Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Aug 2024
Next issue: Nov 2024
Avg review time: 57 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,990,396 unique visits
1,160,134 downloads
Since November 1, 2009



Robots online now
SemrushBot
bingbot
DotBot
SiteExplorer


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

A Proposed Signal Reconstruction Algorithm over Bandlimited Channels for Wireless Communications, ASHOUR, A., KHALAF, A., HUSSEIN, A., HAMED, H., RAMADAN, A.
Issue 1/2023

AbstractPlus






LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  2/2012 - 9

A Method for Designing FIR Filters with Arbitrary Magnitude Characteristic Used for Modeling Human Audiogram

SZOPOS, E. See more information about SZOPOS, E. on SCOPUS See more information about SZOPOS, E. on IEEExplore See more information about SZOPOS, E. on Web of Science, NEAG, M. See more information about  NEAG, M. on SCOPUS See more information about  NEAG, M. on SCOPUS See more information about NEAG, M. on Web of Science, SARACUT, I. See more information about  SARACUT, I. on SCOPUS See more information about  SARACUT, I. on SCOPUS See more information about SARACUT, I. on Web of Science, HEDESIU, H. See more information about  HEDESIU, H. on SCOPUS See more information about  HEDESIU, H. on SCOPUS See more information about HEDESIU, H. on Web of Science, FESTILA, L. See more information about FESTILA, L. on SCOPUS See more information about FESTILA, L. on SCOPUS See more information about FESTILA, L. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (730 KB) | Citation | Downloads: 1,166 | Views: 2,261

Author keywords
discrete Fourier transforms, error analysis, FIR filter, interpolation and non-uniform sampling

References keywords
digital(7), filter(6), design(5), systems(4), circuits(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2012-05-30
Volume 12, Issue 2, Year 2012, On page(s): 51 - 56
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2012.02009
Web of Science Accession Number: 000305608000009
SCOPUS ID: 84865294072

Abstract
Quick view
Full text preview
This paper presents an iterative method for designing FIR filters that implement arbitrary magnitude characteristics, defined by the user through a set of frequency-magnitude points (frequency samples). The proposed method is based on the non-uniform frequency sampling algorithm. For each iteration a new set of frequency samples is generated, by processing the set used in the previous run; this implies changing the samples location around the previous frequency values and adjusting their magnitude through interpolation. If necessary, additional samples can be introduced, as well. After each iteration the magnitude characteristic of the resulting filter is determined by using the non-uniform DFT and compared with the required one; if the errors are larger than the acceptable levels (set by the user) a new iteration is run; the length of the resulting filter and the values of its coefficients are also taken into consideration when deciding a re-run. To demonstrate the efficiency of the proposed method a tool for designing FIR filters that match human audiograms was implemented in LabVIEW. It was shown that the resulting filters have smaller coefficients than the standard one, and can also have lower order, while the errors remain relatively small.


References | Cited By  «-- Click to see who has cited this paper

[1] A. Antoniou, "Digital Signal Processing", McGraw Hill, pp. 425-458, 2005.

[2] T. W. Parks, C. S. Burrus, "Digital filter design", John Wiley & Sons Inc., pp. 33-44, 1987.

[3] L. R. Rabiner, R. W. Schafer, "Recursive and nonrecursive realizations of digital filters designed by frequency sampling techniques", IEEE Trans. on Audio and Electroacoustics, 1971
[CrossRef] [SCOPUS Times Cited 63]


[4] H. Samueli, "On the design of optimal equiripple FIR digital filters for data transmission application", IEEE Trans. on Circuits and Systems, 1988
[CrossRef] [Web of Science Times Cited 64] [SCOPUS Times Cited 75]


[5] G. J. Dolecek "Demo Program for Frequency Sampling FIR Filter Design Method", Frontiers in Education Conference, 2010
[CrossRef] [SCOPUS Times Cited 2]


[6] J. Huopaniemi, M. Karjalainen, "HRTF filter design based on auditory criteria", Proc. Nordic Acoustical Meeting, 1996.

[7] Y. Lian, Y. Wei, "A computationally efficient nonuniform FIR digital filter bank for hearing aids", IEEE Trans. on Circuits and Systems, 2005
[CrossRef] [Web of Science Times Cited 59] [SCOPUS Times Cited 80]


[8] E. Szopos, M. Topa, L. Festila, H. Hedesiu, "FIR synthesis of the human hearing mechanism response", Acta Technica Napocensis, Electronics and Telecommunications, pp. 41-44, 2010.

[9] L. R. Rabiner, "Techniques for designing finite-duration impulse-response digital filters", IEEE Trans. on Audio and Electroacoustics, 1971
[CrossRef] [SCOPUS Times Cited 67]


[10] I. Gohberg, V. Olshevsky, "The fast generalized Parker-Traub algorithm for inversion of Vandermonde and related matrices", Journal of Complexity, 1997
[CrossRef] [Web of Science Times Cited 38] [SCOPUS Times Cited 43]


[11] A. Eisinberg, G. Fedele, "On the inversion of the Vandermonde matrix", Applied Mathematics and Computation, Elsevier, 2006
[CrossRef] [Web of Science Times Cited 55] [SCOPUS Times Cited 64]


[12] M. A. De Jesus, M. Teixeira, L. Vicente, Y. Rodriguez, "Nonuniform discrete short-time Fourier transform a Goertzel filter bank versus a FIR filtering approach", IEEE International Midwest Symposium on Circuits and Systems, 2007
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 7]


[13] S. Bagchi, S. K. Mitra, "The nonuniform discrete Fourier transform and its applications in filter design: Part I-1-D", IEEE Trans. On Circuits and Systems-II: Analog and Digital Signal Processing, 1996
[CrossRef] [Web of Science Times Cited 45] [SCOPUS Times Cited 52]


[14] O. O. Khalifa, M. H. Makhtar, M. S. Baharom, "Hearing aids system for impaired people", International Journal of Computing & Information Sciences, 2004.

[15] E. Szopos, H. Hedesiu, "LabVIEW FPGA based noise cancelling using the LMS adaptive algorithm", Acta Technica Napocensis, Electronics and Telecommunications, pp. 5-8, 2009.



References Weight

Web of Science® Citations for all references: 265 TCR
SCOPUS® Citations for all references: 453 TCR

Web of Science® Average Citations per reference: 17 ACR
SCOPUS® Average Citations per reference: 28 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-11-15 11:20 in 64 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy