3/2021 - 7 |
Thermal-Electrochemical Modeling and Analysis of Different Cathode-Anode pairs for Lithium-ion BatterySHARMA, S.![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Extra paper information in ![]() ![]() ![]() |
Click to see author's profile in ![]() ![]() ![]() |
Download PDF ![]() |
Author keywords
anode, batteries, cathode, electrochemical, electrodes
References keywords
lithium(36), electrochemical(25), battery(23), batteries(21), thermal(19), power(14), sources(13), model(13), energy(13), jjpowsour(10)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2021-08-31
Volume 21, Issue 3, Year 2021, On page(s): 57 - 64
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2021.03007
Web of Science Accession Number: 000691632000007
SCOPUS ID: 85115236923
Abstract
This article represents a computational approach for the estimation of the characteristics of lithium-ion batteries for a 2D electrochemical model of cylindrical type lithium-ion battery using COMSOL software. Various input parameters used in the model formulation have been obtained from experimental data as well as published work. For the evaluation of battery performance, an electrochemical-thermal mathematical model has been designed to determine the electrochemical parameters such as rate capability, charge/discharge characteristic, ragone curve. Further, the electrochemical characteristics have been characterized with the help of cyclic voltammetry (CV) test which indicates the uniform electrochemical reactivity and transport properties of the designed battery. Two types of electrode pairs in which LiMn2O4 as cathode materials form LiMn2O4 (LMO)/Graphite and LMO/Carbon (MCMB) are designed and these electrode pairs are simulated and evaluated to determine the characteristics of battery material using charge and discharge curve at different current loads (C-rates) as well as ragone curve. The simulation results validate the electrochemical behavior of the proposed 2D model. Also, the LMO/graphite electrode pair shows better discharging and charging capacity, high energy, and power curve as compared to the LMO/Carbon (MCMB) electrode pair. |
References | | | Cited By «-- Click to see who has cited this paper |
[1] M. Hannan, M. Hoque, A. Mohamed, A. Ayob, "Review of Energy Storage Systems for Electric Vehicle Applications: Issues and Challenges" Renewable and Sustainable Energy Reviews 69, p.p. 771-789, 2017. [CrossRef] [Web of Science Times Cited 686] [SCOPUS Times Cited 833] [2] X. Lu, "Application of the Nernst-Einstein Equation to Concrete" Cement, and Concrete Research 27 (2), p.p. 293-302,1997 [CrossRef] [Web of Science Times Cited 187] [SCOPUS Times Cited 235] [3] M. Park, X. Zhang, M.chung, G. B. Less, A. M. Sastry, A Review of Conduction Phenomenon in Li-ion batteries" Journal of Power Sources 195 (24), 7904-7929, 2010. [CrossRef] [4] T. R. Tanim, C. D. Rahn, C. Y .Wang, A Temperature Dependent, Single particle, Lithium ion Cell Model including Electrolyte Diffusion" Journal of Dynamic Systems, Measurement, and Control, vol.1, p.p. 137, 2015. [CrossRef] [Web of Science Times Cited 1410] [SCOPUS Times Cited 1470] [5] R. Darling, J. Newman, "Modeling a Porous Intercalation Electrode with Two Characterstic Particle Sizes" Journal of the Electrochemical Society, vol. 144 (12), p.p. 4201-4208, 1997. [CrossRef] [6] J. Xu, Y. Wu, S. Yin, "Investigation of Effects of Design Parameters on the Internal Short-circuit in cylindrical lithium-ion batteries" RSC advances 7 (24), 14360-14371 (2017). [CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 37] [7] A. Nazari, S. Farhad, "Heat Generation in Lithium ion Batteries with Different Nominal Capacities and Chemistries" Applied Thermal Engineering 125, p.p. 1501-1517, 2017. [CrossRef] [Web of Science Times Cited 152] [SCOPUS Times Cited 173] [8] J. Baron, G. Szymanski, J. Lipkowski, "Electrochemical Methods to Measure Gold Leaching Current in an Alkaline Thiosulfate Solution" Journal of Electroanalytical Chemistry 662 (1), p.p. 57-63, 2011. [CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 19] [9] S. Venkatraman, J. Choi, A. Manthiram, "Factors Influencing the Chemical Lithium Extraction Rate from Layered LiNi1-y-zCoyMnzO2 cathodes" Electrochemistry Communications 6 (8), p.p. 832-837, 2004. [CrossRef] [Web of Science Times Cited 82] [SCOPUS Times Cited 88] [10] M. Wu, B. Xu, and C. Ouyang, "Physics of Electron and Lithium ion Transport in Electrode Materials of Li-ion Batteries" Chinese Physics B 25 (1), 018206 2015. [CrossRef] [Web of Science Times Cited 72] [SCOPUS Times Cited 78] [11] E. Hosseinzadeh, J. Marco, P. Jennings, "Electrochemical- Thermal Modelling and Optimization of Lithium-ion Battery Design Parameters Using Analysis of Variance" Energies 10 (9), 1278 2017. [CrossRef] [Web of Science Times Cited 62] [SCOPUS Times Cited 67] [12] A. Jokar, B. Rajabloo, M. Desilets, M. Lacroix, "Reviews of Simplified Pseudo-Two-Dimensional Models of Lithium-ion Batteries"Journal of Power Sources 327, p.p. 44-55, 2016. [CrossRef] [Web of Science Times Cited 423] [SCOPUS Times Cited 464] [13] N. Jin, D. L. Danilov, P. M. Van den Hof, M. Donkers, "Optimization of Current Excitation for Identification of Battery Electrochemical Parameters based on Analytic Sensitivity Expression" International Journal of Energy Research 42 (7), p.p. 2417-2430, 2018. [CrossRef] [Web of Science Times Cited 76] [SCOPUS Times Cited 82] [14] K. Uddin, S. Perera, W. D. Widanage, L. Somerville, J. Marco, Characterising Lithium-ion Battery Degradation through the dentification and Tracking of Electrochemical Battery Model Parameters" Batteries 2 (2), 13, 2016. [CrossRef] [Web of Science Times Cited 145] [SCOPUS Times Cited 156] [15] Y. Huang, H. Lai, "Effect of Discharge Rate on Electrochemical and Thermal Characterstics of LiFePO4/Graphite Battery" Applied Thermal Engineering 157, 113744 2019. [CrossRef] [Web of Science Times Cited 36] [SCOPUS Times Cited 42] [16] J. Yang, X. Wei, H. Dai, J. Zhu, X. Xu, "Lithium-ion Battery Internal Resistance Model Based on the Porous Electrode Theory" IEEE Vehicle Power and Propulsion Conference (VPPC), 2014. [CrossRef] [SCOPUS Times Cited 8] [17] P. Wu, J. Romberg, H. Ge, Y. Zhang, J. Zhang, Electrochemical-Thermal Coupled Model of Lithium-Ion Batteries for Low Temperature Charging, in: Soc. Automot. Eng. SAE-China Congr., Springer, 2016: pp. 123-132. [CrossRef] [Web of Science Times Cited 1] [SCOPUS Times Cited 2] [18] J. Newman, W. Tiedmann, "Porous-Electrode Theory with Battery Applications" AICHE Journal, vol. 21(1), p.p. 25-41, 1975. [CrossRef] [Web of Science Times Cited 1092] [SCOPUS Times Cited 1175] [19] S. Srivastav, P. Tammela, D. Brandell, M. Sjodin, "Understanding Ionic Transport in Polyyyrole/Nanocellulose Composite Energy Storage Devices" Electrochimica Acta 182, p.p. 1145-1152, 2015. [CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 14] [20] A. Melcher, C. Ziebert, M. Rohde, H. J. Seifert, "Modelling and Simulation of Thermal Runaway Behavior of Cyclindrical Li-ion Cells Computing of Critical Parameters" Energies 9 (4), 292, 2016. [CrossRef] [Web of Science Times Cited 69] [SCOPUS Times Cited 80] [21] C. Ziebert, A. Melcher, B. Lei, W. Zhao, M. Rohde, H. Seifert, "Electrochemical-Thermal Characterization and Thermal Modeling for Batteries" Emerging Nanotechnologies in Rechargeable Energy Storage Systems (Elsevier), pp. 195-229, 2017. [CrossRef] [22] K. Li, J. Yan, H. Chen, Q. Wang, "Water Cooling Based Strategy for Lithium-ion Battery Pack Dynamic Cycling for Thermal Management System" Applied Thermal Engineering 132, p.p. 575-585, 2018. [CrossRef] [Web of Science Times Cited 127] [SCOPUS Times Cited 146] [23] Z. Khalik, H. J. Bergveld, M. Donkers," Aging-Aware Charging of Lithium-ion Batteries using an Electrochemistry-Based Model with Capacity-loss Side Reactions" American Control Conference (ACC), 2020. [CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 11] [24] J. Li, D. Wang, L. Deng, Z. Cui, C. Lyu, L. Wang, M. Pecht, "Aging Mode Analysis and Physical Parameter Identification based on a Simplified Electrochemical Model for Lithium-ion Batteries" Journal of Energy Storage 31, 101538, 2020. [CrossRef] [Web of Science Times Cited 72] [SCOPUS Times Cited 53] [25] Y. Qi, T. Jang, V. Ramadesigan, D. T. Schwartz, V. R. Subramanian, "Is There a Benefit in Employing Graded Electrodes for Lithium-ion Batteries?" Journal of The Electrochemical Society 164 (13), A3196 2017. [CrossRef] [Web of Science Times Cited 55] [SCOPUS Times Cited 59] [26] N. Li, L. Fu, K. Jiang, "Gas Evolution and The Effects on Ionic Transport inside the Lithium-ion Battery" Engineering Computations, 2019. [27] P. R. Nileshwar, A. McGordon, T. Ashwin, D. Greenwood, "Parametric Optimization Study of a Lithium-ion Cell" Energy Procedia 138, p.p. 829-83, 2017. [CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 16] [28] J. Xu, B. Liu, X. Wang, D. Hu, "Computational model of 18650 Lithium-ion Battery with Coupled Strain Rate and SOC Dependencies "Applied Energy 172, p.p. 180-189 2016. [CrossRef] [Web of Science Times Cited 219] [SCOPUS Times Cited 256] [29] Y. Liu, S. Tang, L. Li, F. Liu, L. Jiang, M. Jia, Y. Ai, C. Yao, H. Gu, "Confining Ultrasmall Bimetallic Alloys in Porous N-Carbon for Use as Scalable and Sustainable Electrocatalysts for Rechargeable Zn-air Batteries" Journal of Alloys and Compounds, 156003, 2020. [30] Y. Dai, V. Srinivasan, "On Graded Electrode Porosity as a Design Tool for Improving the Energy Density of Batteries" Journal of The Electrochemical Society 163 (3), A406, 2015. [CrossRef] [Web of Science Times Cited 95] [SCOPUS Times Cited 99] [31] S. Panchal, I. Dincer, M. Agelin-Chaab, R. Fraser, M. Fowler, "Transient Electrochemical Heat Transfer Modeling and Experimental Validation of a Large Sized LiFePO4/Graphite Battery" International Journal of Heat and Mass Transfer 109, p.p. 1239-1251, 2017. [CrossRef] [Web of Science Times Cited 122] [SCOPUS Times Cited 137] [32] K. Somasundaram, E. Birgersson, A. S. Mujumdar, "Thermal-Electrochemical Model for Passive Thermal Management of a Spiral-Wound Lithium-ion Battery" Journal of Power Sources 203, p.p. 84-96, 2012. [CrossRef] [Web of Science Times Cited 150] [SCOPUS Times Cited 161] [33] S. Wang, J. Wang, Y. Gao, "Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-ion Batteries (2017),139, 12, 4258-4261. [CrossRef] [Web of Science Times Cited 852] [SCOPUS Times Cited 870] [34] K. Shaju, G. S. Rao, B. Chowdari, "X-Ray Photoelectron Spectroscopy and Electrochemical Behaviour of 4V Cathode, Li (Ni1/2Mn1/2) O2 Electrochimica Acta 48 (18), p.p. 2691-2703, 2003. [CrossRef] [Web of Science Times Cited 131] [SCOPUS Times Cited 132] [35] H. Li, C. Liu, A. Saini, Y. Wang, H. Jiang, T. Yang, L. Chen, C. Pan, H. Shen, "Coupling Multi-Physics Simulation and Response Surface Methodology for the Thermal Optimization of Ternary Prismatic Lithium-ion Battery" Journal of Power Sources 438, 226974, 2019. [CrossRef] [Web of Science Times Cited 33] [SCOPUS Times Cited 35] [36] C. Edouard, M.Petit, C. Forgez, J.Bernard, R.Revel, "Parameter Sensitivity Analysis of a Simplified Electrochemical and Thermal Model for Li-ion Batteries Aging" Journal of Power Sources, vol. 33, p.p. 482-494, 2016. [CrossRef] [Web of Science Times Cited 82] [SCOPUS Times Cited 93] [37] L. Zhang, C. Lyu, L. Wang, W.Luo, K. Ma, "Thermal-Electrochemical Modeling and Parameter Sensitivity Analysis of Lithium-ion Battery" Chemical Engineering, Vol. 33, p.p. 943-948, 2013. [38] Y. H. Chen, C. W. Wang, X. Zhang, A. M. Sastry, "Porous Cathode Optimization for Lithium Cells: Ionic and Electronic Conductivity, Capacity, and Selection of Materials" Journal of Power Sources, vol. 195(9), p.p. 2851-2862, 2010. [CrossRef] [Web of Science Times Cited 216] [SCOPUS Times Cited 228] [39] W. Wu, X. Xiao, X. Huang, "The Effect of Battery Design Parameters on Heat Generation and Utilization in a Li-ion cell" Electrochemica Acta, vol. 83, p.p. 227-240, 2012. [CrossRef] [Web of Science Times Cited 95] [SCOPUS Times Cited 105] [40] S. Golmon, K. Maute, M. L. Dunn, "A Design Optimization Methodology for Li+ Batteries" Journal of Power Sources, vol.253, p.p. 239-250, 2014. [CrossRef] [Web of Science Times Cited 74] [SCOPUS Times Cited 81] [41] J. Li, Y. Cheng, L. Ai, M. Jia, S. Du, B. Yin, S. Woo, H. Zhang, "3D Simulation on the Internal Distributed Properties of Lithium-ion Battery with Planar Tabbed Configuration" Journal of Power Sources, vol. 293, p.p. 993-1005, 2015. [CrossRef] [Web of Science Times Cited 107] [SCOPUS Times Cited 118] [42] J. Li, Y. Cheng, M. Jia, Y. Tang, Y. Lin, Z. Zhang, Y. Liu, "An Electrochemical-Thermal Model Based on Dynamic Responses for Lithium Iron Phosphate Battery" Journal of Power Sources, vol. 255, p.p. 130-143, 2014. [CrossRef] [Web of Science Times Cited 171] [SCOPUS Times Cited 199] [43] A. M. Bizeray, S. Zhao, S. R. Duncan, D. A. Howey, "Lithium-ion Battery Thermal-Electrochemical Model-Based State Estimation using Orthogonal Collocation and a Modified Extended Kalman Filter" Journal of Power Sources, vol. 296, p.p. 400-412, 2015. [CrossRef] [Web of Science Times Cited 214] [SCOPUS Times Cited 230] [44] J. M. Tarascon, M. Armand, "Issues and Challenges Facing Rechargeable Lithium Batteries" Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature, p.p. 171-179, 2011. [CrossRef] [SCOPUS Times Cited 522] [45] W. Tong, K. Somasundaram, E. Birgersson, A. S. Mujumdar, C. Yap, "Thermal-Electrochemical Model for Forced Convection Air Cooling of a Lithium-ion Battery Module" Applied Thermal Engineering 99, 672-682 (2016). [CrossRef] [Web of Science Times Cited 98] [SCOPUS Times Cited 114] [46] M. Doyle, T.F. Fuller, J. Newman, "Modelling of Galvanostatic Charge and Discharge of the Lithium/Polymer insertion Cell" Journal of the Electrochemical Society, vol. 140(6), p.p. 1526, 1993. [CrossRef] [Web of Science Times Cited 3065] [SCOPUS Times Cited 3422] [47] M. Doyle, J. Newman, A. S. Gozdz, C. N. Schmutz, J.M. Tarascon, "Comparison of Modeling Predictions with Experimental Data from Plastic Lithium-ion Cells" Journal of Electrochemical Society, vol. 143(6), 1890, 1996. [CrossRef] [Web of Science Times Cited 1295] [SCOPUS Times Cited 1413] [48] T. F. Fuller, M. Doyle, J. Newman, "Simulation and Optimization of the Dual Lithium-ion Insertion Cell" Journal of Electrochemical Society, vol. 141(1), 1, 1994. [CrossRef] [Web of Science Times Cited 1566] [SCOPUS Times Cited 1697] [49] L. L. Lam, R. B. Darling, "Theory of Battery Aging in a Lithium-ion Battery: Capacity Fade, Non-Linear Ageing and Lifetime Prediction" Journal of Power Sources, vol. 276, p.p. 195-202, 2015. [50] P. Arora, R. E. White, M. Doyle, "Capacity Fade Mechanism and Side Reactions in Lithium-ion Batteries" Journal of Electrochemical Society vol. 145 (10), 3647, 1988. [CrossRef] [Web of Science Times Cited 1207] [SCOPUS Times Cited 1298] [51] P. Ramadass, B. Haran, R. White, B. N. Popov, "Mathematical Modeling of the Capacity Fade of Li-ion Cells" Journal of Power Sources, vol. 123 (2), p.p. 230-240, 2003. [CrossRef] [52] F. Laman and K. Brandt, "Effect of Discharge Current on Cycle Life of a Rechargeable Lithium Battery" Journal of Power Sources, vol. 24 (3), p.p. 195-206, 1988. [CrossRef] [Web of Science Times Cited 46] [SCOPUS Times Cited 46] [53] A. Dogan, S. Bahceci, F. Daldaban, M. Alci, "Optimization of Charge/Discharge Co-ordination to Satisfy Network Requirements Using Heuristic Algorithms in Vehicle-to-Grid Concept" Advances in Electrical and Computer Engineering, vol. 18 (1), p.p. 121-131, 2018. [CrossRef] [Full Text] [Web of Science Times Cited 11] [SCOPUS Times Cited 16] [54] S. Zhang, X. Guo, X. Zhang, "Modelling of Back-Propogation Neural Network Based State-of-Charge Estimation for Lithium-ion Batteries with Consideration of Capacity Attenuation" Advances in Electrical and Computer Engineering, vol. 19 (3), p.p. 3-11, 2019. [CrossRef] [Full Text] [Web of Science Times Cited 28] [SCOPUS Times Cited 27] [55] D. Petreus, D.Moga, R. Galatus, R. A. Munteanu, "Energy Harvesting with Supercapacitor-Based Energy Storage" Advances in Electrical and Computer Engineering, vol. 8 (2), p.p. 15-22, 2008. [CrossRef] [Full Text] [Web of Science Times Cited 18] [SCOPUS Times Cited 24] [56] Y. J. Liu, X. H. Li, H. J. Giu, "Overcharge performance of LiMn2O4 / graphite battery with large capacity" J. Cent. South Univ. Technol. Vol. 16, p.p. 0763-0767, 2009. [CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 8] [57] W. A. Appiah, J. Park, S. Byun, M. H. Ryou, Y. M. Lee, "A Mathematical model for cyclic aging of spinel LiMn2O4 /Graphite Lithium-ion cells" Journal of the Electrochemical Society, vol. 163 (13), p.p. A2757-A2767, 2016. [CrossRef] [Web of Science Times Cited 34] [SCOPUS Times Cited 36] [58] A. J. Smith, J.C. Burns, J. R. Dahn, "High-precision differential capacity analysis of LiMn2O4/Graphite cells" Electrochemical and solid-state letters, vol. 14 (4), p.p. A39, 2011. [CrossRef] [Web of Science Times Cited 80] [SCOPUS Times Cited 82] [59] J. Caihua, T. Zilong, D. Shiqing, H. Ye, W. Shitong, Z. Zhong Tai, "High performance Carbon-Coated mesoporous LiMn2O4 cathode materials synthesized form a novel hydrated layered -spinel lithium manganate composite" Journal of RCS Advances, vol. 7, p.p. 3746-3751, 2017. [CrossRef] [Web of Science Times Cited 25] [SCOPUS Times Cited 29] [60] S. Vadivel, P. Nutthaphon, W. Juthaporn, S, Montree, "High-performance spinel LiMn2O4@carbon core-shell cathode materials for Li-ion Batteries" Journal of Sustainable Energy & Fuels, vol. 3, p.p. 1988-1994, 2019. [CrossRef] [61] S. Sharma, A. K. Panwar, M. M. Tripathi, Storage technologies for electric vehicles, J. Traffic Transp. Eng. Engl. Ed. 7 (2020) 340-361. [CrossRef] [Web of Science Times Cited 88] [SCOPUS Times Cited 138] Web of Science® Citations for all references: 14,963 TCR SCOPUS® Citations for all references: 16,924 TCR Web of Science® Average Citations per reference: 241 ACR SCOPUS® Average Citations per reference: 273 ACR TCR = Total Citations for References / ACR = Average Citations per Reference We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more Citations for references updated on 2025-06-03 20:40 in 380 seconds. Note1: Web of Science® is a registered trademark of Clarivate Analytics. Note2: SCOPUS® is a registered trademark of Elsevier B.V. Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site. |
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.