Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.700
JCR 5-Year IF: 0.700
SCOPUS CiteScore: 1.8
Issues per year: 4
Current issue: Aug 2024
Next issue: Nov 2024
Avg review time: 58 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,894,803 unique visits
1,145,867 downloads
Since November 1, 2009



Robots online now
Googlebot
bingbot
Bytespider
SemanticScholar


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 3 / 2024
 
     »   Issue 2 / 2024
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  








LATEST NEWS

2024-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2023. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.700 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.600.

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

Read More »


    
 

  2/2011 - 1
View TOC | « Previous Article | Next Article »

 HIGH-IMPACT PAPER 

Queueing Theory-based Path Delay Analysis of Wireless Sensor Networks

QIU, T. See more information about QIU, T. on SCOPUS See more information about QIU, T. on IEEExplore See more information about QIU, T. on Web of Science, XIA, F. See more information about  XIA, F. on SCOPUS See more information about  XIA, F. on SCOPUS See more information about XIA, F. on Web of Science, FENG, L. See more information about  FENG, L. on SCOPUS See more information about  FENG, L. on SCOPUS See more information about FENG, L. on Web of Science, WU, G. See more information about  WU, G. on SCOPUS See more information about  WU, G. on SCOPUS See more information about WU, G. on Web of Science, JIN, B. See more information about JIN, B. on SCOPUS See more information about JIN, B. on SCOPUS See more information about JIN, B. on Web of Science
 
Extra paper information in View the paper record and citations in Google Scholar View the paper record and similar papers in Microsoft Bing View the paper record and similar papers in Semantic Scholar the AI-powered research tool
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (794 KB) | Citation | Downloads: 3,593 | Views: 12,706

Author keywords
wireless sensor networks, queueing networks, modeling, path planning, delay analysis

References keywords
networks(15), sensor(14), network(11), queueing(7), communications(6), theory(5), performance(4), modeling(4), energy(4), delay(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2011-05-30
Volume 11, Issue 2, Year 2011, On page(s): 3 - 8
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2011.02001
Web of Science Accession Number: 000293840500001
SCOPUS ID: 79958773857

Abstract
Quick view
Full text preview
Path planning is one of the important factors that affect data transmission and processing in wireless sensor networks (WSNs). This paper addresses this issue by means of the paths delay analysis. Considering that WSNs are used for temperature monitoring, we model the WSNs using the open queueing network theory and analyze the paths delay based on the model. An iterative approximation algorithm is proposed for the qualitative analysis of the packet arrival rate of sensor nodes. According to the capacity and redundancy of nodes along the path, the destination node search trees are created for pre-selecting the transmission paths. Then the end-to-end delays of the pre-selected node paths and the average delay of sub-queueing networks are calculated. The optimal path and the assistant path for data transmission in WSNs could be obtained on the basis of the delay analysis. Numerical results demonstrate the effectiveness of the proposed approach.


References | Cited By  «-- Click to see who has cited this paper

[1] E. Onur, C. Ersoy, H. DeliƧ, and L. Akarun, "Surveillance with wireless sensor networks in obstruction: Breach paths as watershed contours," Computer Networks, vol. 54, no. 3, pp. 428-441, Feb. 2010,
[CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 14]


[2] J. Li, and H. Gao, "Survey on sensor network research," Journal of Computer Research and Development, vol. 45, no. 1, pp. 1-15, Feb. 2008.

[3] H. Jeon, J. Choi, H. Lee, and J. Ha, "Channel-aware energy efficient transmission strategies for large wireless sensor networks," IEEE Signal Processing Letters, vol. 17, no. 7, pp. 643-646, Dec. 2010,
[CrossRef] [SCOPUS Record]


[4] P. S. Sausen, M. A. Spohn, and A. Perkusich, "Broadcast routing in wireless sensor networks with dynamic power management and multi-coverage backbones," Information Sciences, vol. 180, no. 5, pp. 653-663, Mar. 2010,
[CrossRef] [Web of Science Times Cited 35] [SCOPUS Times Cited 48]


[5] Y. Tang, M. Zhou, and X. Zhang, "Overview of routing protocols in wireless sensor networks," Journal of Software, vol. 17, no. 3, pp. 410-421, Mar. 2006.

[6] H. Chen, C. K. Tse, and J. Feng, "Impact of topology on performance and energy efficiency in wireless sensor networks for source extraction," IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 6, pp. 886-897, 2009,
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 51]


[7] G. Li, C. Zhu, and X. Li, "Application of chaos theory and wavelet to modeling the traffic of wireless sensor networks," 2010 International Conference on Biomedical Engineering and Computer Science, ICBECS, pp. 1-4, Wuhan, Apr. 2010:
[CrossRef] [SCOPUS Times Cited 5]


[8] A. Shareef, and Y. Zhu, "Energy modeling of processors in wireless sensor networks based on petri nets," Proceedings of the International Conference on Parallel Processing Workshops, pp. 129-134, Portland, Sep. 2008,
[CrossRef] [SCOPUS Times Cited 10]


[9] B. Vidhyacharan, "State diagrams and steady-state balance equations for open queueing network models," Computers and Electrical Engineering,vol. 31, no. 7, pp. 460-467, Oct. 2005,
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 2]


[10] J. N. Daigle, Queueing theory with applications to packet telecommunication, Boston, MA: Springer Science and Business Media, Inc., 2005.

[11] L. Wang, Z. Wang, and K. Dai, "An approximate method by queueing network modeling for performance evaluation of asynchronous pipeline rings," 2006 IEEE Int Conf on Computer and Information Technology, pp. 244-249, Seoul, sep. 2006,
[CrossRef] [SCOPUS Times Cited 4]


[12] A. A. A. Kock, L. F. P. Etman, and J. E. Rooda, "Effective process times for multi-server flowlines with finite buffers," IIE Transactions, vol. 40, no. 3, pp. 177-186, Mar. 2008,
[CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 19]


[13] M. V. Vuuren, I. J. B. F. Adan, and S. A. E. Resingsassen, "Performance analysis of multi-server tandem queues with finite buffers and blocking," OR Spectrum, vol. 27, no. 2-3, pp. 315-338, 2005,
[CrossRef] [Web of Science Times Cited 35] [SCOPUS Times Cited 39]


[14] J. C. Bolot, "Characterizing end-to-end packet delay and loss in the internet," Journal of High Speed Networks, vol. 2, no. 3, pp. 305, 1993.

[15] O. Gurewitz, I. Cidon, and M. Sidi, "One-way delay estimation using network-wide measurements," IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2710-2724, Jun. 2006,
[CrossRef] [Web of Science Times Cited 60] [SCOPUS Times Cited 70]


[16] K. Papagiannaki, S. Moon, C. Fraleigh, and et al., "Analysis of measured single-hop delay from an operational backbone network," Proceedings of IEEE INFOCOM'02. pp. 535-544, New York, IEEE, Jun. 2002,
[CrossRef] [SCOPUS Times Cited 89]


[17] D. Kouvatsos, and I. Awan, "Entropy maximisation and open queueing networks with priorities and blocking," Performance Evaluation, vol. 51, no. 2-4, pp. 191-227, Feb. 2003,
[CrossRef] [Web of Science Times Cited 29] [SCOPUS Times Cited 44]


[18] I. Awan, "Analysis of multiple-threshold queues for congestion control of heterogeneous traffic streams," Simulation Modelling Practice and Theory, vol. 14, no. 6, pp. 712-724, Aug. 2006,
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 4]


[19] J. Sheu, P. K. Sahoo, C. Su, and W. Hu, "Efficient path planning and data gathering protocols for the wireless sensor network," Computer Communications, vol. 33, no. 3, pp. 398-408, Feb. 2010,
[CrossRef] [Web of Science Times Cited 22] [SCOPUS Times Cited 33]


[20] N. Bisnik, and A. A. Abouzeid, "Queueing network Models for Delay Analysis of Multihop Wireless Ad Hoc Networks," Ad Hoc Networks, , vol. 7, no. 1, pp. 79-97, Jan. 2009,
[CrossRef] [Web of Science Times Cited 79] [SCOPUS Times Cited 94]


[21] G. Chen, W. Guo, and Y. Chen, "Research on dynamic alliance of task allocation and its algorithm in wireless sensor network," Journal on Communications, vol. 30, no. 11, pp. 48-55, 2009.

[22] J. Yick, B. Mukherjee, and D. Ghosal, "Wireless sensor network survey," Computer Networks, vol. 52, no. 12, pp. 2292-2330, Aug. 2008,
[CrossRef] [Web of Science Times Cited 3807] [SCOPUS Times Cited 5331]


[23] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "A survey on sensor networks," IEEE Communications Magazine, vol. 40, no. 8, pp. 102-114, Aug. 2002,
[CrossRef] [Web of Science Times Cited 7478] [SCOPUS Times Cited 11407]


[24] J. Son, J. Lee, and S. Seo, "Topological key hierarchy for energy-efficient group key management in wireless sensor networks," Wireless Personal Communications, vol. 52, no. 2, pp. 359-382 Jun. 2010,
[CrossRef] [Web of Science Times Cited 34] [SCOPUS Times Cited 40]


[25] S. A. B. Awwad, C. K. Ng, N. K. Noordin, and M. F. A. Rasid, "Cluster Based Routing Protocol for Mobile Nodes in Wireless Sensor Network," Wireless Personal Communications, vol. 55, no. 5, pp. 1-31, 2010,
[CrossRef]


[26] H. Abusaimeh, and S. Yang. Dynamic cluster head for lifetime efficiency in WSN. International Journal of Automation and Computing, vol. 6, no. 1, pp. 48-54, Feb. 2009,
[CrossRef] [Web of Science Times Cited 29] [SCOPUS Times Cited 44]


[27] Y. Sheng. Queueing Theory and Its Application in Modern Communication. BeiJing, Posts & Telecom Press, 2007.

[28] T. Qiu, L. Wang, H. Guo, L. Feng, and L. Shu, "A new modeling method for vector processor pipeline using queueing network," 5th International ICST Conference on Communications and Networking, pp. 1-6, Beijing, Aug. 2010.



References Weight

Web of Science® Citations for all references: 11,673 TCR
SCOPUS® Citations for all references: 17,348 TCR

Web of Science® Average Citations per reference: 403 ACR
SCOPUS® Average Citations per reference: 598 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-11-03 19:46 in 143 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy