2/2019 - 7 |
Stochastic Algorithms for Controller Optimization of Grid Tied Hybrid AC/DC Microgrid with Multiple Renewable SourcesNEMPU, P. B. , SABHAHIT, J. N. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (1,506 KB) | Citation | Downloads: 1,259 | Views: 2,695 |
Author keywords
fuel cells, heuristic algorithms, microgrid, renewable energy sources, supercapacitors
References keywords
hybrid(17), power(15), energy(15), control(14), microgrid(12), system(9), grid(7), systems(5), strategies(5), operation(5)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2019-05-31
Volume 19, Issue 2, Year 2019, On page(s): 53 - 60
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2019.02007
Web of Science Accession Number: 000475806300007
SCOPUS ID: 85066316743
Abstract
The hybrid AC/DC microgrid (MG) configuration is efficient as it reduces the need for multiple power conversions and hence losses. Therefore, this paper focuses on the study of grid assisted hybrid AC/DC MG comprising of solar PV and fuel cell (FC) systems on DC subgrid with supercapacitor (SC) as the short term storage device and wind energy conversion system (WECS) on the AC subgrid. A comprehensive study of the operation of MG is performed under varying system conditions in MATLAB/Simulink software. The real and reactive power (PQ) control scheme is used to regulate the DC bus voltage and power flow between the subgrids. Genetic algorithm (GA), artificial bee colony (ABC) optimization, particle swarm optimization (PSO) and the PSO with new update mechanism (PSOd) are used to compute the optimum gain values of proportional-integral (PI) controller in the PQ control scheme. The SC bank effectively reduces the power stress on the subgrids of the proposed hybrid MG system during intermittent conditions of load and generation. In addition, a comparative study of the heuristic optimization techniques is presented in detail. The ABC algorithm is found to arrive at the best results in determining the optimal gains of PI controller. |
References | | | Cited By «-- Click to see who has cited this paper |
[1] X. Liu, P. Wang, P. C. Loh, "A hybrid AC/DC microgrid and its coordination control," IEEE Transactions on Smart Grid, vol. 2, no. 2, pp. 278-286, Jun. 2011. [CrossRef] [Web of Science Times Cited 817] [SCOPUS Times Cited 1133] [2] A. Gupta, S. Doolla, K. Chatterjee, "Hybrid AC-DC microgrid: systematic evaluation of control strategies," IEEE Transactions on Smart Grid, vol. 9, no. 4, pp. 3830-3843, Jul. 2018. [CrossRef] [Web of Science Times Cited 190] [SCOPUS Times Cited 256] [3] F. Nejabatkhah, Y. W. Li, "Overview of power management strategies of hybrid AC/DC microgrid," IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 7072-7089, Dec. 2015. [CrossRef] [Web of Science Times Cited 626] [SCOPUS Times Cited 823] [4] C. Jin, P. C. Loh, P. Wang, Y. Mi, F. Blaabjerg, "Autonomous operation of hybrid AC-DC microgrids," in IEEE International Conference on Sustainable Energy Technologies (ICSET), Kandy, Sri Lanka, Dec. 2010, pp. 1-7. [CrossRef] [SCOPUS Times Cited 91] [5] P. C. Loh, D. Li, Y. K. Chai, F. Blaabjerg, "Autonomous control of interlinking converter with energy storage in hybrid AC-DC microgrid," IEEE Transactions on Industry Applications, vol. 49, no. 3, pp. 1374-1382, May. 2013. [CrossRef] [Web of Science Times Cited 293] [SCOPUS Times Cited 376] [6] P. C. Loh, D. Li, Y. K. Chai, F. Blaabjerg, "Autonomous operation of hybrid microgrid with AC and DC subgrids," IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2214-2223, May. 2013. [CrossRef] [Web of Science Times Cited 521] [SCOPUS Times Cited 697] [7] M. Baharizadeh, H. R. Karshenas, J. M. Guerrero, "An improved power control strategy for hybrid AC-DC microgrids," International Journal of Electrical Power & Energy Systems, vol. 95, pp. 364-373, Feb. 2018. [CrossRef] [Web of Science Times Cited 50] [SCOPUS Times Cited 62] [8] N. Eghtedarpour, E. Farjah, "Power control and management in a hybrid AC/DC microgrid," IEEE transactions on smart grid, vol. 5 no. 3, pp. 1494-1505, May 2014. [CrossRef] [Web of Science Times Cited 451] [SCOPUS Times Cited 584] [9] S. M. Malik, X. Ai, Y. Sun, C. Zhengqi, Z. Shupeng, "Voltage and frequency control strategies of hybrid AC/DC microgrid: a review," IET Generation, Transmission & Distribution, vol. 11, no. 2, pp. 303-313, Jan. 2017. [CrossRef] [Web of Science Times Cited 138] [SCOPUS Times Cited 181] [10] E. Kabalcı, "An islanded hybrid microgrid design with decentralized DC and AC subgrid controllers," Energy, vol. 153, pp.185-199, Jun. 2018. [CrossRef] [Web of Science Times Cited 23] [SCOPUS Times Cited 27] [11] S. K. Ayyappa, D. N. Gaonkar, "Performance analysis of a variable-speed wind and fuel cell-based hybrid distributed generation system in grid-connected mode of operation," Electric Power Components and Systems, vol. 44, no. 2, pp. 142-151, Jan. 2016. [CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 17] [12] T. Ma, M. H. Cintuglu, O. A. Mohammed, "Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads," IEEE Transactions on Industry Applications, vol. 53, no. 1, pp. 567-575, Jan. 2017. [CrossRef] [Web of Science Times Cited 129] [SCOPUS Times Cited 163] [13] A. A. Abdelsalam, H. A. Gabbar, A. M. Sharaf, "Performance enhancement of hybrid AC/DC microgrid based D-FACTS," International Journal of Electrical Power & Energy Systems, vol. 63, pp. 382-393, Dec. 2014. [CrossRef] [Web of Science Times Cited 46] [SCOPUS Times Cited 52] [14] C. K. Sundarabalan, K. Selvi, "Real coded GA optimized fuzzy logic controlled PEMFC based Dynamic Voltage Restorer for reparation of voltage disturbances in distribution system," International Journal of Hydrogen Energy, vol. 42, no. 1, pp. 603-613, Jan. 2017. [CrossRef] [Web of Science Times Cited 32] [SCOPUS Times Cited 41] [15] R. Eberhart, J. Kennedy, "A new optimizer using particle swarm theory," Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE, Nagoya, Japan, Oct. 1995, pp. 39-43. [CrossRef] [16] N. Bigdeli, "Optimal management of hybrid PV/fuel cell/battery power system: A comparison of optimal hybrid approaches," Renewable and Sustainable Energy Reviews, vol. 42, pp. 377-393, Feb. 2015. [CrossRef] [Web of Science Times Cited 107] [SCOPUS Times Cited 138] [17] L. K. Letting, J. L. Munda, Y. Hamam, "Optimization of a fuzzy logic controller for PV grid inverter control using S-function based PSO," Solar Energy, vol. 86, no. 6, pp. 1689-1700, Jun. 2012. [CrossRef] [Web of Science Times Cited 72] [SCOPUS Times Cited 87] [18] D. Fister, I. Fister Jr, I. Fister, R. Safaric, "Parameter tuning of PID controller with reactive nature-inspired algorithms," Robotics and Autonomous Systems, vol. 84, pp. 64-75, Oct. 2016. [CrossRef] [Web of Science Times Cited 57] [SCOPUS Times Cited 73] [19] M. G. Villarreal-Cervantes, J. Alvarez-Gallegos, "Off-line PID control tuning for a planar parallel robot using DE variants," Expert Systems with Applications, vol. 64, pp. 444-454. Dec. 2016. [CrossRef] [Web of Science Times Cited 39] [SCOPUS Times Cited 43] [20] W. Bai, M. R. Abedi, K. Y. Lee, "Distributed generation system control strategies with PV and fuel cell in microgrid operation," Control Engineering Practice, vol. 53, pp.184-193, Aug. 2016. [CrossRef] [Web of Science Times Cited 69] [SCOPUS Times Cited 87] [21] P. GarcÃa-Trivino, A. J. Gil-Mena, F. Llorens-Iborra, C. A. Garcia-Vazquez, L.M. Fernandez-RamÃrez, F. Jurado, "Power control based on particle swarm optimization of grid-connected inverter for hybrid renewable energy system," Energy Conversion and Management, vol. 91, pp. 83-92, Feb. 2015. [CrossRef] [Web of Science Times Cited 49] [SCOPUS Times Cited 62] [22] M. S. Kiran, "Particle swarm optimization with a new update mechanism," Applied Soft Computing, vol. 60, pp. 670-678. Nov. 2017. [CrossRef] [Web of Science Times Cited 86] [SCOPUS Times Cited 107] [23] T. Kalitjuka, "Control of voltage source converters for power system applications," (Master's thesis, Institutt for elkraftteknikk)", 2011. [24] C. Bajracharya, M. Molinas, J. A. Suul, T. M. Undeland, "Understanding of tuning techniques of converter controllers for VSC-HVDC," Nordic Workshop on Power and Industrial Electronics (NORPIE), Espoo, Finland, Jun. 2008, Helsinki University of Technology. [25] T. Vigneysh, N. Kumarappan, "Autonomous operation and control of photovoltaic/solid oxide fuel cell/battery energy storage based microgrid using fuzzy logic controller," International journal of hydrogen energy, vol. 41, no. 3, pp. 1877-1891, Jan. 2016. [CrossRef] [Web of Science Times Cited 114] [SCOPUS Times Cited 126] [26] N. S. Jayalakshmi, D. N. Gaonkar, A. Balan, P. Patil, S. A. Raza, "Dynamic modeling and performance study of a stand-alone photovoltaic system with battery supplying dynamic load," International Journal of Renewable Energy Research (IJRER), vol. 4, no. 3, pp. 635-640, Sep. 2014. [27] O. C. Onar, M. Uzunoglu, M. S. Alam, "Dynamic modeling, design and simulation of a wind/fuel cell/ultra-capacitor-based hybrid power generation system," Journal of power sources, vol. 161, no. 1, pp. 707-722, Oct. 2006. [CrossRef] [Web of Science Times Cited 165] [SCOPUS Times Cited 221] [28] N. S. Jayalakshmi, D. N. Gaonkar, "Maximum power point tracking for grid integrated variable speed wind based DG system with dynamic load," International Journal of Renewable Energy Research (IJRER), vol. 4, no. 2, pp. 464-470, Jun. 2014. [29] T. Back, "Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms," Oxford University Press, Jan. 1996. [30] D. Karaboga, "An idea based on honey bee swarm for numerical optimization," Technical report-tr06, Erciyes university, engineering faculty, computer engineering department. Oct. 2005. Web of Science® Citations for all references: 4,085 TCR SCOPUS® Citations for all references: 5,447 TCR Web of Science® Average Citations per reference: 132 ACR SCOPUS® Average Citations per reference: 176 ACR TCR = Total Citations for References / ACR = Average Citations per Reference We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more Citations for references updated on 2024-11-14 22:38 in 165 seconds. Note1: Web of Science® is a registered trademark of Clarivate Analytics. Note2: SCOPUS® is a registered trademark of Elsevier B.V. Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site. |
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.