2/2025 - 5 |
Enhanced Robust Control of Induction Motor Using Combined Optimal Model Predictive Control With Super-Twisting AlgorithmREZGUI, S.-E.![]() ![]() ![]() ![]() ![]() ![]() |
Extra paper information in ![]() ![]() ![]() |
Click to see author's profile in ![]() ![]() ![]() |
Not available online | Downloads: 0 | Views: 2 |
Author keywords
induction motor, predictive control, robust control, sliding mode control, variable speed drives
References keywords
image(31), encryption(29), chaotic(14), scheme(9), algorithm(9), applications(8), tools(6), multimedia(6), coding(6), sensing(5)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2025-06-30
Volume 25, Issue 2, Year 2025, On page(s): 37 - 48
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2025.02005
Abstract
This paper presents a novel strategy for induction motor control that combines Optimal Model Predictive Control (OMPC) with the Super-Twisting Algorithm (STA) to enhance the performance of field-oriented control (IFOC) strategy under disturbances and uncertainties. OMPC is exploited for its capability to optimally handle multivariable systems with constraints, but suffers from high computational demands, sensitivity to model inaccuracies, and limited robustness against disturbances. To address these limitations, the proposed approach integrates STA, a second-order sliding mode technique, which provides robustness when subjected to model mismatch and disturbances, while reducing the chattering effect typically associated with classical sliding mode control. By incorporating OMPC with STA into the speed and currents loops of the IFOC technique, the system gains enhanced robustness and disturbance rejection capabilities, without increasing computational cost making it viable for real-time applications in complex control scenarios. This synergetic approach ensures stable and efficient performance in the face of internal variations (like parameters variation) and external perturbations (variable references and load torque). Simulation results demonstrate that the combined OMPC-STA strategy outperforms traditional PI and SMC methods in terms of tracking accuracy, robustness, providing a more reliable control solution for high-performance drives. |
References | | | Cited By «-- Click to see who has cited this paper |
[1] A. G. M. A. Aziz, A. Y. Abdelaziz, Z. M. Ali, A. A. Z. Diab, "A comprehensive examination of vector-controlled induction motor drive techniques," Energies, vol. 16, no. 6, p. 2854, Mar. 2023. doi:10.3390/en16062854
[2] Ã. Otkun, "Newton-Raphson based scalar speed control and optimization of IM," Automatika, vol. 62, no. 1, pp. 55-64, Jan. 2021. doi:10.1080/00051144.2020.1846322 [3] I. M. Alsofyani, N. R. N. Idris, K.-B. Lee, "Dynamic hysteresis torque band for improving the performance of lookup-table-based DTC of induction machines," IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7959-7970, Sep. 2018. doi:10.1109/tpel.2017.2773129 [4] Y. T. Rao, "Current based restarting method for rotating sensorless induction motor drive," IEEE Trans. Energy Convers., vol. 38, no. 3, pp. 2239-2242, Sep. 2023. doi:10.1109/tec.2023.3289065 [5] A. Nurettin, N. İnanç, "Sensorless vector control for induction motor drive at very low and zero speeds based on an adaptive-gain super-twisting sliding mode observer," IEEE J. Emerg. Sel. Top. Power Electron., vol. 11, no. 4, pp. 4332-4339, Aug. 2023. doi:10.1109/jestpe.2023.3265352 [6] W. Chen, K. Cheng, K. Chen, "Derivation and verification of a vector controller for induction machines with consideration of stator and rotor core losses," IET Electr. Power Appl., vol. 12, no. 1, pp. 1-11, Jan. 2018. doi:10.1049/iet-epa.2016.0654 [7] B. Poudel, M. Panwar, R. Hovsapian, "Dynamic response verification of vector controlled induction machines for hydropower emulation," in 2024 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA: IEEE, pp. 1-5, Apr. 2024. doi:10.1109/kpec61529.2024.10676231 [8] F. Wang, Z. Zhang, X. Mei, J. RodrÃguez, R. Kennel, "Advanced control strategies of induction machine: field oriented control, direct torque control and model predictive control," Energies, vol. 11, no. 1, p. 120, Jan. 2018. doi:10.3390/en11010120 [9] K. Ohyama, G. M. Asher, M. Sumner, "Comparative analysis of experimental performance and stability of sensorless induction motor drives," IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 178-186, Feb. 2006. doi:10.1109/tie.2005.862298 [10] R. Dey, S. K. Jain, P. K. Padhy, "Robust closed loop reference MRAC with PI compensator," IET Control Theory Appl., vol. 10, no. 18, pp. 2378-2386, Dec. 2016. doi:10.1049/iet-cta.2016.0430 [11] S. J. Gambhire, D. R. Kishore, P. S. Londhe, S. N. Pawar, "Review of sliding mode based control techniques for control system applications," Int. J. Dyn. Control, vol. 9, no. 1, pp. 363-378, Mar. 2021. doi:10.1007/s40435-020-00638-7 [12] N. T. Nguyen, "Model-reference adaptive control," in Advanced Textbooks in Control and Signal Processing, Cham: Springer International Publishing, pp. 83-123, 2018. doi:10.1007/978-3-319-56393-0_5 [13] J. Yang, Y. Liu, J. Na, G. Gao, "Improving transient performance of modified model reference adaptive control," in Lecture Notes in Electrical Engineering, Singapore: Springer Singapore, pp. 331-343, 2018. doi:10.1007/978-981-10-7212-3_21 [14] A. Levant, "Chattering analysis," IEEE Trans. Autom. Control, vol. 55, no. 6, pp. 1380-1389, Jun. 2010. doi:10.1109/tac.2010.2041973 [15] U. Pérez-Ventura, L. Fridman, "Is it reasonable to substitute discontinuous SMC by continuous HOSMC?," arXiv: arXiv:1705.09711. May 26, 2017. doi:10.48550/arXiv.1705.09711 [16] J. Liu, Y. Gao, Y. Yin, J. Wang, W. Luo, G. Sun, "Sliding mode control methodology in the applications of industrial power systems," in Studies in Systems, Decision and Control. Cham: Springer International Publishing, 2020. doi:10.1007/978-3-030-30655-7 [17] N. El Ouanjli, S. Motahhir, A. Derouich, A. El Ghzizal, A. Chebabhi, M. Taoussi, "Improved DTC strategy of doubly fed induction motor using fuzzy logic controller," Energy Rep., vol. 5, pp. 271-279, Nov. 2019. doi:10.1016/j.egyr.2019.02.001 [18] F. Beltran-Carbajal, H. Yañez-Badillo, D. Galvan-Perez, I. Rivas-Cambero, D. Sotelo, C. Sotelo, "B-Spline artificial neural networks in robust induction motor control," IEEE Access, vol. 12, pp. 101679-101700, 2024. doi:10.1109/access.2024.3430323 [19] H. Hamdi, C. B. Regaya, A. Zaafouri, "A sliding-neural network control of induction-motor-pump supplied by photovoltaic generator," Prot. Control Mod. Power Syst., vol. 5, no. 1, Dec. 2020. doi:10.1186/s41601-019-0145-1 [20] M. Schwenzer, M. Ay, T. Bergs, D. Abel, "Review on model predictive control: An engineering perspective," Int. J. Adv. Manuf. Technol., vol. 117, no. 5-6, pp. 1327-1349, Nov. 2021. doi:10.1007/s00170-021-07682-3 [21] J. Rodriguez et al., "State of the art of finite control set model predictive control in power electronics," IEEE Trans. Ind. Inform., vol. 9, no. 2, pp. 1003-1016, May 2013. doi:10.1109/tii.2012.2221469 [22] J. Rodriguez et al., "Predictive current control of a voltage source inverter," IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 495-503, Feb. 2007. doi:10.1109/tie.2006.88880 [23] M. Nemec, D. Nedeljkovic, V. Ambrozic, "Predictive torque control of induction machines using immediate flux control," IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2009-2017, Aug. 2007. doi:10.1109/tie.2007.895133 [24] Y. Zhang, H. Yang, "Model-predictive flux control of induction motor drives with switching instant optimization," IEEE Trans. Energy Convers., vol. 30, no. 3, pp. 1113-1122, Sep. 2015. doi:10.1109/tec.2015.2423692 [25] J. Rodriguez et al., "Latest advances of model predictive control in electrical drivesâPart II: Applications and benchmarking with classical control methods," IEEE Trans. Power Electron., vol. 37, no. 5, pp. 5047-5061, May 2022. doi:10.1109/tpel.2021.3121589 [26] Y. Zhang, B. Xia, H. Yang, J. Rodriguez, "Overview of model predictive control for induction motor drives," Chin. J. Electr. Eng., vol. 2, no. 1, pp. 62-76, Jun. 2016. doi:10.23919/cjee.2016.7933116 [27] J. Rodriguez et al., "Latest advances of model predictive control in electrical drivesâPart I: Basic concepts and advanced strategies," IEEE Trans. Power Electron., vol. 37, no. 4, pp. 3927-3942, Apr. 2022. doi:10.1109/tpel.2021.3121532 [28] H. Xie, W. Tian, X. Gao, F. Wang, J. Rodriguez, R. Kennel, "An ensemble regulation principle for multiobjective finite-control-set model-predictive control of induction machine drives," IEEE Trans. Power Electron., vol. 38, no. 3, pp. 3069-3083, Mar. 2023. doi:10.1109/tpel.2022.3220289 [29] Z. Lu, R. Zhang, L. Hu, L. Gan, J. Lin, P. Gong, "Model predictive control of induction motor based on amplitude-phase motion equation," IET Power Electron., vol. 12, no. 9, pp. 2400-2406, Aug. 2019. doi:10.1049/iet-pel.2019.0093 [30] M. Mamdouh, M. A. Abido, "Efficient predictive torque control for induction motor drive," IEEE Trans. Ind. Electron., vol. 66, no. 9, pp. 6757-6767, Sep. 2019. doi:10.1109/tie.2018.2879283 [31] A. Gürel, E. ZerdaliÌ, "Metaheuristic optimization of predictive torque control for induction motor control," Ãmer Halisdemir Ãniversitesi Mühendis. Bilim. Derg., Aug. 2021. doi:10.28948/ngumuh.969734 [32] V. P. Muddineni, A. K. Bonala, T. Penthala, "Dynamic weighting selection for predictive torque and flux control of industrial drives," in Lecture Notes in Electrical Engineering, Singapore: Springer Nature Singapore, pp. 31-44, 2023. doi:10.1007/978-981-19-5936-3_4 [33] I. Sami, S. Ullah, A. Basit, N. Ullah, J. Ro, "Integral super twisting sliding mode based sensorless predictive torque control of induction motor," IEEE Access, vol. 8, pp. 186740-186755, 2020. doi:10.1109/access.2020.3028845 [34] K. Zhao, R. Zhou, J. She, C. Zhang, J. He, X. Li, "A model predictive current control based on sliding mode speed controller for PMSM," in 2020 13th International Conference on Human System Interaction (HSI), Tokyo, Japan: IEEE, pp. 229-233, Jun. 2020. doi:10.1109/hsi49210.2020.9142635 [35] H. Xiao, D. Zhao, S. Gao, S. K. Spurgeon, "Sliding mode predictive control: A survey," Annu. Rev. Control, vol. 54, pp. 148-166, 2022. doi:10.1016/j.arcontrol.2022.07.003 [36] J. A. Rossiter, "A first course in predictive control," Second Edition. CRC Press, pp. 207-252, 2018. doi:10.1201/9781315104126 [37] Yen-Shin Lai, Jian-Ho Chen, Chang-Huan Liu, "A universal vector controller for induction motor drives fed by voltage-controlled voltage source inverter," in 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134), Seattle, WA, USA: IEEE, pp. 2493-2498. 2000. doi:10.1109/pess.2000.867383 [38] N. Chatrenour, H. Razmi, H. Doagou-Mojarrad, "Improved double integral sliding mode MPPT controller based parameter estimation for a stand-alone photovoltaic system," Energy Convers. Manag., vol. 139, pp. 97-109, May 2017. doi:10.1016/j.enconman.2017.02.055 [39] M. Maaruf, K. Khan, M. Khalid, "Robust control for optimized islanded and grid-connected operation of solar/wind/battery hybrid energy," Sustainability, vol. 14, no. 9, p. 5673, May 2022. doi:10.3390/su14095673 [40] A. Levant, "Sliding order and sliding accuracy in sliding mode control," Int. J. Control, vol. 58, no. 6, pp. 1247-1263, Dec. 1993. doi: 10.1080/00207179308923053 [41] A. Levant, "Higher-order sliding modes, differentiation and output-feedback control," Int. J. Control, vol. 76, no. 9-10, pp. 924-941, Jan. 2003. doi:10.1080/0020717031000099029 [42] C. Lascu, F. Blaabjerg, "Super-twisting sliding mode direct torque contol of induction machine drives," in 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA: IEEE, pp. 5116-5122, Sep. 2014. doi:10.1109/ecce.2014.6954103 [43] M. T. Watson, D. T. Gladwin, T. J. Prescott, S. O. Conran, "Dual-mode model predictive control of an omnidirectional wheeled inverted pendulum," IEEEASME Trans. Mechatron., vol. 24, no. 6, pp. 2964-2975, Dec. 2019. doi:10.1109/tmech.2019.2943708 [44] M. I. Jahmeerbacus, "Flux vector control of an induction motor drive for energy-efficient operation of a centrifugal pump," in 2015 International Conference on Industrial Engineering and Operations Management (IEOM), Dubai: IEEE, pp. 1-6, Mar. 2015. doi:10.1109/ieom.2015.7093736 [45] A. A. Z. Diab, A.-H. M. El-Sayed, H. H. Abbas, M. A. E. Sattar, "Robust Speed controller design using H_infinity theory for high-performance sensorless induction motor drives," Energies, vol. 12, no. 5, p. 961, Mar. 2019. doi:10.3390/en12050961 [46] H. Maghfiroh, A. Maâarif, F. Adriyanto, I. Suwarno, W. Caesarendra, "Adaptive linear quadratic gaussian speed control of induction motor using fuzzy logic," J. Eur. Systèmes Autom., vol. 56, no. 4, pp. 703-711, Aug. 2023. doi:10.18280/jesa.560420 [47] R. Meghwal, V. K. Yadav, M. Vardia, "Robust fuzzy controller design with FPGA implementation for matrix converter based induction motor drive," E-Prime - Adv. Electr. Eng. Electron. Energy, vol. 10, p. 100752, Dec. 2024. doi:10.1016/j.prime.2024.100752 [48] R. Rahmatullah, A. Ak, N. F. O. Serteller, "Design of sliding mode control using SVPWM modulation method for speed control of induction motor," Transp. Res. Procedia, vol. 70, pp. 226-233, 2023. doi:10.1016/j.trpro.2023.11.023 [49] E. Terfia, S. Mendaci, S. E. Rezgui, H. Gasmi, W. Kantas, "Enhanced control of dual star induction motor via super twisting algorithm: A comparative analysis with classical pi controllers," J. Intell. Syst. Control, vol. 2, no. 4, pp. 220-229, Dec. 2023. doi:10.56578/jisc020404 |
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.