4/2021 - 4 |
An Efficient Capacitor Voltage Balancing Scheme for Modular Multilevel Converter Based Wind Energy Conversion SystemVURAL, A. M. , KURTOGLU, M. , EROGLU, F. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (2,869 KB) | Citation | Downloads: 938 | Views: 2,018 |
Author keywords
converters, permanent magnet machines, power conversion, power system modeling, wind energy integration
References keywords
energy(29), wind(26), multilevel(17), power(16), modular(14), systems(11), permanent(11), magnet(11), converter(10), synchronous(9)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2021-11-30
Volume 21, Issue 4, Year 2021, On page(s): 31 - 42
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2021.04004
Web of Science Accession Number: 000725107100004
SCOPUS ID: 85122267316
Abstract
Modular multilevel converters (MMCs) can be a reliable solution since they have modular structure and high quality output waveform for permanent magnet synchronous generator (PMSG) based wind energy conversion system (WECS). Capacitor voltage balancing in nearest level modulation (NLM) is required to keep the capacitor voltage of each submodule of MMC constant. In this paper, an efficient capacitor voltage balancing scheme under NLM is proposed for PMSG based WECS with MMC topology. Through proposed control scheme, arm voltages are separately controlled and voltage ripple of around 1.5% is obtained. This result provides high quality output waveform at the point of common coupling (PCC). Furthermore, DC-link voltage control is achieved via hysteresis current control based proportional-integral controller. The ripple of DC-link voltage is obtained quite well as nearly 0.25%. In addition, load voltage control is accomplished using dq reference frame-based voltage control scheme for voltage and frequency stabilization at the PCC by regulating the voltage at its reference value. Simulation studies show that all proposed control schemes give satisfactory results for MMC based WECS under variable dynamic operation modes. Finally, experimental verification is performed using laboratory prototype to show the applicability of the proposed capacitor voltage balancing scheme. |
References | | | Cited By «-- Click to see who has cited this paper |
[1] S. D. Ahmed, et al., "Grid integration challenges of wind energy: A review," IEEE Access, vol. 8, pp. 10857-10878, 2020. [CrossRef] [Web of Science Times Cited 215] [SCOPUS Times Cited 301] [2] P. Sadorsky, "Wind energy for sustainable development: Driving factors and future outlook," J. Clean. Prod., vol. 289, pp. 1-15, 2021. [CrossRef] [Web of Science Times Cited 173] [SCOPUS Times Cited 213] [3] M. Cheng, Y. Zhu, "The state of the art of wind energy conversion systems and technologies: A review," Energy Convers. Manag., vol. 88, pp. 332-347, 2014. [CrossRef] [Web of Science Times Cited 456] [SCOPUS Times Cited 556] [4] V. Yaramasu, et al., "High-power wind energy conversion systems: State-of-the-art and emerging technologies," Proceedings of the IEEE, vol. 103, no. 5, pp. 740-788, 2015. [CrossRef] [Web of Science Times Cited 629] [SCOPUS Times Cited 685] [5] M. Nasiri, J. Milimonfared, S. H. Fathi, "A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines," Renew. Sustain. Energy Rev., vol. 47, pp. 399-415, 2015. [CrossRef] [Web of Science Times Cited 163] [SCOPUS Times Cited 195] [6] L. Pan, C. Shao, "Wind energy conversion systems analysis of PMSG on offshore wind turbine using improved SMC and extended state observer," Renew. Energy, vol. 161, pp. 149-161, 2020. [CrossRef] [Web of Science Times Cited 49] [SCOPUS Times Cited 59] [7] W. Du, W. Dong, H. F. Wang, "Small-signal stability limit of a grid-connected PMSG wind farm dominated by the dynamics of PLLs," IEEE Trans. Power Syst., vol. 35, no. 3, pp. 2093-2107, 2020. [CrossRef] [Web of Science Times Cited 47] [SCOPUS Times Cited 66] [8] S. Grabic, N. Celanovic, V. A. Katic, "Permanent magnet synchronous generator cascade for wind turbine application," IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1136-1142, 2008. [CrossRef] [Web of Science Times Cited 69] [SCOPUS Times Cited 107] [9] N. Herisanu, et al., "Dynamic response of a permanent magnet synchronous generator to a wind gust," Energies, vol. 12, no. 5, pp. 1-11, 2019. [CrossRef] [Web of Science Times Cited 49] [SCOPUS Times Cited 57] [10] F. Blaabjerg, K. Ma, "Future on power electronics for wind turbine systems," IEEE J. Emerg. Sel. Top. Power Electron., vol. 1, no. 3, pp. 139-152, 2013. [CrossRef] [Web of Science Times Cited 581] [SCOPUS Times Cited 740] [11] S. Kouro, et al., "Recent advances and industrial applications of multilevel converters," IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2553-2580, 2010. [CrossRef] [Web of Science Times Cited 2868] [SCOPUS Times Cited 3549] [12] J. Rodriguez, et al., "Multilevel voltage-source-converter topologies for industrial medium-voltage drives," IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 2930-2945, 2007. [CrossRef] [Web of Science Times Cited 1671] [SCOPUS Times Cited 2206] [13] M. Kurtoglu, et al., "Recent contributions and future prospects of the modular multilevel converters: A comprehensive review," Int. Trans. Electr. Energy Syst., vol. 29, 2019. [CrossRef] [Web of Science Times Cited 34] [SCOPUS Times Cited 48] [14] N. Guler, et al., "An inverter design for a new permanent magnet synchronous generator," Int. J. Hydrogen Energy, vol. 42, no. 28, pp. 17723-17732, 2017. [CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 13] [15] R. Bharanikumar, A. N. Kumar, "Performance analysis of wind turbine-driven permanent magnet generator with matrix converter," Turkish J. Electr. Eng. Comput. Sci., vol. 20, no. 3, pp. 299-317, 2012. [CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 17] [16] M. Diaz, et al., "Control of wind energy conversion systems based on the modular multilevel matrix converter," IEEE Trans. Ind. Electron., vol. 64, no. 11, pp. 8799-8810, 2017. [CrossRef] [Web of Science Times Cited 83] [SCOPUS Times Cited 115] [17] S. Debnath, M. Saeedifard, "A new hybrid modular multilevel converter for grid connection of large wind turbines," IEEE Trans. Sustain. Energy, vol. 4, no. 4, pp. 1051-1064, 2013. [CrossRef] [Web of Science Times Cited 130] [SCOPUS Times Cited 149] [18] R. K. Swami, P. Samuel, R. Gupta, "Power control in grid-connected wind energy system using diode-clamped multilevel inverter," IETE J. Res., vol. 62, no. 4, pp. 515-524, 2016. [CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 7] [19] L. Fateh, et al., "Modeling and control of a permanent magnet synchronous generator dedicated to standalone wind energy conversion system," Front. Energy, vol. 10, no. 2, pp. 155-163, 2016. [CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 21] [20] C. N. Bhende, S. Mishra, S. G. Malla, "Permanent magnet synchronous generator-based standalone wind energy supply system," IEEE Trans. Sustain. Energy, vol. 2, no. 4, pp. 361-373, 2011. [CrossRef] [Web of Science Times Cited 217] [SCOPUS Times Cited 342] [21] Y. Wang, et al., "Application of modular multilevel converter in medium voltage high power permanent magnet synchronous generator wind energy conversion systems," IET Renew. Power Gener., vol. 10, no. 6, pp. 824-833, Jul. 2016. [CrossRef] [Web of Science Times Cited 69] [SCOPUS Times Cited 85] [22] X. Xie, et al., "Analysis of power loss and reliability on hybrid modular multilevel converter with redundancy configuration for offshore wind turbines," 2019 International Conference on Electrical Machines and Systems (ICEMS), pp. 1-6, 2019. [CrossRef] [SCOPUS Times Cited 11] [23] F. B. Xu, et al., "Modular multilevel converter-based PWM rectifier system for high speed or high frequency permanent magnet synchronous generators," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), Jeju, Korea (South), 2018, pp. 1229-1234. [CrossRef] [SCOPUS Times Cited 1] [24] Z. Liu, et al., "Minimal capacitor voltage ripple control for the modular multilevel converter based wind energy conversion system," 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 2020, pp. 1864-1869. [CrossRef] [SCOPUS Times Cited 5] [25] H. Li, et al., "Cost and reliability optimization of modular multilevel converter with hybrid submodule for offshore DC wind turbine," Int. J. Electr. Power Energy Syst., vol. 120, 2020. [CrossRef] [Web of Science Times Cited 17] [SCOPUS Times Cited 26] [26] A. Kamal, A. Basit, "High power medium voltage PMSG based WECS using three-level boost and modular multilevel converters," 2018 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), Islamabad, Pakistan, 2018, pp. 1-6. [CrossRef] [SCOPUS Times Cited 2] [27] Z. Liu, et al., "A steady-state analysis method for modular multilevel converters connected to permanent magnet synchronous generator-based wind energy conversion systems," Energies, vol. 11, no. 2, pp. 1-31, 2018. [CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 24] [28] M. M. N. Amin, O. A. Mohammed, "DC-Bus Voltage Control Technique for Parallel-Integrated Permanent Magnet Wind Generation Systems," IEEE Trans. Energy Convers., vol. 26, no. 4, pp. 1140-1150, 2011. [CrossRef] [Web of Science Times Cited 22] [SCOPUS Times Cited 28] [29] S. G. Malla, C. N. Bhende, "Voltage control of stand-alone wind and solar energy system," Int. J. Electr. Power Energy Syst., vol. 56, pp. 361-373, 2014. [CrossRef] [Web of Science Times Cited 68] [SCOPUS Times Cited 122] [30] A. E. Leon, S. J. Amodeo, "Energy balancing improvement of modular multilevel converters under unbalanced grid conditions," IEEE Trans. Power Electron., vol. 32, no. 8, pp. 6628-6637, Aug. 2017. [CrossRef] [Web of Science Times Cited 63] [SCOPUS Times Cited 87] [31] A. Dekka, et al., "Integrated model predictive control with reduced switching frequency for modular multilevel converters," IET Electr. Power Appl., vol. 11, no. 5, pp. 857-863, 2017. [CrossRef] [Web of Science Times Cited 45] [SCOPUS Times Cited 52] [32] S. Ghasemi, A. Tabesh, J. Askari-Marnani, "Application of fractional calculus theory to robust controller design for wind turbine generators," IEEE Trans. Energy Convers., vol. 29, no. 3, pp. 780-787, 2014. [CrossRef] [Web of Science Times Cited 85] [SCOPUS Times Cited 103] [33] K. Suresh, D. R. Arulmozhiyal, "Design and implementation of bi-directional DC-DC converter for wind energy system," Circuits Syst., vol. 7, no. 11, pp. 3705-3722, 2016. [CrossRef] [34] A. Chatterjee, K. B. Mohanty, "Current control strategies for single phase grid integrated inverters for photovoltaic applications-a review," Renew. Sustain. Energy Rev., vol. 92, pp. 554-569, 2018. [CrossRef] [Web of Science Times Cited 47] [SCOPUS Times Cited 67] [35] G. Konstantinou, et al., "Switching frequency analysis of staircase-modulated modular multilevel converters and equivalent PWM techniques," IEEE Trans. Power Deliv., vol. 31, no. 1, pp. 28-36, Feb. 2016. [CrossRef] [Web of Science Times Cited 62] [SCOPUS Times Cited 63] [36] S. Du, A. Dekka, B. Wu, N. Zargari, Modular Multilevel Converters: Analysis, Control, and Applications. John Wiley & Sons, 2017 Web of Science® Citations for all references: 7,971 TCR SCOPUS® Citations for all references: 10,122 TCR Web of Science® Average Citations per reference: 215 ACR SCOPUS® Average Citations per reference: 274 ACR TCR = Total Citations for References / ACR = Average Citations per Reference We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more Citations for references updated on 2024-11-16 20:37 in 241 seconds. Note1: Web of Science® is a registered trademark of Clarivate Analytics. Note2: SCOPUS® is a registered trademark of Elsevier B.V. Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site. |
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.