Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 1.221
JCR 5-Year IF: 0.961
SCOPUS CiteScore: 2.5
Issues per year: 4
Current issue: Feb 2022
Next issue: May 2022
Avg review time: 77 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,894,923 unique visits
718,462 downloads
Since November 1, 2009



Robots online now
YandexBot
SemanticScholar


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 22 (2022)
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
  View all issues  








LATEST NEWS

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

2021-Jun-06
SCOPUS published the CiteScore for 2020, computed by using an improved methodology, counting the citations received in 2017-2020 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering in 2020 is 2.5, better than all our previous results.

2021-Apr-15
Release of the v3 version of AECE Journal website. We moved to a new server and implemented the latest cryptographic protocols to assure better compatibility with the most recent browsers. Our website accepts now only TLS 1.2 and TLS 1.3 secure connections.

2020-Jun-29
Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

2020-Jun-11
Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

Read More »


    
 

  3/2012 - 11

Object Extraction from Architecture Scenes through 3D Local Scanned Data Analysis

NING, X. See more information about NING, X. on SCOPUS See more information about NING, X. on IEEExplore See more information about NING, X. on Web of Science, WANG, Y. See more information about WANG, Y. on SCOPUS See more information about WANG, Y. on SCOPUS See more information about WANG, Y. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (858 KB) | Citation | Downloads: 603 | Views: 3,419

Author keywords
terrestrial laser scanner, point cloud segmentation, similarity measurement, nearest neighboring graph

References keywords
segmentation(8), point(7), image(7), range(5), pattern(5), clouds(5), vision(4), transform(4), robust(4)
No common words between the references section and the paper title.

About this article
Date of Publication: 2012-08-31
Volume 12, Issue 3, Year 2012, On page(s): 73 - 78
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2012.03011
Web of Science Accession Number: 000308290500011
SCOPUS ID: 84865851513

Abstract
Quick view
Full text preview
Terrestrial laser scanning becomes a standard way for acquiring 3D data of complex outdoor objects. The processing of huge number of points and recognition of different objects inside become a new challenge, especially in the case where objects are included. In this paper, a new approach is proposed to classify objects through an analysis on shape information of the point cloud data. The scanned scene is constructed using k Nearest Neighboring (k-NN), and then similarity measurement between points is defined to cluster points with similar primitive shapes. Moreover, we introduce a combined geometrical criterion to refine the over-segmented results. To achieve more detail information, a residual based segmentation is adopted to refine the segmentation of architectural objects into more parts with different shape properties. Experimental results demonstrate that this approach can be used as a robust way to extract different objects in the scenes.


References | Cited By  «-- Click to see who has cited this paper

[1] Roth, G., Levine, M. D., "Extracting geometric primitives," CVGIP: Image Underst. 58(1), pp.1-22 (1993).
[CrossRef] [SCOPUS Times Cited 41]


[2] Phil Torr and Andrew Zisserman, "Robust computation and parameterization of multiple view relations," In ICCV'98: Proceedings of the Sixth International Conference on Computer Vision, Washington, DC, USA, 1998, pp.727.
[CrossRef] [Web of Science Times Cited 91]


[3] Torr, P. H.S ., Zisserman, A., "Mlesac: a new robust estimator with application to estimating image geometry," Comput. Vis. Image Underst. 78(1), pp. 138-156, 2000.
[CrossRef] [Web of Science Times Cited 1322] [SCOPUS Times Cited 1657]


[4] Liang Xinhe, Liang Jin, Xiao Zhenzhong, Liu Jianwei, and Guo Cheng, "Study on Multi-Views Point Clouds Registration," Adv. Sci. Lett, 2011, 4, pp.2885-2889.
[CrossRef] [Web of Science Times Cited 1] [SCOPUS Times Cited 2]


[5] Fischler, M. A., Bolles, R. C., "Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography," Commun. ACM. 1981, 24, pp. 381-395
[CrossRef] [Web of Science Times Cited 13177] [SCOPUS Times Cited 16790]


[6] Nister, D. "Preemptive ransac for live structure and motion estimation," Mach. Vision Appl. 16(5), pp. 321-329, 2005.
[CrossRef] [Web of Science Times Cited 183] [SCOPUS Times Cited 222]


[7] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. "Shape detection in point clouds," Technical Report CG-2006-2, Universitat Bonn, January 2006.

[8] Liangliang Nan, Andrei Sharf, Hao Zhang, DanielCohen-Or, and Baoquan Chen. "Smartboxes for interactive urban reconstruction," ACM Trans. Graph., 2010, 29, pp 93:1-93:10.
[CrossRef] [Web of Science Times Cited 92] [SCOPUS Times Cited 107]


[9] Ballard, D. H. Generalizing the hough transform to detect arbitrary shapes. Pattern recognition. 1981, 13(2), pp. 111-122
[CrossRef] [Web of Science Times Cited 2506] [SCOPUS Times Cited 3271]


[10] George Vosselman, Er Dijkman. "3d building model reconstruction from point clouds and ground plans," International Archives of Photogrammetry and Remote Sensing, 2001, Volume XXXIV- 3/W4 (22-24), pp. 37-43.

[11] T. Rabbani and F. Van Den Heuvel. "Efficient hough transform for automatic detection of cylinders in point clouds," In ISPRS WG III/3, III/4, V/3 workshop. 2005, pp.60-65.

[12] Kourosh Khoshelham, "Extending generalized hough transform to detect 3d objects in laser range data," Transform, 2007, XXXV, pp. 206-210.

[13] P. J. Besl and R. C. Jain, "Segmentation through variable-order surface fitting," IEEE Transaction on Pattern Analysis and Machine Intelligence, 1988, 10(2), pp. 167-92.
[CrossRef] [Web of Science Times Cited 554] [SCOPUS Times Cited 794]


[14] I. S. Chang and R. H. Park, "Segmentation based on fusion of range and intensity images using robust trimmed methods," Pattern Reconition, 2001, 34, pp. 1951-1962.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 24]


[15] Klaus Koster and Michael Spann, "MIR: An approach to robust clustering application to range image segmentation," IEEE Trans. Pattern Anal. Mach. Intell., 2000, 22(5), pp. 430-444.
[CrossRef] [Web of Science Times Cited 53] [SCOPUS Times Cited 74]


[16] Guoyu Wang, Zweitze Houkes, Guangrong Ji, Bing Zheng, and Xin Li, An estimation-based approach for range image segmentation: On the reliability of primitive extraction. Pattern Recognition, 2003, 36(1), pp.157-169,
[CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 15]


[17] Jie Chen and Baoquan Chen. "Architectural modeling from sparsely scanned range data," Int. J. Comput. Vision, 2008, 78(2-3), pp.223-236.
[CrossRef] [Web of Science Times Cited 66] [SCOPUS Times Cited 85]


[18] Aleksey Golovinskiy and Thomas Funkhouser, "Min-cut based segmentation of point clouds," In IEEE Workshop on Search in 3D and Video (S3DV) at ICCV, 2009.
[CrossRef] [SCOPUS Times Cited 208]


[19] Pedro F. Felzenszwalb and Daniel P. Huttenlocher, "Efficient graph based image segmentation," International Journal of Computer Vision, 2004, 59(2), pp. 167-92.
[CrossRef] [Web of Science Times Cited 3464] [SCOPUS Times Cited 4672]


[20] ZhangLin. Cheng,XiaoPeng Zhang, "Estimating differential quantities from point cloud based on a linear fitting of normal vectors," Science in China Series F: Information Sciences, 2009, 52, pp. 431-444.
[CrossRef] [Web of Science Times Cited 12] [SCOPUS Times Cited 13]


[21] Xiaojuan Ning, Xiaopeng Zhang, Yinghui Wang, Segmentation of architecture shape information from 3d point cloud. In The 8th ACM SIGGRAPH International Conference on VRCAI, 2009.12.
[CrossRef] [SCOPUS Times Cited 6]


[22] Xiaojuan Ning, Xiaopeng Zhang, Yinghui Wang, Tree segmentation from scanned scene data. In PMA, December 2009.
[CrossRef] [SCOPUS Times Cited 3]




References Weight

Web of Science® Citations for all references: 21,550 TCR
SCOPUS® Citations for all references: 27,984 TCR

Web of Science® Average Citations per reference: 937 ACR
SCOPUS® Average Citations per reference: 1,217 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2022-05-20 03:21 in 127 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2022
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: