la Torre, "Organising geo-temporal data with CartoDB. an open source database on the cloud," In Proc. Biodiversity Informatics Horizons, Rome, Italy, Sept. 2013

[3] S. Wang, "CyberGIS: blueprint for integrated and scalable geospatial software ecosystems," Int. J. Geogr. Inf. Sci., vol. 27, no. 11, pp. 2119-2121, 2013.
[CrossRef] [Web of Science Times Cited 21] [SCOPUS Times Cited 24]


[4] I. H. Kim and M. H. Tsou, "Enabling Digital Earth simulation models using cloud computing or grid computing-two approaches supporting high-performance GIS simulation frameworks," Int. J. Digit. Earth, vol. 6, no. 4, pp. 383-403, 2013.
[CrossRef] [Web of Science Times Cited 20] [SCOPUS Times Cited 26]


[5] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz, "Hadoop gis: a high performance spatial data warehousing system over mapreduce," Proc. VLDB Endow., vol. 6, no. 11, pp. 1009-1020, 2013.
[CrossRef] [Web of Science Times Cited 346] [SCOPUS Times Cited 501]


[6] X. Guan, H. Wu, and L. Li, "A Parallel Framework for Processing Massive Spatial Data with a Split-and-Merge Paradigm," Trans. GIS, vol. 16, no. 6, pp. 829-843, 2012.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 10]


[7] W. Guo, X. Zhu, T. Hu, and L. Fan, "A Multi-granularity Parallel Model for Unified Remote Sensing Image Processing WebServices," Trans. GIS, vol. 16, no. 6, pp. 845-866, 2012.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 4]


[8] L. Liu, A. Yang, L. Chen, W. Xiong, Q. Wu, and N. Jing, "HiGIS - When GIS Meets HPC," In Proc. 12th Int. Conf. on GeoComputation, WuHan, 2013. [Online]. Available: http://www.geocomputation.org/2013/papers/26.pdf

[9] J. Liu, A.X. Zhu, Y. Liu, T. Zhu, and C.Z. Qin, "A layered approach to parallel computing for spatially distributed hydrological modeling," Environ. Model. Softw., vol. 51, no. 0, pp. 221 - 227, 2014.
[CrossRef] [Web of Science Times Cited 41] [SCOPUS Times Cited 53]


[10] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe, "A Theory of Communicating Sequential Processes," J ACM, vol. 31, no. 3, pp. 560-599, Jun. 1984.
[CrossRef] [Web of Science Times Cited 594] [SCOPUS Times Cited 783]


[11] W. Guo, J.Y. Gong, W.S. Jiang, Y. Liu and G. She, "OpenRS-Cloud: A remote sensing image processing platform based on cloud computing environment," Sci. CHINA Technol. Sci., vol. 53, no. 1, pp. 221-230, 2010.
[CrossRef] [Web of Science Times Cited 35] [SCOPUS Times Cited 50]


[12] Q. Chen, L. Wang, and Z. Shang, "MRGIS: A MapReduce-Enabled High Performance Workflow System for GIS," in Proc. of the 2008 Fourth IEEE Int. Conf. on eScience, Washington, DC, USA, 2008, pp. 646-651.
[CrossRef] [SCOPUS Times Cited 49]


[13] Y. Ma, D. Liu and J. Li, "A new framework of cluster-based parallel processing system for high-performance geo-computing," In Geoscience and Remote Sensing Symposium, Cape Town, 2009, vol. 4, pp. IV49-IV52.
[CrossRef] [SCOPUS Times Cited 2]


[14] T. Yuan, Y. Tang, X. Wu, Y. Zhang, H. Zhu, J. Guo, and W. Qin, "Formalization and Verification of REST on HTTP Using CSP," Electron. Notes Theor. Comput. Sci., vol. 309, no. 0, pp. 75-93, 2014.
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 8]


[15] G. Staples, "TORQUE Resource Manager," in Proc. of the 2006 ACM/IEEE Conf. on Supercomputing, New York, NY, USA, 2006.
[CrossRef] [SCOPUS Times Cited 133]


[16] D. Jackson, Q. Snell, and M. Clement, "Core Algorithms of the Maui Scheduler," in Job Scheduling Strategies for Parallel Processing, vol. 2221, D. Feitelson and L. Rudolph, Eds. Springer Berlin Heidelberg, 2001, pp. 87-102.
[CrossRef] [SCOPUS Times Cited 240]


[17] S. Zhang, L. Chen, W. Xiong, "Research on performances of parallel programming models based on chip multi-processor," in Proc. 2011 Int. Conf. Computer Application and System Modeling, XiaMen, 2011, pp. 2688-2691.

[18] C. Yang, M. Goodchild, Q. Huang, D. Nebert, R. Raskin, Y. Xu, M. Bambacus, and D. Fay, "Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing?," Int. J. Digit. Earth, vol. 4, no. 4, pp. 305-329, 2011.
[CrossRef] [Web of Science Times Cited 75] [SCOPUS Times Cited 92]


[19] L. Ouyang, J. Huang, X. Wu, and B. Yu, "Parallel Access Optimization Technique for Geographic Raster Data," in Geo-Informatics in Resource Management and Sustainable Ecosystem, vol. 398, F. Bian, Y. Xie, X. Cui, and Y. Zeng, Eds. Springer Berlin Heidelberg, 2013, pp. 533-542.
[CrossRef] [SCOPUS Times Cited 4]


[20] C. Z. Qin, L. J. Zhan, and A. X. Zhu, "How to Apply the Geospatial Data Abstraction Library (GDAL) Properly to Parallel Geospatial Raster I/O?," Trans. GIS, vol. 18, no. 6, pp. 950-957, 2014.
[CrossRef] [Web of Science Times Cited 38] [SCOPUS Times Cited 39]


[21] Y. Zou, W. Xue, and S. Liu, "A case study of large-scale parallel I/O analysis and optimization for numerical weather prediction system," Future Gener. Comput. Syst., vol. 37, no. 0, pp. 378-389, 2014.
[CrossRef] [Web of Science Times Cited 19] [SCOPUS Times Cited 24]


[22] R. Thakur, W. Gropp, and E. Lusk, "Optimizing noncontiguous accesses in MPI-IO," Parallel Comput., vol. 28, no. 1, pp. 83 - 105, 2002.
[CrossRef] [Web of Science Times Cited 73] [SCOPUS Times Cited 95]


[23] C. Heipke, "Crowdsourcing geospatial data," ISPRS J. Photogramm. Remote Sens., vol. 65, no. 6, pp. 550-557, 2010.
[CrossRef] [Web of Science Times Cited 291] [SCOPUS Times Cited 364]




References Weight

Web of Science® Citations for all references: 1,570 TCR
SCOPUS® Citations for all references: 2,501 TCR

Web of Science® Average Citations per reference: 65 ACR
SCOPUS® Average Citations per reference: 104 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-11-22 05:04 in 130 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy