4/2012 - 2 |
A New Color Space Based Constellation Diagram and Modulation Scheme for Color Independent VLCDAS, P. , KIM, B.-Y. , PARK, Y. , KIM, K.-D. |
View the paper record and citations in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (1,119 KB) | Citation | Downloads: 1,315 | Views: 5,150 |
Author keywords
constellation diagram, gcm, light color space, mapping and demapping, visible light communication
References keywords
visible(17), light(17), communication(11), communications(7), indoor(6), networks(5), modulation(5), technology(4), system(4)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2012-11-30
Volume 12, Issue 4, Year 2012, On page(s): 11 - 18
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2012.04002
Web of Science Accession Number: 000312128400002
SCOPUS ID: 84872825915
Abstract
In this paper, generation of a constellation diagram, data to light intensity mapping, and light intensity to data demapping are introduced for the visible light communication (VLC) systems. We propose a new constellation diagram and modulation scheme named generalized color modulation (GCM) based on light color space which can be uniquely applied to modulate the light signals used to deliver data information regardless of target colors of VLC signals. At first, we describe the generation of a constellation in a light color space considering the target color of VLC signals. Then we represent the data symbols as constellation points, resulting in every data symbol having a specific position and corresponding color in the light color space. After that, we determine the position of received signal points in the light color space at the receiver by manipulating the intensities of received signals from the photo detectors. Finally, we convert these received points to data symbols by matching them to the constellation points generated by the receiver. We consider both single color and multiple colors scenarios and investigate two cases to obtain the color information at the receiver. Simulation results show that our proposed scheme can be applied to the development of a more efficient VLC system. |
References | | | Cited By «-- Click to see who has cited this paper |
[1] T. Komine and M. Nakagawa, "Fundamental analysis for visible-light communication system using LED lights," IEEE Trans. Consumer Electron., vol. 50, pp. 100-107, Feb. 2004. [CrossRef] [Web of Science Times Cited 2334] [SCOPUS Times Cited 2932] [2] J. Grubor, J.-O. Gaete, J. Waleski, S. Randel, and K. Langer, "High-speed wireless indoor communication via visible light," ITG Fachbericht, vol. 198, pp. 203-208, 2007. [3] H.Q. Nguyen, et al., "A MATLAB-based simulation program for indoor visible light communication system," 7th Int. Symp. on Commun. Systems Networks and Digital Signal Processing (CSNDSP), pp. 537-541, July 2010. [4] J. Vucic, C. Kottke, and S. Nerreter, K.-D. Langer, and J. W. Walewski, "513 Mbit/s visible light communications link based on DMT-modulation of a white LED," J. of Lightwave Technology, vol. 28, no. 24, pp. 3512-3518, Dec., 2010. [5] H. L. Minh, et al., "High speed visible light communications using multiple-resonant equalization," IEEE Photonics Technology Letters, vol. 1, no. 2, pp. 1243-1245, July 2008. [CrossRef] [Web of Science Times Cited 274] [SCOPUS Times Cited 345] [6] M. S. Rahaman, M. M. Haque, and K.-D. Kim, "Indoor positioning by led visible light communication and image sensors," Int. J. of Electrical and Computer Engineering, vol. 9, no. 4, pp. 161-170, Dec. 2011. [7] M. Yoshino, S. Haruyama, and M. Nakagawa, "High-accuracy positioning system using visible LED lights and image sensor," IEEE Radio and wireless symp., pp. 439-442, Jan. 2008. [CrossRef] [SCOPUS Times Cited 232] [8] K. Lee and H. Park, "Modulations for visible light communications with dimming control," IEEE Photonics Technology Lett., vol. 23, no. 16, pp. 1136-1138, Aug. 2011. [CrossRef] [Web of Science Times Cited 178] [SCOPUS Times Cited 226] [9] J. M. Anand and P. Mishra, "A novel modulation scheme for visible light communication," 2010 Annu. IEEE India Conf. (INDICON), pp. 1-3, Dec. 17-19, 2010. [CrossRef] [SCOPUS Times Cited 20] [10] H. Park and J. R. Barry, "Modulation analysis for wireless infrared communications," IEEE Int. Conf. on Commun., vol. 2, pp. 1182-1186, June 18-22, 1995. [CrossRef] [11] S. K. Hashemi, Z. Ghassemlooy, L. Chao, and D. Benhaddou, "Orthogonal frequency division multiplexing for indoor optical wireless communications using visible light LEDs," 6th Int. Symp. on Commun. Systems Networks and Digital Signal Processing (CSNDSP), pp. 174-178, July 2008. [12] M. Z. Afgani, H. Haas, H. Elgala, and D. Knipp, "Visible light communication using OFDM," Proc. IEEE Symp. on Wireless Pervasive Computing, TRIDENTCOM 2006. [CrossRef] [SCOPUS Times Cited 315] [13] H. Sugiyama, S. Haruyama, and M. Nakagawa, "Experimental investigation of modulation method for visible-light communication," IEICE Trans. of Commun., vol. E89-B, no. 12, pp. 3393-3400, Dec. 2006. [14] IEEE Standard for Local and metropolitan area networks Part 15.7: Short-range wireless optical communication using visible light, IEEE Standard 802.15.7, June 2011. [15] H.-C. Kwon, et al., "Modulation issues of visible light communication," IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), May 2008. [16] A. Yokoi and Samsung Yokoham Research Institute, "Color multiplex coding for VLC," IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs), Nov. 2008. [17] R. J. Drost and B. M. Sadler, "Constellation design for color-shift keying using billiards algorithms," 2010 IEEE GLOBECOM Workshops (GC Wkshps), pp. 980-984, Dec. 6-10, 2010. [CrossRef] [Web of Science Times Cited 69] [SCOPUS Times Cited 80] [18] R. S. Berns, Principles of Color Technology, John Wiley & Sons, New York, 2000. [19] M. S. Rahaman, B.-Y. Kim, M.-S. Bang, Y.-I. Park, and K.-D. Kim, "Color space mapping and medium access control techniques in visible light communication," The Institute of Webcasting, Internet Television and Telecommun., vol. 9, no. 4, pp. 99-107, Aug. 2009. [20] S.-Y. Chang, "The characteristics analysis of VLC technologies," Korea Information and Commun. Society (Information and Commun. Magazine), vol. 26, no. 5, pp. 15-22, Mar. 2009. [21] H. Ries, I, Leike, and J. Muschaweck, "Optimized additive mixing of colored light-emitting diode sources," Optical Engineering, vol. 43, pp. 1531-1356, 2004. [CrossRef] [Web of Science Times Cited 38] [SCOPUS Times Cited 48] [22] J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communication, Norwell, MA: Kluwer, 2004. [23] J. M. Kahn and J. R. Barry, "Wireless infrared communications," Proc. of IEEE, vol. 85, pp. 265-298, Feb. 1997. [CrossRef] [Web of Science Times Cited 2256] [SCOPUS Times Cited 2731] [24] Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagaa, "Indoor visible light data transmission system utilizing white LED lights," IEICE Trans. Commun., vol.E86B, no.8, pp. 2440-2454, Aug. 2003. [25] D. O'Brien, et al., "Indoor visible light communications: challenges and prospects," Proc. of SPIE, vol. 7091, pp. 1-9, 2008. [CrossRef] [Web of Science Times Cited 124] [SCOPUS Times Cited 193] Web of Science® Citations for all references: 5,273 TCR SCOPUS® Citations for all references: 7,122 TCR Web of Science® Average Citations per reference: 203 ACR SCOPUS® Average Citations per reference: 274 ACR TCR = Total Citations for References / ACR = Average Citations per Reference We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more Citations for references updated on 2024-10-07 09:05 in 86 seconds. Note1: Web of Science® is a registered trademark of Clarivate Analytics. Note2: SCOPUS® is a registered trademark of Elsevier B.V. Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site. |
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.