Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Aug 2024
Next issue: Nov 2024
Avg review time: 59 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,983,116 unique visits
1,157,462 downloads
Since November 1, 2009



Robots online now
bingbot
Googlebot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  








LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  4/2010 - 27
View TOC | « Previous Article | Next Article »

 HIGH-IMPACT PAPER 

Variable Structure Control of DFIG for Wind Power Generation and Harmonic Current Mitigation

KAIRUS, D. See more information about KAIRUS, D. on SCOPUS See more information about KAIRUS, D. on IEEExplore See more information about KAIRUS, D. on Web of Science, WAMKEUE, R. See more information about  WAMKEUE, R. on SCOPUS See more information about  WAMKEUE, R. on SCOPUS See more information about WAMKEUE, R. on Web of Science, BELMADANI, B. See more information about  BELMADANI, B. on SCOPUS See more information about  BELMADANI, B. on SCOPUS See more information about BELMADANI, B. on Web of Science, BENGHANEM, M. See more information about BENGHANEM, M. on SCOPUS See more information about BENGHANEM, M. on SCOPUS See more information about BENGHANEM, M. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,179 KB) | Citation | Downloads: 3,259 | Views: 6,699

Author keywords
active filter, doubly fed induction generator, power quality, smc, power quality

References keywords
power(11), control(11), energy(9), wind(6), active(5), variable(4), systems(4), generation(4), conversion(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2010-11-30
Volume 10, Issue 4, Year 2010, On page(s): 167 - 174
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2010.04027
Web of Science Accession Number: 000284782700027
SCOPUS ID: 80051478138

Abstract
Quick view
Full text preview
This paper focuses on wind energy conversion system (WECS) analysis and control for power generation along with problems related to the mitigation of harmonic pollution in the grid using a variable-speed structure control of the doubly fed induction generator (DFIG). A control approach based on the so-called sliding mode control (SMC) that is both efficient and suitable is used for power generation control and harmonic-current compensation. The WECS then behaves as an active power filter (APF). The method aims at improving the overall efficiency, dynamic performance and robustness of the wind power generation system. Simulation results obtained on a 20-kW, 380-V, 50-Hz DFIG confirm the effectiveness of the proposed approach.


References | Cited By  «-- Click to see who has cited this paper

[1] R. Pena, R. C. Clark, G. M. Asher, "Doubly Fed Induction Generator using Back-to-Back PWM Converters and its Application to Variable-Speed Wind-Energy generation", IEE Proc-Elect. Power Appl, Vol. 143, No. 5, 1969. pp. 380-387.
[CrossRef] [Web of Science Times Cited 396] [SCOPUS Times Cited 481]


[2] Lie Xu, P. Cartwright, "Direct Active and Reactive Power Control of DFIG for Wind Energy Generation", IEEE Transactions on Energy Conversion. 21, No. 3, Sept. 2006. pp. 750-758.
[CrossRef] [Web of Science Times Cited 515] [SCOPUS Times Cited 696]


[3] D. Zhi and L. Xu, "Direct Power Control of DFIG with Constant Switching Frequency and Improved Transient Performance", IEEE Trans. on Energy Conversion, Vol. 22, No. 1, March 2007, pp. 110-118.
[CrossRef] [Web of Science Times Cited 265] [SCOPUS Times Cited 339]


[4] X. Xiaozeng, L. Yezeng, and Q. Yin, "Effect of Parameters Variety on Vector-Controlled Induction Motor", J. Huazhong Univ. of Sci. & Tech. (Nature Science Edition), Vol.30, No. 7, 2003 pp. 43-45.

[5] V. Utkin, "Variable Structure Systems with Sliding Mode", IEEE.Trans. Automatic Control, 22(2). 1997. pp. 212-222.
[CrossRef] [Web of Science Times Cited 3480] [SCOPUS Times Cited 4611]


[6] V. I. Utkin, "Sliding Mode Control Design Principles and Applications to Electrical Drives", IEEE Trans. On industrial Electronics, Vol. 40, No. 1, Feb. 1993, pp. 41-49.
[CrossRef] [Web of Science Times Cited 1286] [SCOPUS Times Cited 1774]


[7] T. S. Key and 1.-S. Lai, "Comparison of Standards and Power Supply Design Options for Limiting Harmonic Distortion in Power Systems Update", IEEE Trans. Ind. Appl., Vol. 29, No. 4, July/Aug. 1993. pp. 688-695.
[CrossRef] [Web of Science Times Cited 63] [SCOPUS Times Cited 75]


[8] K. J. P. Macken, K. Vanthournout, J. Van den Keybus, G. Deconinck , R. J. M. Belmans, "Distributed Control of Renewable Generation Units with Integrated Active Filter", IEEE Transactions on Power Electronics, Vol. 19, Sept. 2004. pp. 1353-1360.
[CrossRef] [Web of Science Times Cited 65] [SCOPUS Times Cited 96]


[9] M. T. Abolhassani, P. Enjeti, H. A. Toliyat, "Integrated Doubly-Fed Electric Alternator/Active Filter (IDEA) a Viable Power Quality Solution for Wind Energy Conversion Systems", IEEE Trans. Energy Conversion, Vol. 23, No. 2, June 2008, pp. 642-650.
[CrossRef] [Web of Science Times Cited 52] [SCOPUS Times Cited 83]


[10] F. Soares dos Reis, J. A. V. Ale, F. D. Adegas, R. Tonkoski Jr, S. Slan, K. Tan, "Active Shunt Filter for Harmonic Mitigation in Wind Turbines Generators", 37th IEEE Power Specialists Conference, Jeju, Korea. June 18-22, 2006.

[11] A. Gaillard, P. Poure, S. Saadate, M. Machmoum, "Variable Speed DFIG Wind Energy System for Power Generation and Harmonic Current Mitigation", Renewable Energy, 34, 2009, pp.1 545-1553

[12] P. C. Krause, "Analysis of Electrical Machinery", New York, McGraw-Hill. 1994.

[13] L. Mihet-popa, I. Boldea, "Control Strategies for Large Wind Turbine Application", Journal of Electrical Engineering, Vol. 7, Edition 3rd, ISSN 1582-4594. 2006.

[14] K. Y. Chang, W. J. Wang, "Robust Covariance Control for Perturbed Stochastic Multivariable System via Variable Structure control", Elsevier, Systems & Control Letters 37 (1999) pp.323-328.
[CrossRef] [Web of Science Times Cited 28] [SCOPUS Times Cited 35]


[15] M. Hamerlain, T. Youssef, M. Belhocine, "Switching on the derivative of control to reduce chatter", IEE Proceeding Control Theory and Applications, Vol. 148, Issue 1, Jan 2001.

[16] B. Singh, K. Al-Haddad, A. Chandra, "A Review of Active Filters for Power Quality Improvement", IEEE Trans. on Ind. Electronics, Vol. 46, No. 5, October 1999. pp 960-971.
[CrossRef] [Web of Science Times Cited 1397] [SCOPUS Times Cited 2045]


[17] A. Akagi, Y. Kanazawa and A. Nabae, "Instantaneous Reactive Power Compensation comprising Switching Devices Without Energy Storage Elements", IEEE Trans. on Ind. App. Vol. 20, 1984.

References Weight

Web of Science® Citations for all references: 7,547 TCR
SCOPUS® Citations for all references: 10,235 TCR

Web of Science® Average Citations per reference: 444 ACR
SCOPUS® Average Citations per reference: 602 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-11-14 17:43 in 71 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy