4/2013 - 8 |
Fast Regular Circuits for Network-based Parallel Data ProcessingSKLYAROV, V. , SKLIAROVA, I. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (714 KB) | Citation | Downloads: 782 | Views: 674 |
Author keywords
data processing, field-programmable gate arrays, parallel processing, reconfigurable architectures, sorting
References keywords
sorting(13), processing(6), parallel(5), programmable(4), ipdps(4), high(4), gpus(4), fpga(4), core(4), applications(4)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2013-11-30
Volume 13, Issue 4, Year 2013, On page(s): 47 - 50
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2013.04008
Web of Science Accession Number: 000331461300008
SCOPUS ID: 84890199222
Abstract
This paper is dedicated to the design, implementation, and evaluation of fast circuits executing operations that are frequently required in data processing which are: 1) discovering the maximum and minimum values in a given set of data; and 2) sorting data items. We found that minimizing the number of circuit components does not guarantee minimal hardware resources. This is because interconnections also influence the complexity significantly. Network-based circuits are often considered to be combinational. However, this does not mean that they are faster than sequential circuits solving the same problem because propagation delays can be considerable. We revised the existing network-based solutions and proposed regular circuits which provide a good compromise between hardware resources and performance. |
References | | | Cited By «-- Click to see who has cited this paper |
[1] G. Gapannini, F. Silvestri, and R. Baraglia, "Sorting on GPU for large scale datasets: A through comparison," Information Processing and Management, 2012, vol. 48, no. 5, pp. 903-917. [CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 19] [2] R. Mueller, J. Teubner, and G. Alonso, "Sorting Networks on FPGAs," The International Journal on Very Large Data Bases, vol. 21, no. 1, 2012, pp. 1-23. [3] GPU Gems, Improved GPU Sorting. [Online] Available: Temporary on-line reference link removed - see the PDF document [4] M. Zuluada, P. Milder, and M. Puschel, "Computer Generation of Streaming Sorting Networks," in Proc. 49th Design Automation Conf., San Francisco, June, 2012, pp. 1245-1253. [CrossRef] [SCOPUS Times Cited 47] [5] D. E. Knuth, The Art of Computer Programming. Sorting and Searching, vol. III. Addison-Wesley, 1973. [6] K. E. Batcher, "Sorting networks and their applications," in Proc. AFIPS Spring Joint Computer Conf., USA, 1968, pp. 307-314. [7] Xilinx Inc., Zynq-7000, All Programmable SoC, 2013. [Online] Available: Temporary on-line reference link removed - see the PDF document [8] R. D. Chamberlain and N. Ganesan, "Sorting on Architecturally Diverse Computer Systems," in Proc. 3rd Int. Workshop on High-Performance Reconfigurable Computing Technology and Applications - HPRCTA'09, USA, 2009, pp. 39-46. [CrossRef] [SCOPUS Times Cited 25] [9] J. Ortiz and D. Andrews, "A Configurable High-Throughput Linear Sorter System," in Proc. of IEEE Int. Symp. on Parallel & Distributed Processing, April, 2010, pp. 1-8. [CrossRef] [SCOPUS Times Cited 15] [10] D.J. Greaves and S. Singh, "Kiwi: Synthesis of FPGA circuits from parallel programs," in Proc. 16th IEEE Int. Symp. on Field-Programmable Custom Computing Machines - FCCM'08, USA, 2008, pp. 3-12. [CrossRef] [Web of Science Times Cited 46] [SCOPUS Times Cited 82] [11] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, "Accelerating Compute-Intensive Applications with GPUs and FPGAs," in Proc. Symp. on Application Specific Processors - SASP'08, USA, 2008, pp. 101-107. [CrossRef] [Web of Science Times Cited 158] [SCOPUS Times Cited 241] [12] R. Mueller, Data Stream Processing on Embedded Devices. Ph.D. thesis, ETH, Zurich, 2010. [13] D. Koch and J. Torresen, "FPGASort: a high performance sorting architecture exploiting run-time reconfiguration on FPGAs for large problem sorting," in Proc. 19th ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays - FPGA'11, USA, 2011, pp. 45-54. [CrossRef] [Web of Science Times Cited 158] [SCOPUS Times Cited 241] [14] V. Sklyarov, I. Skliarova, D. Mihhailov, and A. Sudnitson, "Implementation in FPGA of Address-based Data Sorting," in Proc. 21st Int. Conf. on Field-Programmable Logic and Applications - FPL'11, Greece, 2011, pp. 405-410. [15] X. Ye, D. Fan, W. Lin, N. Yuan, and P. Ienne, "High Performance Comparison-Based Sorting Algorithm on Many-Core GPUs," in Proc. IEEE Int. Symp. on Parallel & Distributed Processing - IPDPS'10, USA, 2010, pp. 1-10. [CrossRef] [SCOPUS Times Cited 45] [16] N. Satish, M. Harris, and M. Garland, "Designing efficient sorting algorithms for manycore GPUs," in Proc. IEEE Int. Symp. on Parallel & Distributed Processing - IPDPS'09, Italy, 2009, pp. 1-10. [CrossRef] [SCOPUS Times Cited 441] [17] D. Cederman and P. Tsigas, "A practical quicksort algorithm for graphics processors," in Proc. 16th Annual European Symp. on Algorithms - ESA'08, Germany, 2008, pp. 246-258. [18] C. Grozea, Z. Bankovic, and P. Laskov, "FPGA vs. Multi-Core CPUs vs. GPUs," in Facing the multicore-challenge, R. Keller, D. Kramer, and J.P. Weiss (Eds), Springer-Verlag Berlin, Heidelberg, 2010, pp. 105-117. [CrossRef] [SCOPUS Times Cited 22] [19] M. Edahiro, "Parallelizing fundamental algorithms such as sorting on multi-core processors for EDA acceleration," in Proc. 18th Asia and South Pacific Design Automation Conf. - ASP-DAC'09, Japan, 2009, pp. 230-233. [20] H. S. Stone, "Parallel Processing with the Perfect Shuffle," IEEE Transactions on Computers, vol. C-20, (2), 1971. [CrossRef] [SCOPUS Times Cited 887] Web of Science® Citations for all references: 370 TCR SCOPUS® Citations for all references: 2,065 TCR Web of Science® Average Citations per reference: 18 ACR SCOPUS® Average Citations per reference: 98 ACR TCR = Total Citations for References / ACR = Average Citations per Reference We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more Citations for references updated on 2024-11-19 21:32 in 81 seconds. Note1: Web of Science® is a registered trademark of Clarivate Analytics. Note2: SCOPUS® is a registered trademark of Elsevier B.V. Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site. |
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.