Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Nov 2024
Next issue: Feb 2025
Avg review time: 55 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

3,063,360 unique visits
1,190,142 downloads
Since November 1, 2009



Robots online now
AhrefsBot
bingbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 4 / 2024
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  








LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  3/2016 - 7

A Single-Ended and Fully-Differential Universal Current-Mode Frequency Filter with MO-CF and DACA Elements

LANGHAMMER, L. See more information about LANGHAMMER, L. on SCOPUS See more information about LANGHAMMER, L. on IEEExplore See more information about LANGHAMMER, L. on Web of Science, JERABEK, J. See more information about  JERABEK, J. on SCOPUS See more information about  JERABEK, J. on SCOPUS See more information about JERABEK, J. on Web of Science, POLAK, J. See more information about  POLAK, J. on SCOPUS See more information about  POLAK, J. on SCOPUS See more information about POLAK, J. on Web of Science, PANEK, D. See more information about PANEK, D. on SCOPUS See more information about PANEK, D. on SCOPUS See more information about PANEK, D. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,320 KB) | Citation | Downloads: 824 | Views: 3,288

Author keywords
active filters, analog circuits, current-mode circuits, differential amplifiers, frequency control

References keywords
current(30), mode(19), filter(16), universal(13), electronics(11), systems(6), communications(6), circuits(6), biquad(6), single(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2016-08-31
Volume 16, Issue 3, Year 2016, On page(s): 43 - 48
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2016.03007
Web of Science Accession Number: 000384750000007
SCOPUS ID: 84991110331

Abstract
Quick view
Full text preview
The paper presents proposal of the 2nd-order universal frequency filter. The presented filter operates in the current-mode and it is designed in the single-ended and fully-differential form. Signal-flow graphs (SFG) method has been used in the proposal. The proposed filter is employing multi-output current followers (MO-CFs) and digitally adjustable current amplifiers (DACAs) as active elements. The pole frequency of the filter can be controlled without disturbing its quality factor. Functionality of the proposed filter in both S-E and F-D form has been verified by PSpice simulations using available models of used active elements and also by experimental measurements. A comparison of simulation and experimental results of the S-E and F-D form of the presented filter is made. Subsequently, a comparison of experimental results of both forms of the filter is also included.


References | Cited By  «-- Click to see who has cited this paper

[1] L. Langhammer, J. Jerabek J. Polak and P. Cika, "Single-Ended and Fully-Differential Current-Input Current-Output Universal Frequency Filter with Transconductace and Transresistance Amplifiers", WSEAS Transactions on Circuits and Systems, vol. 14, 2015, pp. 56-67, 2015.

[2] C. Toumazou, F. J. Lidgey, D. G. Haigh, Analog IC design: the current-mode approach, pp. 1-10, Institution of Electrical Engineers, London, 1996.

[3] P. Brandstetter, L. Klein, "Design of Frequency Filters by Method of Synthetic Immittance Elements with Current Conveyors," in Proc. International Conference Applied Electronics (AE), pp. 37-40, Pilsen, Czech Republic, Sep. 2012.

[4] M. Sagbas, K. Fidaboylu, "Electronically tunable current-mode second order universal filter using minimum elements," Electronics Letters, vol. 40, pp. 2-4, 2004.
[CrossRef] [Web of Science Times Cited 55] [SCOPUS Times Cited 75]


[5] N. Pandey, S. K. Paul, A. Bhattacharyya, and S. B. Jain, "A new mixed mode biquad using reduced number of active and passive elements," IEICE Electronics Express, vol. 3, no. 6, pp. 115-121, 2006.
[CrossRef] [Web of Science Times Cited 39] [SCOPUS Times Cited 43]


[6] C. Temizyurek, I. Myderrizi, "A Current-Mode Universal Filter Implemented with DVCCs," in Proc. 24th International Conference on Microelectronics, vol. 2 pp. 581-584, Nis, Serbia, May. 2004.
[CrossRef]


[7] H. Chen, "Tunable versatile current-mode universal filter based on plus-type DVCCs," AEU - International Journal of Electronics and Communications, vol. 66, issue 4, pp. 332-339, 2012.
[CrossRef] [Web of Science Times Cited 32] [SCOPUS Times Cited 38]


[8] H. Chen, S. Wang, P. Li, N. Chou, C. Chang, "Single FDCCII-based current-mode universal biquadratic filter," in Proc. 2nd International Conference Consumer Electronics, Communications and Networks (CECNet), pp. 2076 - 2079, Yichang, China, Apr. 2012.
[CrossRef] [SCOPUS Times Cited 9]


[9] F. Gur, F. Anday, "Simulation of a novel current-mode universal filter using FDCCIIs," Analog Integrated Circuits and Signal Processing, vol. 60 no. 3, pp. 231-236, 2009.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 21]


[10] N. Herencsar, K. Vrba, "Current conveyors-based circuits using novel transformation method," IEICE Electronics Express, vol. 4, no. 21, pp. 650-656, 2007.
[CrossRef] [Web of Science Times Cited 25] [SCOPUS Times Cited 25]


[11] D. Biolek, V. Biolkova, Z. Kolka, "Universal Current-Mode OTA-C KHN Biquad," International Journal of Electronics, Circuits & Systems, vol. 1, issue 4, pp 214, 2007.
[CrossRef] [SCOPUS Times Cited 84]


[12] W. Tangsrirat, "Novel current-mode and voltage-mode universal biquad filters using single CFTA," Indian Journal of Engineering and Materials Sciences, vol. 17, pp. 99-104, 2010.

[13] N. Herencsar, J. Koton, K. Vrba, A. Lahiri, O. Cicekoglu, "Current-Controlled CFTA-Based Current-Mode SITO Universal Filter and Quadrature Oscillator," in Proc. International Conference Applied Electronics (AE), pp. 1 - 4, Pilsen, Czech Republic, 2010.

[14] S. Lawanwisut, M. Siripruchyanun, "A Current-Mode Multifunction Biquadratic Filter Using CFTAs," The Journal of KMUTNB, vol. 22, no. 3, pp 479-485, 2012.
[CrossRef]


[15] W. Tangsrirat, T. Dumawipata, W. Surakampontorn, "Multiple-input single-output current-mode multifunction filter using current differencing transconductance amplifiers," AEU - International Journal of Electronics and Communications, vol. 61, issue 4, pp. 209-214, 2007.
[CrossRef] [Web of Science Times Cited 69] [SCOPUS Times Cited 103]


[16] D. Prasad, D. R. Bhaskar, A. K. Singh, "Universal current-mode biquad filter using dual output current differencing transconductance amplifier," AEU - International Journal of Electronics and Communications, vol. 63, no. 6, pp. 497-501, 2009.
[CrossRef] [Web of Science Times Cited 61] [SCOPUS Times Cited 87]


[17] R. Tomar, S. Singh, D. Chauhan, "Current Processing Current Tunable Universal Biquad Filter Employing Two CCTAs and Two Grounded Capacitors," Circuits and Systems, vol. 4, no. 6, pp 443-450, 2013.
[CrossRef]


[18] W. Jaikla, S. Siripongdee, P. Suwanjan, "MISO current-mode biquad filter with independent control of pole frequency and quality factor," Radioengineering, vol. 21, no. 3, pp. 886-891, 2012. [Handle]

[19] J. Jerabek, J. Koton, R. Sotner, K. Vrba, "Adjustable band-pass filter with current active elements: two fully-differential and single-ended solutions," Analog Integr. Circ. Sig. Process., vol. 74, pp. 129-139, 2013.
[CrossRef] [Web of Science Times Cited 39] [SCOPUS Times Cited 42]


[20] J. Koton, N. Herencsar, K. Vrba, I. Koudar, "Fully differential current-mode filters using digitally adjustable current amplifier," Elektrorevue - Online Journal, no. 45, pp. 45-1-45-4, 2009.

[21] H. A. Alzaher, "A CMOS Digitally Programmable Universal Current-Mode Filter," IEEE Transactions on circuits and systems-II: Express briefs, vol. 55, no. 8, pp. 758-762, 2008.
[CrossRef] [Web of Science Times Cited 29] [SCOPUS Times Cited 32]


[22] A. Ü. Keskin, E. Hancioglu, "Current mode multifunction filter using two CDBAs," AEU - International Journal of Electronics and Communications, vol. 59, issue 8, pp. 495-498, 2005.
[CrossRef] [Web of Science Times Cited 36] [SCOPUS Times Cited 44]


[23] T. Tsukutani, Y. Sumi, N. Yabuki, "Electronically tunable current-mode universal biquadratic filter using CCCDBAs," in Proc. International Symposium Intelligent Signal Processing and Communications Systems ISPACS, , pp. 1 - 4, Bangkok, Thailand, 2008.
[CrossRef] [SCOPUS Times Cited 3]


[24] R. Sotner, J. Jerabek, N. Herencsar, T. Zak, W. Jaikla, K. Vrba, "Modified Current Differencing Unit and its Application for Electronically Reconfigurable Simple First-order Transfer Function," Advances in Electrical and Computer Engineering, vol. 15, no. 1., pp. 3-10, 2015.
[CrossRef] [Full Text] [Web of Science Times Cited 24] [SCOPUS Times Cited 22]


[25] R. Sponar, K. Vrba, "Measurements and Behavioral Modelling of Modern Conveyors," International Journal of Computer Science and Network Security, vol. 3A, no. 6, pp. 57-63, 2006.

[26] J. Polak, L. Langhammer, J. Jerabek, "Behavioral modeling of Digitally Adjustable Current Amplifier," International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems, vol. 4, no. 1, pp. 1-7, 2015.
[CrossRef]




References Weight

Web of Science® Citations for all references: 427 TCR
SCOPUS® Citations for all references: 628 TCR

Web of Science® Average Citations per reference: 16 ACR
SCOPUS® Average Citations per reference: 23 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-12-18 03:45 in 123 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy