Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Nov 2024
Next issue: Feb 2025
Avg review time: 57 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

3,084,077 unique visits
1,201,712 downloads
Since November 1, 2009



Robots online now
DotBot
Googlebot
bingbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 4 / 2024
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

A Proposed Signal Reconstruction Algorithm over Bandlimited Channels for Wireless Communications, ASHOUR, A., KHALAF, A., HUSSEIN, A., HAMED, H., RAMADAN, A.
Issue 1/2023

AbstractPlus






LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  3/2011 - 2

 HIGH-IMPACT PAPER 

An Optimal Spectrum Handoff Scheme for Cognitive Radio Mobile Ad Hoc Networks

DUAN, J. See more information about DUAN, J. on SCOPUS See more information about DUAN, J. on IEEExplore See more information about DUAN, J. on Web of Science, LI, Y. See more information about LI, Y. on SCOPUS See more information about LI, Y. on SCOPUS See more information about LI, Y. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (783 KB) | Citation | Downloads: 1,760 | Views: 7,392

Author keywords
cognitive radio, mobile ad hoc networks, radio spectrum management, wireless networks, wireless communication

References keywords
cognitive(15), radio(14), networks(14), spectrum(10), dyspan(6), sensing(5), mobile(4), akyildiz(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2011-08-31
Volume 11, Issue 3, Year 2011, On page(s): 11 - 16
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2011.03002
Web of Science Accession Number: 000296186700002
SCOPUS ID: 80055088375

Abstract
Quick view
Full text preview
Spectrum handoff procedures occur when the primary users appear in the licensed band temporary occupied by the cognitive radio (CR) users and aim to help the CR users to vacate the spectrum rapidly and find available channel to resume the transmission. However, a spectrum handoff scheme that comprehensively considers channel selection, handoff decision as well as space domain handoff is yet undeveloped. In this paper we present a complete optimal spectrum handoff scheme for cognitive radio mobile ad hoc networks. First, we design a spectrum selection mechanism to allow CR users optimally choose the appropriate channel. The spectrum idleness prediction algorithm is utilized based on developing a cooperative spectrum searching approach. Through combining the estimated transmission time, the PU appearance probability and the mean spectrum availability time are integrated to develop the optimal spectrum handoff scheme. Moreover, as one part of the proposed scheme, a geo-location approach is utilized to deal with the space domain handoff. The complete scheme is evaluated through a comprehensive simulation study, and results reveal significant improvements in handoff times and transmission efficiency over conventional approaches.


References | Cited By  «-- Click to see who has cited this paper

[1] S. Haykin, "Cognitive radio: brain-empowered wireless communications," IEEE JSAC., vol. 23, pp. 201-220, Feb. 2005.
[CrossRef] [Web of Science Times Cited 7840] [SCOPUS Times Cited 10481]


[2] I.F. Akyildiz, W.Y. Lee, and K.R. Chowdhury, "CRAHNs: cognitive radio ad hoc networks," Ad Hoc Networks, vol. 7, pp. 810-836, July 2009.
[CrossRef] [SCOPUS Times Cited 1133]


[3] I.F. Akyildiz, W.Y. Lee, M.C. Vuran, S. Mohanty, "NeXt generation/dynamic spectrum access/cognitive radio wireless networks: a survey," Elsevier Computer Networks, vol. 50, pp. 2127-2159, 2006.
[CrossRef] [Web of Science Times Cited 3703] [SCOPUS Times Cited 5364]


[4] Yi Song and Jiang Xie, "On the Spectrum Handoff for Cognitive Radio Ad Hoc Networks without Common Control Channel," Cognitive Radio Mobile Ad Hoc Networks, Springer, July 2011.
[CrossRef] [Web of Science Times Cited 5]


[5] J. Ma, G. Y. Li, and B. H. Juang, "Signal processing in cognitive radio," Proc. IEEE, vol. 97, no. 5, pp. 805-823, May 2009.
[CrossRef] [Web of Science Times Cited 342] [SCOPUS Times Cited 461]


[6] D. Willkomm, J. Gross, and A. Wolisz, "Reliable link maintenance in cognitive radio systems," Proc. IEEE DySPAN 2005, Baltimore, Nov. 2005, pp. 371-378.
[CrossRef] [SCOPUS Times Cited 140]


[7] X. Liu and Z. Ding, "ESCAPE: a channel evacuation protocol for spectrum-agile networks," Proc. IEEE DySPAN 2007, Dublin, Apr. 2007, pp. 292-302.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 32]


[8] H. Kim and K. G. Shin, "Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks," IEEE Trans. on Mobile Computing, vol. 7, no. 5, pp. 533-545, May 2008.
[CrossRef] [Web of Science Times Cited 510] [SCOPUS Times Cited 708]


[9] L. Yang, L. Cao and H. Zheng, "Proactive channel access in dynamic spectrum networks," Elsevier Physical Comm., vol. 1, pp. 103-111, June 2008.
[CrossRef] [SCOPUS Times Cited 153]


[10] L. Wang and C. Wang, "Spectrum handoff for cognitive radio networks: reactive-sensing or proactive-sensing," Proc. IEEE IPCCC 2008, Austin, Dec. 2008, pp. 343-348.
[CrossRef] [Web of Science Times Cited 65] [SCOPUS Times Cited 123]


[11] L. Wang and A. Chen, "On the performance of spectrum handoff for link maintenance in cognitive radio," Proc. ISWPC 2008, Santorini, May 2008, pp. 670-674.
[CrossRef] [SCOPUS Times Cited 54]


[12] W.Y. Lee and I.F. Akyildiz, "A spectrum decision framework for cognitive radio networks," IEEE Trans. on Mobile Computing, vol. 10, no. 2, pp. 161-174, Feb. 2011.
[CrossRef] [Web of Science Times Cited 121] [SCOPUS Times Cited 155]


[13] W.Y. Lee and I.F. Akyildiz, "Optimal spectrum sensing framework for cognitive radio networks," IEEE Trans. on Wireless Comm., vol. 7, no. 10, pp. 3845-3857, Oct. 2008.
[CrossRef] [Web of Science Times Cited 535] [SCOPUS Times Cited 730]


[14] G. Ning, K.R. Chowdhury, J. Duan, P. Nintanavongsa, "Licensed user activity estimation in mobile cognitive radio ad hoc networks," submitted to IEEE GlobeCom 2011.

[15] G. Ganesan and Y. (G.) Li, "Cooperative spectrum sensing in cognitive radio-part II: Multiuser networks," IEEE Trans. on Wireless Comm., vol. 6, no. 6, pp. 2214-2222, June 2007.
[CrossRef] [Web of Science Times Cited 580] [SCOPUS Times Cited 775]


[16] C. Cordeiro et. al., "IEEE 802.22: the first worldwide wireless standard based on cognitive radios," Proc. IEEE DySPAN 2005, Baltimore, Nov. 2005, pp. 328-337.
[CrossRef] [SCOPUS Times Cited 634]


[17] M.R. Chari et. al., "FLO Physical Layer: An Overview," IEEE Trans. Broadcasting, vol. 53, no. 1, pp. 145-159, Mar. 2007.
[CrossRef] [Web of Science Times Cited 72] [SCOPUS Times Cited 105]


References Weight

Web of Science® Citations for all references: 13,791 TCR
SCOPUS® Citations for all references: 21,048 TCR

Web of Science® Average Citations per reference: 811 ACR
SCOPUS® Average Citations per reference: 1,238 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-12-24 21:05 in 109 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy